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 for the Helmholtz equation).

We then prove such an estimate for some particular configurations. We end up with the study of a Galerkin (h-version) finite element method using Lagrange elements and give wave number explicit error bounds in the asymptotic ranges. Some numerical tests that illustrate our theoretical results are also presented.

Introduction

In this paper we are interested in the time-harmonic Maxwell equations for electromagnetic waves in a bounded, simply connected polyhedral domain Ω of R 3 with a Lipschitz boundary (simply called polyhedron later on) filled by an isotropic homogeneous material with an absorbing boundary condition (also called Leontovich condition) that takes the form (1.1) curl E -ikH = 0 and curl H + ikE = J in Ω, H × n -λ imp E t = 0 on ∂Ω.

Here E is the electric part and H is the magnetic part of the electromagnetic field, and the constant k corresponds to the wave number or frequency and is, for the moment, supposed to be non-negative. The right hand side J is the current density which -in the absence of free electric charges -is divergence free, namely div J = 0 in Ω.

As usual, n is the unit vector normal to ∂Ω pointing outside Ω and

E t = E -(E • n) n is the tangential component of E.
The impedance λ imp is a smooth function1 defined on ∂Ω satisfying (1.2) λ imp : ∂Ω → R, such that ∀x ∈ ∂Ω, λ imp (x) > 0, see for instance [START_REF] Nédélec | Acoustic and electromagnetic equations[END_REF][START_REF] Monk | Finite element methods for Maxwell's equations[END_REF]. The case λ imp ≡ 1 is also called the Silver-Müller boundary condition [START_REF] Barucq | Etude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver-Müller II[END_REF].

In practice absorbing boundary conditions are used to reduce an unbounded domain of calculations into a bounded one, see [START_REF] Nédélec | Acoustic and electromagnetic equations[END_REF][START_REF] Monk | Finite element methods for Maxwell's equations[END_REF].

As variational formulation, a first attempt is to eliminate H by the relation H = 1 ik curl E, that transforms the impedance condition in the form

(curl E) × n -ikλ imp E t = 0 on ∂Ω.
Unfortunately such a boundary condition has no meaning in H(curl, Ω), hence a solution is to introduce the subspace

H imp (Ω) = {u ∈ H(curl; Ω) : γ 0 u t ∈ L 2 (∂Ω)}.
Then eliminating H in the second identity of (1.1), and multiplying by a test function, we arrive at

Ω (curl E • curl Ē -k 2 E • Ē ) dx -ik ∂Ω λ imp E t • Ē t dσ (1.3) = ik Ω J • Ē dx, ∀E ∈ H imp (Ω).
Error analyses of (1.3) using Nédélec elements are available in [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF][START_REF] Gatica | Finite element analysis of a time harmonic Maxwell problem with an impedance boundary condition[END_REF], but no explicit dependence with respect to k is proved. Moreover there is no hope to get easily regularity results of the solution by applying the theory of elliptic boundary value problems to the system associated with (1.3) because it is not elliptic (see [14, §4.5

.d]).

A second attempt, proposed in [14, §4.5.d] for smooth boundaries and inspired from [35, §5.4.3], is to keep the full electromagnetic field and use the variational space

(1.4) V = (E, H) ∈ H(curl, Ω) ∩ H(div, Ω) 2 : H × n = λ imp E t on ∂Ω ,
considering the impedance condition in (1.1) as an essential boundary condition. Hence the proposed variational formulation is: Find (E, H) ∈ V such that

(1.5) a k,s ((E, H), (E , H )) = Ω ikJ • Ē + J • curl H dx, ∀(E , H ) ∈ V,
with the choice

a k,s ((E, H), (E , H )) = a k,s (E, E ) + a k,s (H, H ) -ik ∂Ω (λ imp E t • Ē t + 1 λ imp H t • H t ) dσ,
with a positive real parameter s that may depend on k but is assumed to be in a fixed interval [s 0 , s 1 ] with 0 < s 0 ≤ s 1 < ∞ independ of k (see section 5 below for more details) and

a k,s (u, v) = Ω (curl u • curl v + s div u div v -k 2 u • v) dx.
The natural norm • k of V associated with problem (1.5) is defined by

