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Integration of PGD-virtual charts into an engineering design
process

Amaury Courard1
· David Néron2

· Pierre Ladevèze2
· Ludovic Ballere1

Abstract This article deals with the efficient construction

of approximations of fields and quantities of interest used

in geometric optimisation of complex shapes that can be

encountered in engineering structures. The strategy, which

is developed herein, is based on the construction of vir-

tual charts that allow, once computed offline, to optimise

the structure for a negligible online CPU cost. These virtual

charts can be used as a powerful numerical decision sup-

port tool during the design of industrial structures. They are

built using the proper generalized decomposition (PGD) that

offers a very convenient framework to solve parametrised

problems. In this paper, particular attention has been paid

to the integration of the procedure into a genuine engineer-

ing design process. In particular, a dedicated methodology

is proposed to interface the PGD approach with commercial

software.

Keywords Model reduction · PGD · Geometric parame-

ters · Virtual chart · Shape optimisation

1 Introduction

Due the rapid and constant increase in computing power,

particularly with the development of High Performance

Computing, it is possible to run simulations of complex struc-

tures, which was unimaginable a few decades ago. It is, then,

possible for some structures to run a parametric simulation
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(for all the values of parameters) and to choose the right set

of parameters for the structure to design afterwards.

Nevertheless the tendency nowadays is to introduce more

and more physics into modelling, i.e. dealing with very com-

plex material laws, geometric non-linearities due, especially,

to the development of composite materials in many engi-

neering fields (aeronautics, automotive...). Simulations of

these models can take a substantial amount of time (weeks,

months). Thus considering each new structure, i.e. a new

set of parameters, as a new problem during the design stage

leads to highly expensive simulations. Consequently, struc-

tures tend to be oversized in order to reduce the design time

(the design stage is stopped before finding the optimal set

of parameters) which is an issue, for instance, in aeronautics

where weight reduction is an engineering challenge.

To fix ideas, the optimisation problem would be the min-

imisation of the mass M of an aeronautical structure with

respect to a set of design parameters α = (α1, . . . , αn) ∈

A = A1 ×· · ·×An ⊂ Rn . Meanwhile, the Von Mises stress

σV M must remain under a given threshold σ0 in order to

guaranty the safety of the structure. The constrained opti-

misation problem can be written as follows: Find α
∗ =

(

α∗
1 , . . . , α∗

n

)

∈ A = A1 × · · · × An such that

α
∗ = arg min

α∈A
σV M (α)�σ0

M (α) (1)

which can be rewritten by restraining the space A to Aσ0 , the

space where the parameters associated to structures, whose

Von Mises stress do not exceed σ0, belong. Hence, the opti-

misation problem becomes: Find α
∗ =

(

α∗
1 , . . . , α∗

n

)

∈ Aσ0

such that

α
∗ = arg min

α∈Aσ0

M (α) (2)
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However, the difficulty lies in the definition of the search

space Aσ0 because it implies evaluating the stress field σ for

all α ∈ A, which can be out-of-reach of classic methods in

terms of computation time.

The aim of this work is not to derive any new approach

on the optimisation process itself because numerous algo-

rithms are already available but to propose a strategy to build

efficiently the fields needed for evaluation (stress, strain, dis-

placement, quantities of interest, etc.)

It is worth noticing that a non negligible part of structural

design is repetitive since many structures are similar in shape.

So it could be helpful to store the results obtained for previous

structures to use them for new ones. That is why the idea of

handbooks is still of topical interest. Handbooks were, for

centuries, powerful decision support tools in many fields such

as architecture, engineering (Vademecum des Mechaniker [7]

by Christoph Bernoulli) and science in general.

A novel idea is to update the notion of handbooks to cur-

rent engineering requirements. These new kind of handbooks

are called virtual charts [17] or computational vademecum

[11]. Varying the values of a set of geometric parameters, it

is possible to construct a whole family of structures from a

reference one. Results of numerical simulations are stored

once and for all in virtual charts for families of structures.

Hence the end-user has solely to seek the sets of parameters

that meet the specifications among all the sets considered in

a certain range. The construction of a virtual chart may be

time consuming but, since it is done once and for all, it is

worth loosing time at this stage with regards to the one won

during the practical use, above all for repetitive tasks.

However, as it was previously mentioned, the construction

of virtual charts is still out of reach of standard Finite Ele-

ments approaches using “brute force” due to the prohibitive

computation time.

The path, which is followed in this work, is to build

the charts by mean of a reduced-order modelling technique.

The community of model reduction is very active and many

strategies are, nowadays, available. One of the most pop-

ular approaches relies on the use of the proper orthogonal

decomposition (POD), which is based on some preliminary

computations, called snapshots, of the high-fidelity problem

for given values of the parameters (see e.g. [6,15,19,20,31]).

The reduced basis method (RB, see e.g. [27,30]) adds an

automatic selection of these snapshots by a greedy algorithm

based on some error indicators. Finally, the (PGD, see e.g.

[4,16] or [10] for a review of the method) follows a different

path as it builds progressively an approximated separated rep-

resentation of the solution, without assuming any snapshot

or basis.

