
HAL Id: hal-01647829
https://hal.science/hal-01647829v1

Submitted on 24 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Internal wave focusing by a horizontally oscillating torus
Evgeny V. Ermanyuk, Natalia Shmakova, Jan-Bert Flór

To cite this version:
Evgeny V. Ermanyuk, Natalia Shmakova, Jan-Bert Flór. Internal wave focusing by a horizontally
oscillating torus. Journal of Fluid Mechanics, 2017, 813, pp.695-715. �10.1017/jfm.2016.871�. �hal-
01647829�

https://hal.science/hal-01647829v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Internal wave focusing by a horizontally
oscillating torus

E. V. Ermanyuk1,2,3, N. D. Shmakova1 and J.-B. Flór1,†

1Laboratoire des Écoulements Géophysiques et Industriels, CNRS–Université Grenoble Alpes,
BP 53, 38041 Grenoble, France

2Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Science,
Prospekt Lavrentyeva 15, Novosibirsk 630090, Russia

3Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia

This paper presents an experimental study on internal waves emitted by a horizontally
oscillating torus in a linearly stratified fluid. Two internal wave cones are generated
with the kinetic energy focused at the apices of the cones above and below the torus
where the wave amplitude is maximal. Their motion is measured via tracking of
distortions of horizontal fluorescein dye planes created prior to the experiments and
illuminated by a vertical laser sheet. The distortion of the dye planes gives a direct
access to the Lagrangian displacement of local wave amplitudes and slopes, and
in particular, allows us to calculate a local Richardson number. In addition particle
image velocimetry measurements are used. Maximum wave slopes are found in the
focal region and close to the surface of the torus. As the amplitude of oscillations
of the torus increases, wave profiles in the regions of maximum wave slopes evolve
nonlinearly toward local overturning. A theoretical approximation based on the theory
of Hurley & Keady (J. Fluid Mech., vol. 351, 1997, pp. 119–138) is presented and
shows, for small amplitudes of oscillation, a very reasonable agreement with the
experimental data. For the focal region the internal wave amplitude is found to be
overestimated by the theory. The wave breaking in the focal region is investigated
as a function of the Keulegan–Carpenter number, Ke = A/a, with A the oscillation
amplitude and a the short radius of the torus. A linear wave regime is found for
Ke < 0.4, nonlinear effects start at Ke ≈ 0.6 and breaking for Ke > 0.8. For large
forcing, the measured wave amplitude normalized with the oscillation amplitude
decreases almost everywhere in the wave field, but increases locally in the focal
region due to nonlinear effects. Due to geometric focusing the amplitude of the wave
increases with

√
ǫ, with ǫ= b/a and b is the mean radius of the torus. The relevance

of wave focusing due to ocean topography is discussed.

Key words: internal waves, stratified flows, topographic effects

1. Introduction

In the oceans, the interaction of the tidal motion with the bottom topography is
continuously generating internal waves (Bell 1975; Vlasenko, Stashchuk & Hutter
2005; Garrett & Kunze 2007). There is a reasonable agreement about the global

† Email address for correspondence: jan-bert.flor@legi.cnrs.fr
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rate of energy of 3.7 TW from lunar and solar tides, of which approximately 1 TW
is converted into the baroclinic tide (Morozov 1995; Garrett & Kunze 2007). The
transfer of this energy into mixing is relevant to the general circulation in the oceans,
and is therefore also of interest to climate modelling (Wunsch & Ferrari 2004; Ferrari
& Wunsch 2008).

Over the past decades, the mechanism of internal wave generation has been studied
in some detail for oscillating objects of various idealized geometries. Most well
known are the classical flow visualizations of Mowbray & Rarity (1967) of wave
rays emitted by an oscillating cylinder in the shape of a St Andrews cross. Linear
theory for two-dimensional internal waves generated by the oscillation of an elliptical
cylinder of Hurley (1997) and Hurley & Keady (1997) was shown to be in good
agreement with quantitative experimental results (see Sutherland et al. 1999, 2000;
Sutherland & Linden 2002; Ermanyuk 2000; Ermanyuk & Gavrilov 2002). For ridges
of Gaussian, exponential or witch-of-Agnesi shape Llewellyn Smith & Young (2002)
extended analytic estimates of Bell (1975) to compare internal tidal conversion rate,
an approach that later was applied to the waves generated by a vertical barrier
(Llewellyn Smith & Young 2003). The ridge- and plateau-type geometries of specific
shape are shown to generate no propagating internal waves for certain frequencies
and depths (Maas 2011).

Three-dimensional effects of internal waves are particularly considered in King,
Zhang & Swinney (2009). For a horizontally oscillating hemisphere they revealed the
conical structure of wave beams and asymmetric bimodal structure. For moderate
forcing, a flow perpendicular to the forcing direction was found, leading to a
large-scale horizontal circulation. The internal wave pattern generated by a horizontally
oscillating sphere was compared with the three-dimensional linear theory in Voisin,
Ermanyuk & Flór (2011). This theory included viscous effects and showed good
agreement with experiments at low oscillation amplitude, and also allowed to better
investigate the transition from bimodal to unimodal waves. At moderate oscillation
amplitude, the propagative first and second harmonics were shown to have radically
different horizontal patterns and are respectively of dipole and quadrupole type in the
horizontal plane (Ermanyuk, Flór & Voisin 2011). More complex geometries have
also been considered. Bühler & Muller (2007) developed the linear theory for the
oscillation of a ring with a subcritical Gaussian generatrix, and consider for the first
time the effect of geometric focusing of wave energy into localized regions of high
wave amplitude. Some examples on this effect of focusing were given. For a circular
Gaussian hill and horseshoe topography also the mean flow localized in regions of
wave dissipation have been considered (Grisouard & Bühler 2012).