(E, H) 2 k = curl E 2 L 2 (Ω) + div E 2 L 2 (Ω) + k 2 E 2 L 2 (Ω) + curl H 2 L 2 (Ω) + div H 2 L 2 (Ω) + k 2 H 2 L 2 (Ω) .
This new formulation (1.5) has the advantage that its associated boundary value problem is an elliptic system (see [14, §4.5.d]), hense standard shift regularity results can be used. Nevertheless, this problem is still difficult to solve numerically as the wave number k is large, because oscillatory solutions exist and because of the so-called pollution effect [START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number part i: the h-version of the fem[END_REF][START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number part ii: the h-p version of the fem[END_REF]: when the number of wavelength inside the propagation domain is important, the numerical solution is only meaningful under restrictive conditions on the mesh size. This effect is manifested by a gap between the error of the best approximation the finite element scheme and the error of the numerical solution that is actually produced. This gap becomes more important as the frequency increases, unless additional discretization points per wavelength or higher order elements are employed. This problem, typical for wave type equations, is also related to a lack of stability of the finite element scheme, since the associated sesquilinear forms are not coercive. Consequently the quasi-optimality of the finite element solution in the energy norm is not guaranteed for arbitrary meshes, but is achieved only in an asymptotic range, i.e., for small enough mesh sizes, that depends on the frequency and the discretization order.

The behaviour of the asymptotic range with respect to the frequency, the mesh size, and the discretization order is the key to understand the efficiency of a finite element method. For the Helmholtz equation in domain with anaytic boundaries, the asymptotic range for hp-finite element methods has been characterized in a sequence of papers by J.M. Melenk and collaborators [START_REF] Esterhazy | On Stability of Discretizations of the Helmholtz Equation[END_REF][START_REF] Melenk | Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions[END_REF][START_REF] Melenk | Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation[END_REF]. For less regular boundaries, similar asymptotic ranges can be achieved using an expansion of the solution in powers of k [START_REF] Chaumont-Frelet | Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems[END_REF].

The goal of the present paper is therefore to perform a similar analysis for the second variational problem of the time-harmonic Maxwell equations with impedance boundary conditions set on polyhedral domains. In such a situation, several difficulties appear: The first one is to show the well-posedness of the problem that requires to show that the variational space V is compactly embedded into L 2 (Ω) 6 . In the smooth case (see [START_REF] Barucq | Etude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver-Müller II[END_REF][START_REF] Costabel | Corner Singularities and Analytic Regularity for Linear Elliptic Systems[END_REF]), this is based on the hidden regularity of V, namely on the embedding of V into H 1 (Ω) 6 , hence we show that a similar embedding is valid for the largest possible class of polyhedra, namely this embedding holds if and only if condition (2.3) below holds. Secondly, error estimates are usally based on regularity results of the solution of the analyzed problem. Since our domain is not smooth, we then need to determine the corner and edge singularities of our system. This is here done by adapting the techniques from [START_REF] Dauge | Elliptic boundary value problems on corner domains -smoothness and asymptotics of solutions[END_REF][START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF]. The third obstacle is to prove the stability estimate for problem (1.5) and its adjoint one. For problem (1.3), the difficulty comes from the lack of stability estimate of the adjoint problem with a non-divergence free right-hand side; but here by an appropriate choice of the parameter s, this difficulty can be avoided, at least for some particular domains. With these key results in hand, we are finally able to study a Galerkin h-finite element method using Lagrange elements and to give wave number explicit error bounds in an asymptotic range, characterized by the stability estimate and the minimal regularity of the solution of the adjoint problem. Since this minimal regularity could be quite poor, this asymptotic range could be quite strong for quasi-uniform meshes, hence in the absence of edge singularities, we improve it by using adapted meshes, namely meshes refined near the corners of the domain.

Our paper is organized as follows: The hidden regularity of the variational space is proved in section 2. In section 3, the well-posedness of our variational problem is proved and some useful properties are given. In section 4, we describe the edge and corner singularities of our problem. The next section 5 is devoted to the proof of the stability estimate. Finally in section 6 some h-finite element approximations are studied and some numerical tests that confirm our theoretical analysis are presented.