The PGD was considered, in our former works, in the con-

text of the LATIN method [16], in particular for the analysis

of elastic-viscoplastic problems [29], multiscale problems

[12], multimodel problems [22], multiphysics problems [24]

or parametrised studies [23]. The PGD has also been widely

developed by Chinesta and co-authors, who proposed very

efficient implementations of the method (see [9] for an

overview). To focus only on some very recent works, one can

cite the examples of real-time simulations in surgery [2,14],

real-time monitoring of thermal process [1] or the simulation

of viscoelastic models [5].

Concerning the case of geometric variations for shape

optimization, the literature in the field of model reduction

is poorer as it involves some technical difficulties that will

be discussed along this paper. Some POD based approaches

deal with this issue such as [21,30], where geometric para-

meters are taken into account in the RB framework and [28],

where the authors handled it through a combination of POD

(called Principal Component Analysis here) and Diffusion

approximation. The PGD approach is, obviously, a natural

framework to deal with geometric variations by handling geo-

metric parameters in the separated variables decomposition

and then solve the problem for any set. The first demon-

stration of this approach has been done in [3] on rather

academic geometries of thermal problems and reused in [32]

very recently.

The aim of the present work is to address more com-

plex problems encountered in industry such as axisymmetric

geometries and shapes defined by non-straight lines such as

splines and to take care of the implementation in the engineer-

ing process as well as the coupling with engineering software.

In our knowledge, the coupling between PGD and commer-

cial software is quite new in the literature due to the high

degree of intrusiveness of the PGD method and marrying the

new algorithms with the techniques and tools that are used in

engineering design offices is a clearly mandatory. This work

is a first demonstrator of what can be envisaged in the future

to introduce PGD in industry.

The article is organised as follows: in Sect. 2, we present

the engineering case ; in Sect. 3, the notion of virtual chart is

defined and the Proper Generalized Decomposition is intro-

duced ; Sect. 4 deals with geometric parameters and how the

PGD has to be modified to take them into account ; Sect. 5

treats the integration of the PGD into an engineering design

process using commercial software ; finally, Sect. 6 exempli-

fied the approach on the demonstrator proposed by AIRBUS

Defence & Space. In Appendix, some discussions on the

PGD can be found for the novice reader.

2 Presentation of the engineering structure

The problem that will be studied in detail in Sect. 6 is an

engineering case. During the design process, different para-

meters can be played with such as loads, material parameters

(Young’s modulus, Poisson’s ratio...) and geometric parame-

ters. For our study, we focus on geometric parameters.
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Fig. 1 Considered structure

As shown in Fig. 1, the considered structure is an axisym-

metric geometry in isotropic, linear elastic material, whose

boundary is defined by splines and parametrised by the posi-

tions of control points 1 and 2. In other words, there is a total

of four geometric parameters (two per point). The set of para-

meters is denoted as α = (α1, α2, α3, α4) = (r1, z1, r2, z2),

which belongs to design space A. One of the quantities of

interest sought for design is the size of the plastic zones. For

the sake of demonstration, the computations performed in

this article are linear elastic and the plastic zones are esti-

mated by defining a threshold and considering the zones

whose strain is superior to this threshold (see Sect. 6.2 for

further details). An example of virtual chart representing

this quantity of interest will be constructed and exposed in

Sect. 6.2.

In the current approach, the problem is solved, after dis-

cretisation in space, through a FE procedure governed by an

equation of the form:

∀α ∈ A, K (α) U (α) = F (α) (3)

where

– K (α): stiffness matrix

– U (α): displacement vector

– F (α): load vector

The brute force approach consists in solving (3) for each

set of parameters and checking whether the structure meets

the mechanical requirements or not. If not, a new simulation

is run and so on. The issue is that numerous simulations may

be needed before finding the right set of parameters increas-

ing the computation time and conception costs. That is why

reduced order modelling and, in particular, PGD was consid-

ered. Difficulties will be encountered due to axisymmetric

modelling and the complex geometry considered (splines).

A methodology to take care of them will presented.

3 PGD-virtual chart

3.1 Virtual chart

Coming back to the continuous framework, a PGD-virtual

chart of the displacement u, depending on a set of parameters

α ∈ A, can be seen as a separated variables approximation

of u:

∀ X ∈ Ω, ∀α = (α1, . . . , αm) ∈ A,

u (α, X) ≈ un (α, X) =

n
∑

k=1

λk (α)�k (X) (4)

where λk (α) =
∏m

j=1 λ
j

k

(

α j

)

and n is the number of

“modes” used in the approximation. λ
j

k are scalar functions

and �k are vectors. All is remaining for the final user is to

particularise this solution for a given set of parameters.

For parameters such as material parameters (Young’s

moduli, Poisson’s ratios, diffusion coefficients...), the PGD

method furnishes a separated variables representation thanks

to a greedy algorithm [18]. For geometric parameters, the

method cannot be applied directly as is and must be slightly

modified as it was exemplified in [3] (see Subsect. 4).

The construction of the virtual chart, using a greedy algo-

rithm, is classic and recalled in Appendix 1 for the reader

who is not familiar with the method. The important point is

that, roughly, the greedy algorithm is based upon a variational

formulation of the form: Find u ∈ I ⊗ V such that

∀ v ∈ I ⊗ V,

∫

A

∫

Ω

σ (u) : ε (v) dΩ dA =

∫

A

∫

∂dΩ

f · v dS dA

(5)

where ⊗ stands for the tensor product. The whole PGD algo-

rithm is exposed in Algorithm 1. An example of application

for material parameters is given in Appendix 2.