As mentioned above, a main interest in internal wave dynamics is the conversion
of wave energy into mixing and small-scale dissipation due to a rich variety of
mechanisms including wave–wave and wave–current interactions, and overturning
motions. Several scenarios have been considered for the energy concentration of
internal waves in localized zones, of which we recall the most recurrent ones: (i)
nearly critical reflection at continental slope (e.g. Dauxois & Young 1999; Gayen
& Sarkar 2010), (ii) energy concentration at attractors (Maas et al. 1997; Echeverri
et al. 2011; Scolan, Ermanyuk & Dauxois 2013; Guo & Holmes-Cerfon 2016), (iii)
internal wave refraction at horizons of high density gradient (e.g. Mathur & Peacock
2009), (iv) interaction of wave beams in two dimensions (Teoh, Ivey & Imberger
1997; Xing & Davies 2011; Zhang & Swinney 2014) and, as mentioned above,
(v) geometric focusing by three-dimensional topography (Bühler & Muller 2007;
Grisouard & Bühler 2012), recently also observed near canyons (Dale & Inall 2015;
Vlasenko et al. 2016).
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These latter studies (v) are novel compared to the various types of two-dimensional
focusing because of the convergence of the internal wave rays. Similarly as light
waves passing through a convex lens the wave rays converge to a focal point, adding
a fundamentally new aspect to the internal wave dynamics. Conservation of energy
flux through a surface which reduces with distance, implies a continuous increase of
energy density along the rays towards the focal point and a decrease after passing
through it.

Geometric focusing of internal wave energy has hardly been investigated experi-
mentally. Wave focusing may occur near an oscillating hemisphere (see figure 3 in
King et al. 2009) and Gaussian mountain (see figure 3e in King, Zhang & Swinney
2010), but was not discussed. The focusing effect increases with the radius and size of
the oscillating object since more energy is transported to the focal zone, but in general
its effect is negligible in small-scale laboratory experiments with small oscillating
spherical objects and has therefore not been reported before. First experiments with
a 60 cm diameter vertically oscillating torus revealed a strong vortical motion with
wave overturning and local mixing in the focal zone (unpublished results, Flór 1997).
In a similar experiment in a rotating fluid, inertial waves were shown to generate
turbulence in the focal zone (Duran-Matute et al. 2013). In the context of the tidal
motion in the oceans, a horizontal oscillation is more appropriate. The horizontal
oscillation direction also gives a direction to the overturning motions in the focal
region, and therefore generates a mean flow that may be relevant to ocean applications
(see Bühler 2009).

In the present paper we investigate the wave pattern generated by a horizontally
oscillating torus, the criterion for the onset of wave breaking and observations of
the nonlinear aspects of the wave generation in the focal region. We focus on the
linear and weakly nonlinear regime, and consider the second harmonic generation and
mean flow aspects in a separate contribution. The oscillating torus (or ring) generates
‘outward’ moving diverging waves and ‘inward’ converging waves. As is known from
previous studies on the oscillation of three-dimensional objects of spherical geometry
(see Flynn, Onu & Sutherland 2003; King et al. 2009; Ermanyuk et al. 2011; Voisin
et al. 2011), diverging waves gradually decrease in amplitude with distance due
to the increasing cross-section of the wave cone and viscous dissipation. For the
present flows under consideration, the diverging waves are indeed relatively weak.
The converging waves, however, increase in amplitude with distance from the torus
toward the focal regions, leading to wave amplification and breaking.

In the next section, § 2, theoretical considerations are presented on the focusing
of internal waves. The description of the experimental installation and techniques is
given in § 3 of the present paper. The results of experiments with internal waves are
described in § 4, and the main results and possible oceanic applications are presented
in § 5.

2. Theoretical considerations

We consider a torus of which the geometrical parameters are defined in figure 1.
The torus is submerged into a uniformly stratified fluid with the buoyancy frequency
N =[(−g/ρ)∂ρ/∂z]1/2, where ρ(z) is the density distribution in z-direction and g is the
gravitational acceleration. It has a circular generatrix with a the radius of the tube (i.e.
minor radius), and major radius b the distance from the tube centre to the torus centre
(see figure 1a). A Cartesian coordinate system (see figure 1b) is introduced, with the
z-axis pointing upwards. The origin of the coordinate system O is taken at the mean
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FIGURE 1. Geometry of the torus: in (a) view in vertical plane and (b) three-dimensional
view defining the coordinate system.

position of the centre of the torus which undergoes rectilinear harmonic oscillations
with frequency ω. The non-dimensional geometry can be characterized by the aspect
ratio ǫ= b/a. We assume that the torus is slender, i.e. ǫ is large. The non-dimensional
coordinates X, Y and Z are introduced after normalization of x, y and z with the radius
of the generatrix, a.