Let us finish this section with some notations used in the remainder of the paper. For a bounded domain D, the usual norm and semi-norm of H t (D) (t ≥ 0) are denoted by • t,D and | • | t,D , respectively. For t = 0, we will drop the index t. For shortness, we further write H t (D) = H t (D) 3 . Here and below γ 0 is a generic notation for the trace operator from H t (O) to H t-1 2 (∂O), for all t > 1 2 . Furthermore, the notation A B (resp. A B) means the existence of a positive constant C 1 (resp. C 2 ), which is independent of A, B, the wave number k, the parameter s and any mesh size h such that A ≤ C 1 B (resp. A ≥ C 2 B). The notation A ∼ B means that A B and A B hold simultaneously.

Hidden regularity of the variational space

If ∂Ω is of class C 2 , it is well known that the continuous embedding

(2.1) V → (H 1 (Ω)) 2
holds, which means that V ⊂ (H 1 (Ω)) 2 with the estimate

(E, H) H 1 (Ω) 2 curl E L 2 (Ω) + div E L 2 (Ω) + E L 2 (Ω) (2.2) + curl H L 2 (Ω) + div H L 2 (Ω) + H L 2 (Ω) , ∀(E, H) ∈ V.
A proof of this result is available in [START_REF] Barucq | Etude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver-Müller II[END_REF] for a smooth boundary and in Lemma 4.5.5 of [START_REF] Costabel | Corner Singularities and Analytic Regularity for Linear Elliptic Systems[END_REF] for a C 2 boundary. In both cases, the three main steps of the proof are 1. The continuity of the trace operator

H(curl, Ω) → H -1/2 (div; ∂Ω) : U → U × n,
proved in [START_REF] Paquet | Problèmes mixtes pour le système de Maxwell[END_REF] (see also [START_REF] Nédélec | Acoustic and electromagnetic equations[END_REF]Theorem 5.4.2]). 2. The elliptic regularity of the Laplace-Beltrami operator ∆ LB = div t ∇ t on a smooth manifold without boundary that implies that ∆ LB -I is an isomorphism from

H 3 2 (Γ) into H -1 2 (Γ), see for instance [29]. 3. The operator H 2 (Ω) → L 2 (Ω) × H 3 2 (Γ) : u → (-∆u, γ 0 u),
is an isomorphism, see again [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF].

If we want to extend this result to polyhedra, we then need to check if the three main points before are available. This is indeed the case, since point 1 can be found in [START_REF] Buffa | On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra[END_REF], point 2 is proved in [START_REF] Buffa | Boundary element methods for Maxwell's equations on non-smooth domains[END_REF]Thm 8] under a geometrical assumption (see (2.3) below), while point 3 is a consequence of [START_REF] Dauge | Elliptic boundary value problems on corner domains -smoothness and asymptotics of solutions[END_REF].

To be more precise, let us first introduce the following notations (see [START_REF] Buffa | On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra[END_REF] or [START_REF] Nicaise | Polygonal Interface Problems, volume 39 of Methoden und Verfahren der mathematischen Physik[END_REF]Chap. 2]): as Ω is a polyhedron, its boundary Γ is a finite union of (open and disjoint) faces

Γ j , j = 1, • • • , N such that Γ = ∪ N j=1 Γj .
As usual, n is the unit outward normal vector to Ω and we will set n i = n |Γi its restriction to Γ i . When Γ i and Γ j are two adjacent faces, we denote by e ij their common (open) edge and by τ ij a unit vector parallel to e ij . By convention, we assume that τ ij = τ ji . We further set n ij = τ ij × n i . Note that the pair (n ij , τ ij ) is an orthonormal basis of the plane generated by Γ i and consequently n ij is a normal vector to Γ i along e ij . For shortness, we introduce the set E = {(i, j) : i < j and such that Γi ∩ Γj = ēij }.

We denote by C the set of vertices of Γ (that are the vertices of Ω). Furthermore for any c ∈ C, we denote by G c the intersection between the infinite three-dimensional cone Ξ c that coincides with Ω in a neighbourhood of c and the unit sphere centred at c and by ω c the length of (in radians) of the boundary of G c .