4 Geometric parameters

Geometric parameters are of different nature regarding

to other parameters as, for instance, material parameters

(Young’s moduli, Poisson’s ratios...) due to the fact that their

variations affect directly the integration domain Ω (α). Let

us come back to the problem shown in (5). This time, we

will assume that the geometry depends on a set of parame-

ters α = (α1, . . . , αm) ∈ A = A1 × · · ·×Am . Equation (5)

becomes:
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Algorithm 1: PGD greedy algorithm

Input: A sequence of parameters

α = (α1, α2, . . . , αm) ∈ A = A1 × . . . × Am

Level 1: Greedy algorithm;1

while ‖R (un)‖ > threshold (with R (un) being the residual) do2

Level 2: Fixed-point algorithm;3

Initialisation of the (m + 1)-uplet
(

λ1, . . . , λm ,�
)

;4

for k = 1 to kmax do5

for j = 1 to m do6

solve the parametric problem associated to λ j7

solve the spatial problem associated to �8

Update of the functions
(

λ1
i , . . . , λ

m
i

)

i∈{1 .. n}
;9

un ← un−1 +
∏m

r=1 λr
� ;10

n ← n + 1;11

Tα

f0

f(α)

Fig. 2 Definition of the problem on a reference structure Ω0

Find u ∈ I ⊗ V (α) such that

∀ v ∈ I ⊗ V (α) ,

∫

A

∫

Ω(α)

σ (u) : ε (v) dΩ dA

=

∫

A

∫

∂dΩ(α)

f · v dS dA (6)

with V (α) = H1
0 (Ω (α)) =

{

v ∈ H 1 (Ω (α))
∣
∣v|∂uΩ(α) =

0
}

This complicates the calculations of the different inte-

grals since they cannot be computed independently from one

another any more. The dependency of the integration domain

on the geometric parameters has to be, in some way, skirted.

The solution, introduced in [3], is to use a change of variables,

i.e. to define a reference structure Ω0 and, from the current

structure Ω (α), where the problem is initially defined, to

come back to that reference structure Ω0 thanks to a geomet-

ric transformation Tα (see Fig. 2). Thus,

X = Tα (X0) (7)

u (α, X) = u (α, Tα (X0)) (8)

The methodology is recalled, hereafter, for the sake of con-

sistency and to highlight the technical difficulties of dealing

with axisymmetric modelling. One can write (6) applying the

change of variables:

Find u ∈ I ⊗ V0 such that

∀ v ∈ I ⊗ V0,

∫

A

∫

Ω0

σ (u (α, Tα (X0)))

: ε (v (α,Tα (X0))) JTα
(X0) dΩ0 dA

=

∫

A

∫

∂dΩ0

f (α, Tα (X0)) · v (α, Tα (X0)) JTα
(X0) dS0 dA

(9)

with V0 = H1
0 (Ω0) =

{

v ∈ H1 (Ω0)
∣
∣v|∂uΩ0 = 0

}

and JTα

is the modulus of the determinant of the Jacobian matrix of

geometric transformation Tα .

In this formulation, the dependency on the geometric para-

meters has been transferred from the integration domain to

the integrand through the Jacobian. Now a PGD approxima-

tion of the field u can be sought using the PGD procedure

already exposed in Sect. 3.

4.1 Proper generalized decomposition for geometric

parameters

Let us come back to the problem defined in Sect. 2. One

applies the principle of stationary potential energy and inte-

grates it on the geometric parameter space, which reads after

discretisation in space:

∀ U∗ (α) ∈ I ⊗ R
N ,

∫

A

UT (α) K (α) U∗ (α) dA

=

∫

A

FT (α) U∗ (α) dA (10)

where N is the number of degrees of freedom of the discreti-

sation in space.

From this formulation, the PGD-approximation of dis-

placement vector U is calculated:

U (α) = U (α1, . . . , αm) =

n
∑

k=1

m
∏

j=1

λ
j

k

(

α j

)

Ũk (11)

At iteration n, the following test function vector is used

for the computation of the new (m + 1)-uplet:

U∗ (α) = U∗ (α1, . . . , αm) =

m
∏

j=1

λ j
(

α j

)

Ũ∗

+

m
∑

i=1

λi∗ (αi )

m
∏

j=1
j 
=i

λ j
(

α j

)

Ũ (12)
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with Ũ∗ ∈ RN and λi∗ ∈ Ii for i = 1..m.

Using Algorithm 1 defined previously, one solves alterna-

tively the linear systems:

∀ r ∈ {1 .. m},

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ŨT

⎡

⎢
⎢
⎣

∫

Ār

m
∏

i=1
i 
=r

(

λi (αi )

)2
K (α) dĀr

⎤

⎥
⎥
⎦

Ũ

⎫

⎪
⎪
⎬

⎪
⎪
⎭

λr (αr )

=

⎡

⎢
⎢
⎣

∫

Ār

m
∏

i=1
i 
=r

λi (αi ) FT (α) dĀr

⎤

⎥
⎥
⎦

Ũ

−

n−1
∑

k=1

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

Ũk
T

⎡

⎢
⎢
⎢
⎣

∫

Ār

m
∏

i=1
i 
=r

m
∏

j=1
j 
=r

λi (αi ) λ
j
k

(

α j

)