Let us consider first the vertical oscillations of the torus with amplitude A, which
is assumed to be small compared to a so that the Keulegan–Carpenter number Ke =
A/a ≪ 1. The Stokes number defined as β = ωa2/ν, with ν the kinematic viscosity,
is assumed to be sufficiently large, i.e. β ≫ 1. In the experiments described below,
β = O(100) which guarantees a sufficiently small non-dimensional boundary layer
thickness δ/a. To construct an approximate solution we use an approach similar to
the strip theory in marine hydrodynamics (Newman 1977a,b).

Suppose that each radial cross-section of the torus oscillates vertically and generates
internal wave beams described by (3.7) in Hurley & Keady (1997). For brevity this
equation is not reproduced here. Indeed, assumptions Ke = A/a ≪ 1 and β≫ 1 are in
agreement with Hurley & Keady (1997). This linear solution plays a role of an ‘inner’
solution, which is approximately valid at each radial cross-section φ= const., where φ
is an azimuthal angle in the cylindrical coordinate system (r, z, φ), with r = (x2 + y2)1/2.
For vertical oscillations the problem is axisymmetric and all cross-sections φ = const.
are equivalent. Without loss of generality we consider oscillations in the plane xOz

(see figure 1). The streamfunction for a single cylinder,

ψ1
HK(x, z, t)=Ψ 1

HK(x, z) exp(iωt), (2.1)

is constructed as a sum of four streamfunctions describing the four beams of the
St. Andrew cross wave pattern (see Sutherland et al. 1999)

Ψ 1
HK(x, z)=Ψ +

l +Ψ +
r +Ψ −

l +Ψ −
r , (2.2)

where the superscripts + and − refer, respectively, to the upper and lower half-planes,
whereas the subscripts l and r refer, respectively, to the beams propagating to the left
and the right.

For the second cylinder the solution Ψ 2
HK(x, z) is analogous. Assuming that b/a is

sufficiently large, the solution for the system of two cylinders can be written as

ΨHK(x, z)=Ψ 1
HK(x, z)+Ψ 2

HK(x, z), (2.3)
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where the appropriate choice of signs and phases in (2.2) assure that both cylinders
oscillate vertically and in phase. The instantaneous vertical displacement of fluid
particles due to the oscillation of two cylinders is then evaluated as

ζ t
HK(x, z, t)= (i/ω) exp(iωt)

∂

∂x
ΨHK(x, z). (2.4)

The corresponding distribution of wave amplitudes is denoted as ζHK(x, z).
Further, we introduce the geometric correction factor for convergence (divergence)

of the wave field. Let us consider a point C with coordinates (xC, zC) in the two-
dimensional wave field generated by a system of two cylinders. The density of the
energy flux at point C is proportional to the wave amplitude squared (ζHK(xC, zC))

2.
Since the torus is slender, we can equate the energy fluxes due to internal waves
emitted by vertical oscillations of a torus of mean radius b and small radius a, and
due to a system of two cylinders (see figure 1) of radius a and length πb. We obtain
then

(ζ (rC, zC))
2
πrC = (ζHK(xC, zC))

2
πb, (2.5)

where rC = xC at φ = 0. Finally, we obtain in non-dimensional cylindrical coordinates

ζ (R, Z)= (R/ǫ)−1/2ζHK(R, Z), (2.6)

where R = r/a. The term (R/ǫ)−1/2 assures a proper decay of the wave amplitude at
infinity.

Let us note that in the case of vertical oscillations of two cylinders the wave
amplitude ζHK(x, z) is symmetric with the respect to the vertical axis x = 0 and
non-zero at x = 0. Therefore the approximate solution predicts a divergence of wave
amplitudes of the form of X−1/2 in the focal region at X → 0. This result shows that
near-field interactions should be taken into account in this zone in order to develop
a more advanced linear theory. Also, in realistic situations, one can expect strong
spatially localized nonlinear effects in the form of vertical jets. Such effects have
been indeed observed for inertial waves in Duran-Matute et al. (2013) and have been
shown to create a localized turbulence zone due to a cascade of instability events.

Now, let us adapt the same approach in the spirit of strip theory (Newman 1977a,b)
to a slender torus undergoing horizontal oscillations with amplitude A along the
x-axis. The local forcing is then taken as a projection of horizontal oscillations on
the radial coordinate of the form A cos φ. Obviously, equations (2.2)–(2.4) remain
valid in the case of horizontal oscillations of a system of two cylinders, with the
important difference that the signs and phases of motions in wave beams should now
be chosen such that the wave amplitude ζHK(x, z)= 0 at x = 0 and the instantaneous
wave profiles are antisymmetric with respect to the vertical axis x = 0. The geometric
conversion introduced in (2.6) remains valid but now, owing to azimuthal modulation
of the wave field, (2.6) transforms into

ζ (R, Z, θ)= (R/ǫ)−1/2ζHK(R, Z)|cos θ |. (2.7)

For horizontal oscillations, ζHK(R, Z) is proportional to R at a fixed Z in a small
vicinity of R = 0, and therefore ζ (R, Z, θ) is proportional to R1/2 as R tends to 0.
Thus, the wave amplitude remains limited but the wave slope tends to the vertical.
This qualitatively indicates a possibility of overturning in the focal region, which is a
qualitatively different behaviour compared to the case of vertical oscillations.
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To characterize the forcing of internal waves, the Keulegan–Carpenter number Ke =
A/a is often used (see e.g. Ermanyuk et al. 2011; Voisin et al. 2011). Although this
number characterizes the nonlinearity close to the torus, it does not take into account
the geometric effect of focusing at larger distances from the torus. Supposing that
in the focal zone the wave motion can be confined to a zone with radius a, the
amplitude may increase to ζcorr = ζHK(b/a)