We first introduce the set

L 2 t (Γ) = {w ∈ L 2 (Γ) : w • n = 0 on Γ}.
For a function v ∈ L 2 (Γ), we denote by v j its restriction to Γ j . As Γ is Lipschitz, we can define H 1 (Γ) via local charts, but we can notice that

H 1 (Γ) = {u ∈ L 2 (Γ) : u j ∈ H 1 (Γ j ), ∀j = 1, • • • , N satisfying γ 0 u i = γ 0 u j on e ij , ∀(i, j) ∈ E}.
As Γ is only Lipschitz, we cannot directly define H t (Γ) for t > 1, but following [START_REF] Buffa | On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra[END_REF] (or [START_REF] Buffa | Boundary element methods for Maxwell's equations on non-smooth domains[END_REF]), we define

H 3 2 (Γ) = {γ 0 u : u ∈ H 2 (Ω)}, with w 3 2 ,Γ = inf u∈H 2 (Ω):γ0u=w u 2,Ω .
Let us notice that according to Theorem 3.4 of [START_REF] Buffa | On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra[END_REF], we have

H 3 2 (Γ) = {w ∈ H 1 (Γ) : ∇ t w ∈ H 1 2 (Γ)}, with w 3 2 ,Γ ∼ w 1,Γ + ∇ t w , 1 2 ,Γ , ∀w ∈ H 3 2 (Γ),
where ∇ t u is the tangential gradient of u and H 1 2 (Γ) is defined by

H 1 2 (Γ) = {u ∈ L 2 t (Γ) : u i ∈ (H 1 2 (Γ i )) 3 , ∀i = 1, • • • , N, and N ij (u) < ∞, ∀(i, j) ∈ E},
where

N ij (u) = Γi Γj |u i (x) • τ ij -u j (y) • τ ij | 2 |x -y| 3 dσ(x)dσ(y),
and finally

u 2 , 1 2 ,Γ = N i=1 u i 2 1 2 ,Γi + (i,j)∈E N ij (u), ∀u ∈ H 1 2 (Γ).
For further uses, we also introduce

H 1 2 ⊥ (Γ) = {u ∈ L 2 t (Γ) : u i ∈ (H 1 2 (Γ i )) 3 , ∀i = 1, • • • , N, and N ⊥ ij (u) < ∞, ∀(i, j) ∈ E},
where

N ⊥ ij (u) = Γi Γj |u i (x) • n ij -u j (y) • n ji | 2 |x -y| 3 dσ(x)dσ(y),
and finally

u 2 ⊥, 1 2 ,Γ = N i=1 u i 2 1 2 ,Γi + (i,j)∈E N ⊥ ij (u), ∀u ∈ H 1 2 ⊥ (Γ).
Let us also define (cf. [START_REF] Buffa | On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra[END_REF])

H -1 2 (Γ) as the dual of H 1 2 (Γ) (with pivot space L 2 t (Γ)) and introduce the tangential divergence div t : H -1 2 (Γ) → H -3 2 (Γ) as the adjoint of -∇ t , namely div t u, ϕ H -3 2 (Γ)-H 3 2 (Γ) = -u, ∇ t ϕ H -1 2 (Γ)-H 1 2 (Γ) , ∀u ∈ H -1 2 (Γ), ϕ ∈ H 3 2 (Γ).
Finally, let us define

H -1/2 (div; Γ) = {w ∈ H -1/2 (Γ) : div t w ∈ H -1/2 (Γ)},
and recall the next result proved in [6, Theorem 3.9]:

Theorem 2.1 [9, Thm 4.1]
The trace mapping

H(curl, Ω) → H -1/2 (div; Γ) : U → U × n,
is linear, continuous, and surjective.