K (α) dĀr

⎤

⎥
⎥
⎥
⎦

Ũ

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

λr
k (αr )

(13)

with Ār = A1 × · · · × Ar−1 × Ar+1 × · · · × Am

⎡

⎣

∫

A

m
∏

i=1

(

λi (αi )

)2
K (α) dA

⎤

⎦ Ũ =

∫

A

m
∏

i=1

λi (αi ) F(α)dA

−

n−1
∑

k=1

⎡

⎣

∫

A

m
∏

i=1

m
∏

j=1

λi (αi ) λ
j

k

(

α j

)

K (α) dA

⎤

⎦ Ũk (14)

Let us remark that the computation of the various inte-

grations can be greatly facilitated if the stiffness matrix K is

written in a separated variables form, which is the aim of the

next subsection.

4.2 Stiffness matrix computation in the axisymmetric

case

Let us start writing the expression of the stiffness matrix

Ke (α) of an element for the current structure. Applying a

change of variables, it will be defined on the reference struc-

ture:

K
e (α) = 2π

∫

Ωe(α)

B
T (α, X) C B (α, X) r (α, X) dΩ (15)

= 2π

∫

Ωe
0

B̂
T (α, X0) C B̂ (α, X0) r̂ (α, X0) JTα

(X0) dΩ0

(16)

where

– B: matrix of the partial derivatives of the shape functions

– r : radius

– C: Hooke’s matrix (here independent on α because we

are not dealing with material parameters)

– B̂ (α, X0) = B (Tα (X0)) and r̂ (α, X0) = r (Tα (X0))

It can be immediately noticed that axisymmetric mod-

elling adds an extra difficulty with respect to a classic two

dimensional modelling since r̂ , which depends on the geo-

metric parameters, appears in the integrand. To obtain a

separated variables form of Ke (α), one must first write B̂

in the separated way.

Let us write the matrix B̂:

B̂ =
[

B̂1, B̂2, · · · , B̂p

]

(17)

where p corresponds to the number of shape functions used

and:

∀ I ∈ {1 .. p}, B̂I =

⎡

⎢
⎢
⎣

NI,r 0

0 NI,z
NI

r
0

NI,z NI,r

⎤

⎥
⎥
⎦

(18)

It has to be recalled that the problem is defined on the

reference structure Ω0. Therefore NI,r and NI,z are unknown

on the contrary to NI,r0 and NI,z0 . Obviously, it is possible

to express NI,r and NI,z in function of NI,r0 and NI,z0 :

[

N,r0

N,z0

]

=

[

r,r0 z,r0

r,z0 z,z0

]

︸ ︷︷ ︸

JT
Tα

[

N,r

N,z

]

(19)

Hence,

[

N,r

N,z

]

= J
−T
Tα

[

N,r0

N,z0

]

(20)

Introducing the adjugate matrix of JTα
:

[

N,r

N,z

]

=
1

JTα

adj
(

JTα

)T

[

N,r0

N,z0

]

(21)

(18) becomes, defining Adj = adj
(

JTα

)T
:

∀ I ∈ {1 .. p},

B̂I =
1

JTα

⎡

⎢
⎢
⎣

Adj1,1 NI,r0 + Adj1,2 NI,z0 0

0 Adj2,1 NI,r0 + Adj2,2 NI,z0
NI

r
0

Adj2,1 NI,r0 + Adj2,2 NI,z0 Adj1,1 NI,r0 + Adj1,2 NI,z0

⎤

⎥
⎥
⎦

(22)

Jacobian matrix JTα
of the geometric transformation

depends on both space variables and geometric parameters.

Therefore obtaining a separated variable representation is not

trivial. It can be considered to obtain a separated form of the

Jacobian through a higher-order singular value decomposi-

tion (HOSVD [13]) but due to the large number of HOSVD

needed (four for each elements), it would highly increase
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the computation time. The proposed solution is to avoid the

dependency on space variables of the Jacobian matrix. To

do so, the simplest way is to use solely affine geometric

transformations with respect to space variables. During the

computation of the Jacobian matrix, the space variables will

disappear naturally. For that purpose, the structure is divided

into sub-domains in which is defined an affine geometric

transformation. This solution was also proposed in [3] where

geometries are decomposed in triangular sub-domains.

In Sect. 6, a possible subdivision is detailed for the engi-

neering case. In particular, it will be shown that triangles

can be limited in some cases of complex geometries such as

splines and hence are not a panacea.

An affine geometric transformation is written in the section

as:

Tα (X0) =

(

T r
α (X0)

T z
α (X0)

)

(23)

=

(

ar (α) r0 + br (α) z0 + cr (α)

az (α) r0 + bz (α) z0 + cz (α)

)

(24)

with X0 = (r0, z0). Hence the Jacobian and Adj matrices

become:

JTα
=

⎡

⎢
⎢
⎣

∂T r
α

∂r0

∂T r
α

∂z0

∂T z
α

∂r0

∂T z
α

∂z0

⎤

⎥
⎥
⎦

(25)

=

[

ar (α) az (α)

br (α) bz (α)

]

(26)

Adj =

[

bz (α) −br (α)

−az (α) ar (α)

]

(27)

The Jacobian does not depend on the space variables any

more but it is still not obvious to give a separated variables

representation of matrix B̂. For this purpose, let us define the

following matrices:

B
I
1 (X0) =

⎡

⎢
⎢
⎣

NI,r0 (X0) 0

0 0

0 0

0 NI,r0 (X0)

⎤

⎥
⎥
⎦

B
I
2 (X0) =

⎡

⎢
⎢
⎣

NI,z0 (X0) 0

0 0

0 0

0 NI,z0 (X0)

⎤

⎥
⎥
⎦

B
I
3 (X0) =

⎡

⎢
⎢
⎣

0 0

0 NI,r0 (X0)

0 0

NI,r0 (X0) 0

⎤

⎥
⎥
⎦

B
I
4 (X0) =

⎡

⎢
⎢
⎣

0 0

0 NI,z0 (X0)

0 0

NI,z0 (X0) 0

⎤

⎥
⎥
⎦

B
I
5 (X0) =

⎡

⎢
⎢
⎣

0 0

0 0

NI (X0) 0

0 0

⎤

⎥
⎥
⎦

(28)

and coefficients:

β 1 = bz (α) , β 2 = −az (α) , β 3 = −br (α) , β 4 = ar (α)

(29)

So that B̂ can be conveniently written:

B̂ (α, X0) =
1

JTα

4
∑

i=1

β i (α) B i (X0) +
1

r̂ (α, X0)
B5 (X0)

(30)

Due to the definition of B 5, one can remark:

∀ i 
= 5, B
T
5 C B i = O (31)

which leads to the following expression of Ke:

K
e (α) =

1

JTα

4
∑

i=1

4
∑

i=1

β i (α) β j (α)

∫

Ωe
0

B
T
i (X0) C B j (X0)

× r̂ (α, X0) dΩ0

+ JTα

∫

Ωe
0

1

r̂ (α, X0)
B

T
5 (X0) C B 5 (X0) dΩ0

(32)

This expression of Ke satisfies only partially the desired

objective, i.e.obtaining a separated variables formulation.

Partially because r̂ and 1/r̂ contain both space variables and

geometric parameters. Since the choice of an affine geomet-

ric transformation was made, r̂ is already separated and is

written as r̂ = arr0 + br z0 + cr .

The case of 1/r̂ is slightly trickier since 1/r̂ has no imme-

diate separated form. For this reason, a linear approximation

of 1/r̂ is computed in a neighbourhood of the barycentre

(rbar , zbar ) of the sub-domain to which the element belongs:

1

r̂
=

1

ar r0 + br z0 + cr

≈
1

ar rbar + br zbar + cr
−

ar

(ar rbar + br zbar + cr )2
(r0 − rbar )

−
br

(ar rbar + br zbar + cr )2
(z0 − zbar ) (33)
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In Sect. 6, an evaluation of the error for this approxima-

tion will be given in the case of the industrial demonstrator.

Finally the elementary stiffness matrix Ke can be written in

a fully separated formulation:

K
e (α) =

4
∑

i=1

4
∑

j=1

(

mi j (α) M
i j + m

i j
r0

(α) M
i j
r0

+ m
i j
z0

(α) M
i j
z0

)

+ m55 (α) M
55 + m55

r0
(α) M

55
r0

+ m55
z0

(α) M
55
z0

(34)

with

– mi j = cr

JTα

β i β j and Mi j =

∫

Ωe
0

B
T
i C B j dΩ0

– m
i j
r0

= ar

JTα

β i β j and M
i j
r0

=

∫

Ωe
0

r0B
T
i C B j dΩ0

– m
i j
z0

= br

JTα

β i β j and M
i j
z0

=

∫

Ωe
0

z0 B
T
i C B j dΩ0

– m55 =
JTα

ar rbar +br zbar +cr
and M55 =

∫

Ωe
0

B
T
5C B 5 dΩ0

– m55
r0

= −
ar JTα

(ar rbar +br zbar +cr )
2 and M55

r0

=

∫

Ωe
0

(r0 − rbar ) B
T
5C B 5 dΩ0

– m55
z0

= −
br JTα

(ar rbar +br zbar +cr )
2 and M55

z0

=

∫

Ωe
0

(z0 − zbar ) B
T
5C B 5 dΩ0

The different matrices that appear in the decomposition

of Ke (α) are to be computed for each element and the

coefficients depending on the geometric parameters for each

sub-domain. The number of terms belonging to decompo-

sition of the stiffness matrix is fixed with respect to the

discretisation of the parameter space A.

5 Integration into the engineering design process

As it was previously said, particular attention has been paid

to inserting the methodology developed into a genuine engi-

neering design process. Due to engineering requirements

and, in particular, the coupling with other parts of the system

that affect the loadings applied on the structure presented

Fig. 1, the actual design process is performed using the com-

mercial software SAMCEF.

It is important to note that a single optimisation of the

structure with respect to geometric parameters should have

certainly been done efficiently using the embedded SAM-

CEF optimisation procedures. However, this work is the first

step of a more complex design process in which some other

parameters will be taken into account. Further works are in

progress to take also into account various types of loadings

that can be applied on the structure and, then, the total num-

ber of situations considered justify the offline building of a

virtual chart of solutions.