1/2 = ζHKǫ
1/2 i.e. with a factor ǫ1/2 due to

focusing. The same correction factor has been introduced earlier in Bühler & Muller
(2007). Note that the above-described theory neglects the near-field wave interactions
in the focal region. Also, the viscous damping in the above solution is adapted from
Hurley & Keady (1997), and therefore neglects additional shear close to the focal
region. Therefore it is expected to provide a quantitative estimate with a reasonable
accuracy only in the vicinity of the torus. The effects of finite values of Ke, β and ǫ
in experiments are discussed below.

When oscillating an obstacle with frequency ω, in addition to the fundamental
first harmonic wave oscillating at frequency ω, the dispersion relation admits wave
radiation for higher harmonics with frequencies nω, where n = 2, 3, . . . , were ωn<N

(see Mowbray & Rarity 1967). In contrast, for ω > N/2 all higher harmonics are
evanescent. In the experiments described below the value of Ω = ω/N > 0.5 so
that the higher harmonics are evanescent and the effect due to focusing of the first
harmonic waves emitted by the torus can be studied in isolation.

3. Experimental set-up and measurement procedure

3.1. Experimental set-up

To measure the evolution of wave amplitudes and slopes with distance from the ring
we use the laser induced fluorescein (LIF) technique (for details see Ermanyuk et al.

2011; Voisin et al. 2011).
This technique is based on the accurate tracking of distortions of isodensity

surfaces (fluorescent dye planes), and allows us to measure the amplitude of the
vertical velocity with a very high precision. Since dye tracers are followed in time
the recording is of Lagrangian type, in contrast with Eulerian-type techniques (particle
image velocimetry or synthetic schlieren) usually employed in experimental studies on
waves. For waves of small amplitude the two types of measurements yield essentially
the same results. As the wave amplitude increases, Lagrangian measurements allow
us to study the evolution of wave profiles toward overturning via direct measurement
of wave slopes. Complementary particle image velocimetry (PIV) measurements
provided information about profiles of horizontal velocity and its distribution over a
horizontal plane.

Two tori have been used in the present experiments, a ‘thin ring’ with a = 1.5 cm
and b = 13.5 cm, and a ‘thick ring’ with a = 2 cm and b = 10 cm. The aspect ratio
ǫ = b/a is respectively equal to 9 for the ‘thin’, and 5 for the ‘thick’ one. At the
experimental value of frequency ω = 0.65 rad s−1 the Stokes numbers are β = 150
and 260 respectively for the thin and the thick torus.

The experiments are conducted in a Plexiglas 100 cm cubic tank filled to a working
depth of 90 cm with a linearly salt-stratified fluid using the conventional double-bucket
technique (see figure 2). The stratification profile is calculated from the density of
fluid samples taken at different heights in the fluid and measured with an Anton Paar
density meter. The values of the buoyancy frequency N are listed in table 1.

Internal waves are generated by a horizontally oscillating Plexiglas torus that is
painted black to avoid laser light reflections. It is attached to the end of a pendulum
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FIGURE 2. Sketch of the experimental set-up: (a) front view and (b) side view, with
the light grey lines the fluorescein dye planes and the laser plane shown in dark grey.
(X, Y, Z) = (x, y, z)/a are the non-dimensional coordinates. The torus oscillates in the
X-direction (plane of view), Z is in the vertical direction. The mobility of the laser plane
in the Y-direction allows for the measurement of successive planes, and the reconstitution
of the horizontal wave field.

of length l = 180 cm, and the oscillations of the pendulum at frequency ω are driven
by a crank mechanism. The oscillation amplitude, A, of the torus is small compared
to the length of the pendulum, and the motion is therefore in good approximation
horizontal and sinusoidal. The two side walls perpendicular to the direction of the
oscillation of the cylinder are covered with a mesh of 5 cm thickness to avoid wave
reflections. In some cases also the bottom and the back wall were covered with wave
absorbers, but no difference in results could be noticed. After 10 oscillation periods
the wave pattern reaches the steady state in the region of interest. Measurements are
taken after 20 oscillations, which is the typical duration used to exclude the effects of
internal wave transients (see Voisin 2003; Ermanyuk & Gavrilov 2005, 2008; Voisin
et al. 2011).

For the method of fluorescein dye planes (first employed in Hopfinger et al. 1991
and Flór, Ungarish & Bush 2002), a set of equidistant dye planes is generated by
slowly displacing a rake of horizontally spanned cotton threads through the fluid.
These cotton threads are soaked in a concentrated fluorescein solution and dried
before the experiment. The dye planes are illuminated with a vertical laser sheet
parallel to the direction of oscillations. The data processing is performed with a
version of cross-correlation technique described in Ermanyuk et al. (2011) and Voisin
et al. (2011), from which the vertical displacements of the dye lines are determined
with the accuracy of approximately 0.05 pixel. The laser sheet is perpendicular to the
dye planes and shows therefore dye lines on the recordings (see figure 9).