The proposed PGD approach must, then, be included in

the design workflow with a limited number of modifications

to take advantage of the existing facilities. The main problem

of the approach detailed in Subsect. 4.2 is the high degree of

intrusiveness of the PGD. Indeed, the linear system defined

in (14) is not a classic finite elements problem since the stiff-

ness matrix and the load vector are averaged on the parameter

space A. To limit the intrusiveness in the design workflow,

different approaches have been envisaged, in collaboration

with SAMTECH, the SIEMENS subsidiary which develops

SAMCEF software. The first was a complete embedding of

the PGD approach in SAMCEF, calculating the averaged

stiffness matrices and averaged load vectors (see Eq. (14)):

−

∫

A

m
∏

i=1

m
∏

j=1

λi (αi ) λ
j

k

(

α j

)

K (α) dA (35)

−

∫

A

m
∏

i=1

λi (αi ) FT (α) dA (36)

directly in the commercial code. This approach has been

given up because it would have need the development of

a new structure of fields in SAMCEF which has been con-

sidered a too consequent job. Finally, the technique which

has been chosen and is demonstrated herein is to “encapsu-

late” SAMCEF into an in-house MATLAB code that deals

with the particular operators associated to PGD. To sum up,

on the one hand, SAMCEFs utilities are used to defined the

geometry, the partition, the loads, the mesh and the mate-

rials, as well as to solve the space finite elements systems

mandatory to build the space modes �i of the PGD. On the

other hand, the MATLAB in-house code is used to build the

specific PGD operators Eqs. (35) and (36), as well as the

problems corresponding to parametric modes λi .

The communication between the two codes has needed the

development by SAMTECH of specific interface functions

which takes advantage of the possibility offered by SAMCEF

to stop it at a defined step and to restart it from this step

afterwards. The whole procedure is detailed in Algorithm 2

and a scheme of the communication between SAMCEF and

MATLAB is given in Fig. 3. The overall process of coupling

is not optimised and this work only constitutes a demonstrator

of the approach that will be extended in the future.
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Algorithm 2: SAMCEF-PGD algorithm

Input: A sequence of parameters

α = (α1, α2, . . . , αm) ∈ A = A1 × . . . × Am

Definition of the problem with SAMCEF;1

Definition of the geometry, materials, partition, loads and mesh;2

START PGD-algorihm in MATLAB;3

Load data from SAMCEF4

Level 1: Greedy algorithm;5

while ‖R (Un)‖ > threshold (with R (un) being the residual) do6

Level 2: Fixed-point algorithm;7

Initialisation of the (m + 1)-uplet
(

λ1, . . . , λm , Ũ
)

;8

for k = 1 to kmax do9

Computation of the averaged elementary stiffness10

matrices and load vectors;

for j = 1 to m do11

Resolution of the parametric problem associated to λ j ;12

Transfer stiffness matrices and load vectors to SAMCEF13

Resolution of the spatial problem using SAMCEF

Update of the functions
(

λ1
i , . . . , λ

m
i

)

i∈{1 .. n}
;14

Un ← Un−1 +
∏m

r=1 λr Ũ ;15

n ← n + 1;16

6 Application

6.1 Geometry partition

In order to apply what has been exposed in Sect. 3, a division

of the geometry of the engineering structure has to be chosen.

The division has to verify the sufficient condition defined

before, viz. that the geometric transformation associated to

each sub-domain must be affine with respect to the space

variables.

An example of a possible division of the geometry is rep-

resented in Fig. 4. The level of error due to the approximation

of 1
r̂

Eq. (33) goes from 1.28 % (sub-domain 1) up to 6.32 %

(sub-domain 2). The sub-domains are mainly triangles where

the geometric transformations are quite immediate to com-

pute. To construct an affine geometric transformation in the

neighbourhood of the fillet is trickier. In fact, the geometry

must be accurately fitted, so triangles are to be avoided. One

can think about using a high number of triangles to fit the fillet

but here we face a problem of computation time because the

more sub-domains there are, the longer it takes to compute

the stiffness matrix (see Subsect. 4.2).

The problem is that six-nodes triangles cannot be consid-

ered either, even though they will accurately fit the curved

geometry because the geometric transformation associating

a six-nodes triangle to another one is quadratic and not

affine.

That is why it was decided to use modified three-nodes

triangles with two straight edges and a curved one as shown

in the close-up of Fig. 4. To do so, the fillet in the reference

structure Ω0 is modelled as an arc of a circle. Let us sup-

pose that for each geometric configuration, the positions of

points A and B (used here as control points), together with

the tangents at these points, are known and point C is “free”.

First let us seek the inverse geometric transformation T −1
α

(from the current structure Ω (α) to the reference structure

Ω0) associated to the displacements of points A and B which

is also affine.

Computation of

functions ( λj )

Resolution of

spatial mode

Definition of

FE problem

SAMCEF

▪ Geometry

▪ Partioning

▪ Loads

▪ Mesh

▪ Materials

Computation

of specific

PGD operators

Level 2

Level 1

Averaged

stiffness matrices 

and load vectors

In-house MATLAB code

Definition

of

geometric 

parameters

NO

YES

New

PGD

mode

PGD

approximation
threshold

n

Fig. 3 Communication between SAMCEF and the in-house MATLAB code
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Fig. 4 A possible partition of the geometry

The affine inverse geometric transformation can be written

as follows:

T
−1

α (r0, z0) =

(

λr r + γr z + δr

λz r + γz z + δz

)

(37)

It remains to determine the six coefficients λr , γr , δr , λz ,

γz and δz . Four equations are given by (37) for the positions of

A and B are known for both current and reference structures.

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

r A
0 = λr rA + γr z A + δr

z A
0 = λz rA + γz z A + δz

r B
0 = λr rB + γr zB + δr

zB
0 = λz rB + γz zB + δz

(38)

As it was previously mentioned, the fillet boundary is mod-

elled by an arc of a circle further referred as (Ŵ0) in the

reference structure. Thus,

∀ (r0, z0) ∈ Ŵ0, (r0 − rcentre)
2 + (z0 − zcentre)

2 = R2
0

(39)

Substituting (37) in (39), it leads to:

(λrr + γr z + δr − rcentre)
2 + (λzr + γzz

+ cz − zcentre)
2 = R2

0 (40)

Let us derive it with respect to r :

(λrr + γr z + δr − rcentre)

(

λr + γr

dz

dr

)

+ (λzr + γzz + δz − zcentre)

(

λz + γz

dz

dr

)

= 0 (41)

or

(r0−rcentre)

(

λr +γr
dz

dr

)

+ (z0 − zcentre)

(

λz + γz
dz

dr

)

= 0

(42)

Which gives the last two missing equations:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

(

r A
0 − rcentre

)
(

λr + γr
dz
dr

∣
∣
r=rA

)

+
(

z A
0 − zcentre

)
(

λz + γz
dz
dr

∣
∣
r=rA

)

= 0
(

r B
0 − rcentre

)
(

λr + γr
dz
dr

∣
∣
r=rB

)

+
(

zB
0 − zcentre

)
(

λz + γz
dz
dr

∣
∣
r=rB

)

= 0

(43)

The six coefficients λr , γr , δr , λz , γz and δz of the

inverse geometric transformation being determined, the geo-

(a) (b) (c)

Fig. 5 The variations of geometry are limited by structures (a) and (c)
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Fig. 6 Convergence curve

metric transformation can be easily obtained by a simple

inversion.

6.2 Results

Let us come back to the engineering case presented in Sect.

2. Figure 5 shows the variations of geometry, we are dealing

with. The convergence curve of the simulation can be seen in

Fig. 6. It is possible to improve the convergence rate of the

method following strategies presented in [26], what will be

done in future developments. Anyway a PGD approximation

of the displacement was obtained with 17 modes with an error

on the residual of 5.6 % and from it, it was also deduced a

PGD approximation of the strain ε. Comparisons between

the PGD solution and FE simulations show a good accuracy

of the method developed (Fig. 7).

The question now is: how to explore efficiently the virtual

charts? Indeed, this is a real difficulty because one must still

have in mind that the final user need a decision support tool

0.002

0.004

0.006

3.231e-04

7.122e-03

epsilon Magnitude

0.002

0.004

0.006

3.231e-04

7.122e-03

epsilon Magnitude

0.002

0.004

0.006

0.008

0.01

3.452e-04

1.156e-02

epsilon Magnitude

0.002

0.004

0.006

0.008

0.01

3.452e-04

1.156e-02

epsilon Magnitude

(a)

(b)

Fig. 7 Comparison between the solutions (strain magnitude) obtained with 17 PGD modes (left) and Finite Elements (right) for two given sets of

parameters. a Geometric configuration defined in Fig. 5a. b Geometric configuration defined in Fig. 5c
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Fig. 8 Example of virtual chart representing the plastic zones for three different values of the set of parameters

as easy to use as a handbook. He must be able to look over all

the possible geometries and solutions in an easy and practi-

cal way. For that purpose, we exploit the plug-in PXDMF for

PARAVIEW developed at Ecole Centrale de Nantes which

allows to plot separated variables data [8]. Given the modes

associated to each considered field (displacement, strain...),

PARAVIEW reconstructs the full fields in real-time by doing

summations and multiplications. It allows the visualisation

of the evolution of the fields varying each geometric bluepa-

rameter.

The criteria used for the design is the size of the plastic

zones. For the sake of demonstration in this paper, the cal-

culations performed were linear elastic and the plastic zones

are roughly evaluated by defining a threshold and considering

the elements whose strain is superior to this value. However

the proposed strategy could be extended to truly non-linear

computation using the framework proposed in [23]. Figure

8 shows an example of the exploration of the virtual chart

using the PXDMF plugin. It is important to note that, the

virtual chart being computed, this exploration can be done in

real time by the user.

7 Conclusions

In this work, geometric parameters were introduced into

the Proper Generalized Decomposition following [3] and

extended to complex geometries defined by splines and

axisymmetric modelling. The approach allows to efficiently

build a virtual chart of the solution that can be used, after-

wards, in an optimisation process. Particular attention has

been paid to integrating the methodology developed into

a engineering design process. Due to the high degree of

intrusiveness of the PGD, SAMCEF was interfaced with

an in-house MATLAB code. The specific PGD operators

are now computed by the MATLAB code and the resolu-

tion is done by SAMCEF after receiving these operators.