Prior to the onset of the oscillations, the horizontal dye planes are scanned by a
laser sheet in the otherwise quiescent fluid to obtain the reference state ζ0 for each
dye plane. The vertical displacement of these dyelines, ζ ′, is measured at a certain
position in time with respect to the reference state ζ0, i.e. ζ ′(x, t)= ζ ′ − ζ ′

0 (the prime
is to note that this value does not necessarily correspond to a particle displacement).
The local slopes of wave profiles in plane XZ are measured as s(t)= arctan(dζ (t)/dx).
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In practice the slope at position (X, Z) is evaluated as

s(t)= arctan(1ζ(t)/1x), (3.1)

where 1x should be sufficiently large compared to the accuracy of measurement
of vertical displacements ζ (t) and sufficiently small compared to the radius of the
generatrix a to resolve the details of wave profiles. The wave slope represents
a sensitive and physically important measure of the baroclinic torque of the wave,
caused by the shear. This slope is related to the Richardson number and is therefore an
indication for overturning, as is discussed further in § 4.4. As described in Ermanyuk
et al. (2011) and Voisin et al. (2011), the vertical displacements are evaluated as
the average values over vertical stripes of width of several pixels, which defines the
horizontal spatial resolution of the experimental data. In the present experiments 1x
is taken equal to the horizontal spatial resolution, with 1x = 5 (≈0.253 cm) and 8
pixels (≈0.339 cm) for respectively the ‘thin’ and the ‘thick’ torus.

To reconstruct a quasi-three-dimensional distribution of the wave amplitudes (note
that the velocity in y-direction is not measured), a series of images was acquired
for different positions in y-direction. Therefore, the mirror reflecting the laser light
(see figure 2) was moved by a computer-controlled step motor with a prescribed
increment 1y = 0.8 cm. At each position the mirror remained fixed during one
period of oscillation. This allowed to acquire time series suitable for subsequent
Fourier analysis and evaluation of amplitudes of harmonic components.

For the PIV measurement the algorithm of Fincham & Delerce (2000) was
used, and the optimum particle size and seeding density of Westerweel (1997)
were followed. The fluid was seeded with Orgasolr 30 µm particles of density
ρ = 1.2 kg m−3, illuminated with a vertical and horizontal laser sheet. The particle
displacement was obtained using the UVMAT/CIVx software package developed
at LEGI (http://www.legi.cnrs.fr/web/spip.php?article763). Successive images are
taken with a time increment of 1t = ti+1 − ti = 0.5 s, which is kept constant in all
experiments.

3.2. Data analysis and parameters

Time series of vertical displacements ζ (ti) are analysed using three different methods.
With the first method, the amplitudes of the nth harmonic components of the signal
ζn and Sn are determined via Fourier filtering of time series. Similar analysis has
been used in Ermanyuk et al. (2011) and Voisin et al. (2011). This type of data
processing is particularly useful for linear or weakly nonlinear processes when the
first few harmonics are dominant and can be clearly identified. With the second
method, the amplitudes ζrms and Srms are evaluated as the period-averaged root mean
square of the corresponding time series multiplied by 21/2 (Sutherland & Linden
2002). In principle, this quantity takes into account the contribution of all harmonics
in the signal. However, owing to the period averaging procedure the root-mean-square
value cannot precisely capture the extreme values of wave amplitude and wave slope,
which may instantly occur at a particular phase of oscillation. Of special interest are
the extreme slopes which can trigger incipient overturning in the case wave crests
become steep. Therefore, a third method of data processing was introduced. Time
series ζ (ti) and s(ti) measured at each point were sorted to find the maximum values
of ζmax = max |ζ (ti)| and Smax = max |s(ti)|.

Thus with these three methods, next to the values ζn, ζrms and ζmax, the slopes Sn,
Srms and Smax were measured in degrees allowing to explicitly study the transition
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of the wave system to overturning. The wave amplitudes are normalized generally
with the oscillation amplitude, A, or in case only the focal region is of interest, the
generatrix of the torus, a. The governing parameters of experimental runs performed
in this study are presented in table 1.

4. Results and discussion

4.1. Wave pattern in XZ-plane

Figures 3(a)–3( f ) show the typical evolution of the first harmonic wave patterns for
different oscillation amplitude, represented by the Keulegan–Carpenter number Ke,
in terms of contours of wave amplitude ζ1/A and contours of wave slope S1. For
comparison figures 3(g) and 3(h) represent the unfiltered wave fields in terms of
ζmax/A and Smax. A higher level of noise is observed for these non-filtered max-type
quantities. Figures 3(e)–3(h) show a high resemblance indicating that at moderate
oscillation amplitude, the dominant contribution to the wave field is represented by
the first harmonic wave obtained after Fourier filtering, as can be expected since
higher harmonics are evanescent for this forcing.

Wave amplitudes close to the torus are roughly two times smaller than the wave
amplitudes in the focal region, but the wave slopes close to the torus and in the focal
region are comparable. The onset of overturning occurs therefore not only in the focal
region but also near to the torus. It should be noted that this latter overturning is
rather due to the steep topography, an effect that would most likely be absent for a
Gaussian-shaped torus. At low Ke the amplified wave amplitude in the focal region
forms then two symmetric ellipses due to the antisymmetry of the instantaneous wave
profiles with respect to YZ plane, where the wave amplitude is zero. As Ke increases,
these regions of maximum amplitude slightly shift into the Z-direction away from
the torus. The nonlinear evolution of the wave field is well visible in terms of wave
slopes. At low Ke the focal region (figure 3b) is nearly elliptic. As Ke increases, the
focal region takes a spearhead-like shape (figure 3f,h), indicating the higher shear in
the outer region of the focal region and incipient overturning. As a consequence, the
waves are hindered by nonlinear effects in the focal region.