We recall that a single optimisation of the structure with

respect to geometric parameters should have certainly been

done efficiently using the embedded SAMCEF optimisation

procedures. However, this work is the first step of a more

complex design process in which some other parameters,

such as loadings, will be taken into account, which justifies

the offline building of a virtual chart of solutions. This target
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demonstrator will be composed of parts, whose behaviours

can be highly non-linear (large strains, large displacements,

non-linear materials) leading to many configurations of load-

ings that will be taken into account.
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Appendix 1

The Proper Generalized Decomposition is illustrated through

a linear elastic problem where the constitutive law is para-

metrised by a set of Young’s moduli α = (α1, . . . , αm) ∈

A = A1 × · · · × Am . The problem is defined by the follow-

ing governing equations and conditions:

– Equilibrium equations

{

∇ · σ = 0 in Ω × A

σ · n = f on ∂dΩ × A
(44)

– Constitutive law

σ = C (α) ε in Ω × A (45)

= C (α)∇s (u) in Ω × A (46)

where ∇s stands for the symmetrical part of ∇ and C is

the Hooke’s operator.

– Homogeneous boundary condition

u = 0 on ∂uΩ × A (47)

One writes the full variational formulation of the prob-

lem, i.e. the problem is not only integrated on space but also

on parameters. For that purpose, we introduce the following

functional spacesV = H1
0 (Ω) =

{

v ∈ H1 (Ω)
∣
∣v|∂uΩ = 0

}

,

I = L2 (A) and I j = L2
(

A j

)

for j = 1, . . . , m. The prob-

lem therefore writes:

Find u ∈ I ⊗ V such that

∀ v ∈ I ⊗ V,

∫

A

∫

Ω

σ (u) : ε (v) dΩ dA =

∫

A

∫

∂dΩ

f · v dS dA

(48)

where ⊗ stands for the tensor product.

One seeks a PGD approximation of the displacement.

u(α, X) ≈ un(α, X) =

n
∑

i=1

λi (α)�i (X) =

n
∑

i=1

m
∏

j=1

λ
j
i
(α j )�i (X)

(49)

The different modes are computed through an iterative

algorithm. At the enrichment step n, we suppose the sep-

arated variables representation un known. The new (m +

1)-uplet
(

λ1, . . . , λm,�
)

∈ I1 × · · · × Im × V is then com-

puted at enrichment step n + 1:

un+1 = un +

m
∏

r=1

λr
� (50)

To do so, the following expression of the test function v is

chosen:

v =

m
∏

r=1

λr
�

∗ +

m
∑

j=1

λ j∗
m
∏

r=1
r 
= j

λr
� (51)

with �
∗ ∈ V and λ j∗ = I j for j = 1, . . . , m. (5) becomes:

Find
(

λ1, . . . , λm,�
)

∈ I1 × · · · × Im × V such that

∀
(

λ1∗, . . . , λm∗,�∗
)

∈ I1 × · · · × Im × V,

∫

A

∫

Ω

C (α) ∇s

(

un +

m
∏

r=1

λr
�

)

: ∇s

(
m
∏

r=1

λr
�

∗

+

m
∑

j=1

λ j∗
m
∏

r=1
r 
= j

λr
�

⎞

⎟
⎟
⎠

dΩ dA

=

∫

A

∫

∂dΩ

f ·

⎛

⎜
⎜
⎝

m
∏

r=1

λr
�

∗ +

m
∑

j=1

λ j∗
m
∏

r=1
r 
= j

λr
�

⎞

⎟
⎟
⎠

dS dA

(52)

The computations of the different integrals are highly

facilitated by the separated variables representation of the

integrand since they can be done independently from one

another. However, the problem is not linear any more with

respect to the test function given in (51). The (m + 1)-

uplet
(

λ1, . . . , λm,�
)

is consequently computed thanks to

a fixed-point algorithm. The parametric and space problems

are solved alternatively. In practice, the fixed-point algorithm

is stopped before reaching convergence (only 2 or 3 iterations

are performed). The space basis (�i ) is, then, conserved and

the functions
(

λ1
i , . . . , λ

m
i

)

are computed, once again, during

the so-called update step [25].

Appendix 2

Let us illustrate the procedure described in Appendix 1

through a simple numerical example. The considered geom-

etry is a Ŵ-shaped structure (see Fig. 9) which is clamped
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at one side and subjected to an upward load of 1000 N at

the other side. The structure is partitioned into three differ-

ent sub-domains and the Young’s modulus of each domain,

being considered as a parameter, can vary from 50 to 1000

GPa. The Poisson’s ratio is homogeneous and equal to 0.3.

E1

E2 E3 f

Fig. 9 The test structure is partitioned into three sub-domains, the

Young’s modulus of each domain being considered as a parameter

A PGD approximation of the generalised displacement field

u is sought:

u (α, X) = u (E1, E2, E3, X)

=

m
∑

i=1

λ1
i (E1) λ2

i (E2) λ3
i (E3) ũi (X) (53)

which gives after space discretisation:

U (E1, E2, E3) =

m
∑

i=1

λ1
i (E1) λ2

i (E2) λ3
i (E3) Ũi (54)

The modes, i.e. the functions λ1
i , λ2

i , λ3
i and Ũi are com-

puted thanks to Algorithm 1. The four first modes associated

to the Young’s moduli E1, E2 and E3 are plotted in Fig. 10

and the four first spatial modes are represented in Fig. 11.
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Fig. 10 First modes associated to each Young’s modulus. Modes associated to the Young’s modulus E1 (a), modes associated to the Young’s

modulus E2 (b) and msodes associated to the Young’s modulus E3 (c) considered as parameters
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