Note also that the waves in the focal zone have a unimodal structure, i.e. there is a
single wave beam due to the presence of viscosity in contrast to the bimodal structure
often observed very near to oscillating objects (for a discussion see e.g. Voisin et al.

2011). Though the general flow evolution was very similar to that of the thick torus
(ǫ = 5), its larger generatrix a implied a larger Stokes number, (260 instead of 150)
causing a rather bimodal wave structure near the torus which turned into a single beam
near the focal region. In the case of very large tori, however, one may expect a multi
focal region because of the bimodal wave structure. In view of the range of accessible
Stokes numbers, this was not observed in the present experiments.

4.2. Comparison of measurements with linear theory

Figure 4 shows the wave amplitude across the wave beam measured in plane XZ at
different distances Z from the centre of the torus. The experimental distributions of
the scaled amplitude, ζ1(X)/A for the torus with ǫ= 9 are presented for a range of |Z|
values up to the middle of the focal zone. Good agreement with the theory described
in § 2 is observed at low values of Ke, and close to the torus. Thus, a simple
geometric correction is fully sufficient for quantitative description of the main effects
due to convergence (divergence) of waves in the vicinity of a curved elongated body.
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FIGURE 3. Contour plots of the wave amplitude ζ1/A (a,c,e,g) and wave slope S1 (b,d, f,h)
in the XZ-plane, with (a,b) Ke = 0.19; (c,d) 0.41 and (e, f ) 0.65. (g,h) Contour plots for
ζmax/A and Smax for Ke = 0.65. Exp A, with torus aspect ratio ǫ = 9. Data are obtained
from LIF measurements.

Thereby it provides a consistent framework for quantitative interpretation of the
experimental results almost everywhere in the wave field, except the focal region.
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FIGURE 4. Normalized wave amplitude ζ1/A for Exp A at different heights Z below the
centre of the torus, with (a) Z =−1.84, (b) Z =−1.84 zoomed in including negative values
of X (the centre line of the torus is at X = 0); (c) Z = −4.48; (d) −7.17; (e) −9.84 and
( f ) −12.51. The focal zone is located at Z = −11.2. The dashed and solid lines represent,
respectively, the theoretical profile (2.6) obtained for two oscillating cylinders, and the
profile corrected for convergence; black, grey and light grey dots correspond respectively
to Ke = 0.19, 0.41 and 0.65. Data are obtained from LIF experiments.

For the focal region, the theory shows that focusing amplifies the wave amplitude
to a factor 3, in qualitative agreement with the correction factor ǫ1/2 introduced in
Bühler & Muller (2007). This can be observed in figure 4( f ) (|Z| = 12.51) from
the comparison of the calculated wave amplitudes for the torus (solid line) and
the reference case of the two parallel cylinders of infinite length (dash line). The
experimentally measured wave amplitudes in the focal zone are significantly lower
(approximately by 30 %) than the theoretical estimate. Indeed the theory presented
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in § 2 neglects the near-field interactions between the wave components in the focal
zone, leading to unrealistic infinite wave slopes at the vertical axis Z.

The experimental data presented in figure 4 provide qualitative information on
the nonlinear trends in the wave amplitude as function of the oscillation amplitude
Ke. With increasing Ke, the normalized wave amplitude of the first harmonic, ζ1/A

typically decreases almost everywhere in the wave field except the focal region:
the amplitude profiles marked by light grey and grey symbols are consistently
lower than the profiles marked by black symbols. This trend is in agreement with
the nonlinear trends observed for the two- (Zhang, King & Swinney 2007) and
three-dimensional (Ermanyuk et al. 2011; Voisin et al. 2011) cases. The opposite
trend is seen in figure 4( f ) in the focal region at |Z| = 12.51 where higher normalized
wave amplitudes ζ1/A correspond to higher Ke. Thus, a linear extrapolation of the
low-amplitude experimental data to a high-amplitude case should be done with care:
it tends to underestimate the wave amplitudes in localized zones of the focal region
and to overestimate the wave amplitudes in all other regions of the wave field.
Interestingly, in the middle of the focal region, located at approximately |Z| = 11.2,
the linear scenario applies in a remarkably wide range of A as discussed below in
§ 4.4.

It is worth making a special remark concerning the data presented in figure 4(b).
The low-amplitude standing wave pattern seen close to the centre of the torus can
hardly be interpreted within a linear approach. The whole inner region delimited
by the conical wave beams emitted by the torus seems to undergo a weak resonant
motion. Its amplitude is typically an order of magnitude smaller than the amplitude
of the main wave beams but at high oscillation amplitude A it is high enough to
deform the straight wave beams (compare the form of isolines of wave amplitudes in
the first column of figure 3 at low and high amplitudes). The mechanism providing
the energy flux to this motion is unclear and will be considered elsewhere.

4.3. Wave pattern in XY-plane

To study the azimuthal distribution of the wave amplitude, the wave fields in the XY

plane were reconstructed from series of images taken particularly in experiments Exp
C and Exp D of table 1. Figures 5 and 6 show the contours of wave amplitudes
and the normalized radial distributions of the vertical velocity amplitude of the first
harmonic wave, ζ1(R)/(A cosφ) close to the torus, with φ the angle with respect to the
plane of symmetry. For this scaling, the data are found to collapse reasonably well on
a more or less common curve, for both tori (see figures 5b, 6b). Also we note that the
agreement with the linear theory presented in § 2 is within an error of approximately
10 % for both cases. For the thick torus (see figure 6b) the shape of the wave envelope
is slightly different due to its bimodal character. Also, here the theoretical prediction
is still quite reasonable (note that the original theory of Hurley & Keady (1997), used
in § 2 takes bimodality and related viscous effects into account). For larger oscillation
amplitudes (see figures 5d, 6d), the theoretical prediction is systematically higher than
the measured values due to nonlinear effects. With increasing azimuthal angle, φ, the
wave amplitude decreases, and therefore also the energy radiated by the torus. The
departure of the observed profiles from the theoretical curve at φ tending to 90◦ arises
partially due to higher noise-to-signal ratio for these waves, and partially due to the
fully three-dimensional nature of the flow. For azimuthal angles close to 90◦ the cosine
variation of wave amplitudes with the azimuthal angle is therefore no longer valid,
especially for a thick torus.
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(c,d) Ke = 0.63, where R = r/a is the non-dimensional radial coordinate. The black lines
in (b) and (d) corresponds to (2.6). Exp C in table 1 (Z =−3.6, ǫ= 9). Data are obtained
from LIF measurements.

4.4. Nonlinear effects: maximum wave amplitude and overturning

The variation of the maximum wave amplitude and maximum slope (measured as in
figure 7a,b) with the Keulegan–Carpenter number Ke, are presented in respectively
figures 8(a) and 8(b) for both tori. The overall good agreement between ζ ∗

max/a and
ζ ∗

1 /a confirms once again the expected dominance of the first harmonic wave for
this forcing frequency (ω/N > 0.5). For larger Ke the increasing wave steepness and
the increasing difference between S∗

max and S∗
1 (see figure 8b) suggest the presence

of nonlinear effects. Incipient overturning is observed at Ke = 0.81 and Ke = 1.1 for
tori with ǫ = 5 and ǫ = 9, respectively. From the dye images shown in figure 9, we
indeed recognize well-developed overturning regions in the wave pattern. As expected,
these regions are located close to the surface of the torus and in the focal region,
corresponding to the zones of high local slopes which can be identified in figure 3.

PIV measurements show (see figure 10a) that in the focal region, the horizontal
velocity of the first harmonic wave in the direction of oscillation is of the same
magnitude as the vertical velocity. With the PIV data in the focal region, the horizontal
shear and thus the local Richardson number in the wave can be calculated as

Ri = N2

(∂ û1/∂z)2
, (4.1)

where the stratification N is measured at the start of the experiment; the vertical
gradient in velocity is measured from the PIV velocity data over a typical grid

14



X

X2.5 5.0 7.5

2.5 5.0 7.5

5 10

5 10

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

 0

2.5

5.0

 0

2.5

5.0

0

0.8

0

0.8 (b)

(d )

Y

Y

(a)

(c)

X R

FIGURE 6. As in figure 5 for the thick torus, with (a,b) Ke = 0.13 and (c,d) Ke = 0.29,
where R = r/a is the non-dimensional radial coordinate. The black line corresponds to
ζcorr. Exp D in table 1 (Z = −3.0, ǫ = 5). Data are obtained from LIF experiments.

0.1

0.2

0.3

0.4

0

0.5

3 6 9 12 15 3 6 9 12 15

(a) (b)

X X

FIGURE 7. LIF measurements of wave amplitude (a) and wave slope (b) in the central
plane according to the definitions given in § 3.2. Open circles indicate the first harmonic
filtered values (ζ1/a, S1) and filled circles the unfiltered max-type estimate (ζmax/a, Smax).
The two represented levels are the focal zone at Z = −12.51 for 0 < X < 6 (open and
filled circles). The symbol ∗ refers to the extrema plotted in figure 8. Exp A: Ke = 0.41
and ǫ = 9.

distance of 1z = 4 pixels (≈ 0.3 cm). The values of the this Ri-number are displayed
in grey in figure 10(b). Asymptotically a value of Ri ≈ 0.25 is reached when Ke

approaches a value between 0.8 and 1 for different aspect ratio tori, corresponding
for overturning in stratified shear flows (see Miles 1961).
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FIGURE 9. Dye visualization (before data processing) of the overturning of waves profiles
in the plane of symmetry for experiments with large-amplitude oscillations. (a) ǫ=9, Ke=
0.818, Exp A in table 1 and (b) ǫ = 5, Ke = 1.1, Exp B in table 1.

The Miles criterion is developed for a flow with vorticity due to the presence
of a shear flow, and no baroclinic vorticity in its basic state. For the critical value
of Ri = 0.25, vorticity of the shear flow is accumulated by the Kelvin–Helmholtz
instability until breaking occurs. In the present experiments there is no shear flow,
and the instability is not of the Kelvin–Helmholtz type. However, the amplitude of
the waves is here represented by baroclinic vorticity. This amplitude (or baroclinic
vorticity) is continuously increased due to focusing of wave energy, until the critical
value is reached and breaking occurs. Though the sources of vorticity and mechanism
for overturning are essentially different, the present results suggest that the criterion
and, as shown below, the critical value are the same.

The LIF method allowed to precisely measure the wave slope of the wave for
the different aspect ratio tori. Observations of visualizations showed a nearly linear
dependence for Ke< 0.4 with the waves remaining linear and passing almost without
modification through the focal region. Small changes with respect to the linear regime
were found to occur for Ke around 0.6, whereas for approximately Ke> 0.8 the onset
of wave breaking is observed and waves are hindered to pass through the focal
region. From this wave steepness one can derive directly the local wave Richardson
number which can be defined as the ratio between the buoyancy frequency N2, and
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the y-component of the baroclinic vorticity of the wave. This yields in the Boussinesq
approximation,

Riwave = N2

(

∇p × ∇ρ

ρ2

)−1

y

≈ N2

−gρ
∂ρ

∂x

= 1x

1z

∣

∣

∣

∣

ρ

= 1

tan S
, (4.2)

where the index y indicates the y component of the baroclinic vorticity vector. In
figure 10(b) the wave Richardson number is displayed as a function of Ke. Even
though it is derived in a different manner, it shows also that wave breaking is
reached when Riwave ≈ 0.25 at Ke ≈ 0.8 in coherence with the observations and the
PIV measurements and shear instability. This local Richardson number indicates the
maximum slope which an isopycnal plane may have before it becomes unstable and
overturns. This overturning corresponds to a wave slope of θ ≈ 75◦ (see figure 8b),
the wave slope being measured over a horizontal length scale δx (see § 3.1) near
X = 0 (see figure 11).

5. Conclusions

This paper considers the first experimental results on the geometric focusing of
internal waves generated by a horizontally oscillating torus in a linearly stratified fluid.
Experiments are conducted in the weakly viscous regime, i.e. for Stokes numbers
between 150 and 260. The focusing leads to a strong amplification of the wave
amplitude along its ray path with a maximum wave amplitude in the focal point
where wave breaking is expected for certain oscillation amplitudes.

A linear wave regime is discerned for Ke< 0.4, whereas nonlinear effects start to
occur at values close to Ke ≈ 0.6. Incipient wave breaking occurs around Ke ≈ 0.8,
corresponding to a local (shear) Richardson number Ri = 0.25, in accordance with
classical theory for shear instability. This value coincides with the Richardson number
calculated from the wave steepness. Wave breaking occurs for a wave slope of θ = 75◦.
Nonlinear aspects, as well as the generation of higher harmonics, that occur for these
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FIGURE 11. (Colour online) Images of dye visualizations of the internal wave field for
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amplitudes, and the effect of higher Stokes numbers are presently under consideration
and will be presented elsewhere.

As a first approximation, the focusing wave field has been approached by making
use of the two-dimensional theory of Hurley & Keady (1997) that was adapted by
including a term for the wave convergence. This theory shows qualitative agreement
with the observed wave field, and gives reasonable quantitative results up to a
vertical distance of 5 times the tore radius from the tore centre. However, there is
an increasing discrepancy between the data and the theory when approaching the
focal zone (see figure 4), for the entire range of wave amplitudes. This difference
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is approximately 30 % and indicates that the present theory is not satisfactory for
the study of the focal region. A three-dimensional viscous theory is at present in
preparation (Bruno Voisin, personal communications).

Focusing of internal wave energy is a rather recent subject, and opens perspectives
to new ways of generating turbulence in the ocean. The overturning in the present
experiments has been observed at moderate Reynolds numbers when internal waves
are strongly damped by viscous effects. At higher Reynolds numbers the overturning
is expected to be more likely to occur. Therefore, internal wave breaking over other
shapes of curved topography (see Bühler & Muller 2007) may serve as an effective
mechanism for the generation of ‘hot spots’ responsible for abyssal mixing. The
measurements based on wave steepness allow us to make more precise estimations
of the relevance of wave breaking due to wave focusing.

For a realistic bottom topography the effects of viscosity are small. Using the
geometric correction for focusing, we may consider whether wave breaking is likely
to occur or not. For a M2 tidal oscillation frequency of approximately 12 h and
a typical stratification in the ocean one obtains Ω ≈ 0.3 corresponding to an angle
of wave propagation of 17◦. Considering a large mountain of 2000 m height, and
curvature 120 km, i.e. a = 1 km, and b = 60 km, the oscillation amplitude in the
focal region is amplified with a factor ǫ1/2, implying for a typical tidal excursions of
O(100 m) a wave amplitude of approximately 800 m. This amplitude is comparable
to the size of the generatrix a, which is in turn comparable to the width of internal
wave beams. Since the amplitude and the beam width becomes of the same order of
magnitude in the focal zone, an overturning can be expected. Note that topographies
with nearly critical local slopes can generate very narrow wave beams, increasing the
probability of overturning events even at low Ω typical for the ocean, where Ω ≈ 0.1.
Thin large ridges as well as thick small ridges of realistic sizes can thus be expected
to cause overturning waves due to focusing. Geometric wave focusing could therefore
be a candidate for the explanation of recently observed intense mixing regions near
spur-shaped mountains (see e.g. Dale & Inall 2015).
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