Theorem 2.2

If Ω is a polyhedron satisfying

(2.3) ω c < 4π, ∀c ∈ C, then for any h ∈ H -1 2 (Γ), there exists a unique u ∈ H 3 2 (Γ) such that (2.4) u -div t ∇ t u = h in H -1 2 (Γ), with (2.5) u 3 2 ,Γ h -1 2 ,Γ . Proof. Fix h ∈ H -1 2 (Γ). Then there exists a unique solution u ∈ H 1 (Γ) of Γ (∇ t u • ∇ t v + uv) dσ(x) = h, v , ∀v ∈ H 1 (Γ).
This solution clearly satisfies (2.4). Furthermore owing to our assumption (2.3), Theorem 8 from [START_REF] Buffa | Boundary element methods for Maxwell's equations on non-smooth domains[END_REF] (with t = 1 2 , valid since 2π ωc > 1 2 for all corners c) guarantees that u ∈ H

3 2 (Γ) since h -u belongs to H -1 2 (Γ).
To obtain the estimate (2.5), we take advantage of the closed graph theorem. Indeed introduce the mapping

T : {v ∈ H 3 2 (Γ) : div t ∇ t v ∈ H -1 2 (Γ)} → H -1 2 (Γ) : u → u -div t ∇ t u,
that is well defined and continuous. Since the above arguments show that it is bijective, its inverse is also continuous, which yields Proof. The proof follows the one of Lemma 4.5.5 of [START_REF] Costabel | Corner Singularities and Analytic Regularity for Linear Elliptic Systems[END_REF] with the necessary adaptation. Let (E, H) ∈ V. Let us prove that E ∈ H 1 (Ω). The proof for H is similar.

u 3 2 ,Γ u -div t ∇ t u -
By Theorems 2.17 and 3.12 of [START_REF] Amrouche | Vector potentials in three-dimensional nonsmooth domains[END_REF], there exists a vector potential

w ∈ H T (Ω) = {w ∈ H 1 (Ω) 3 : w • n = 0 on Γ} such that div w = 0 and curl w = curl E in Ω,
and satisfying

(2.6) w 1,Ω curl E Ω .
Thus, there exists a potential ϕ ∈ H 1 (Ω) such that

(2.7) ∇ϕ = E -w,
with (by assuming that Ω ϕ dx = 0)

ϕ 1,Ω E Ω + w Ω E H(curl,Ω) .
Therefore, as a consequence of div E ∈ L 2 (Ω) we find that 

(2.8) div ∇ϕ ∈ L 2 (Ω
w t H -1/2 (div;Γ) curl E Ω .
Indeed the above properties imply that (2.12)

w t = w ∈ H 1/2 ⊥ (Γ).
Namely to show that property we simply need to show that for any (i, j) ∈ E, one has (2.13)

Γi Γj

|w i (x) • n ij -w j (y) • n ji | 2 |x -y| 3 dσ(x)dσ(y) w 2 H 1 2 (Γ)
.

But for such a pair, n ij is a linear combination of n i and n j and consequently

Γi Γj

|w i (x)| • n 2 ij |x -y| 3 dσ(x)dσ(y) Γi Γj |w i (x) • n j | 2 |x -y| 3 dσ(x)dσ(y) = Γi Γj |w i (x) • n j -w j (y) • n j | 2 |x -y| 3 dσ(x)dσ(y) since w i • n i = 0 on Γ i and w j • n j = 0 on Γ j . This shows that Γi Γj |w i (x) • n ij | 2 |x -y| 3 dσ(x)dσ(y) Γi Γj |w i (x) -w j (y)| 2 |x -y| 3 dσ(x)dσ(y) w 2 H 1 2 (Γ)
, as well as (by exchanging the role of Γ i and Γ j ) ⊥ (Γ) to H -12 (Γ), and by (2.12) we deduce that

div t w t = div t w ∈ H -1 2 (Γ).
Altogether we finally obtain that λ imp ∇ t ϕ belongs to H -1/2 (div; Γ) and since λ imp is smooth and never 0 on Γ, we conclude that Proof. It suffices to prove that (2.3) is a necessary condition. For that purpose, we use a contradiction argument. Assume that (2.3) is wrong, namely that there exists a corner c for which ω c ≥ 4π. Then by the arguments from [8, §5.2] (see also [START_REF] Nicaise | Polygonal Interface Problems, volume 39 of Methoden und Verfahren der mathematischen Physik[END_REF]Chap. 2]), there exists a singular function

div t ∇ t ϕ ∈ H -1 2 (Γ),
and since ϕ is in H -1 2 (Γ), ϕ -div t ∇ t ϕ ∈ H -
S ∈ H 1 (Γ) \ H 3 2 (Γ) such that (2.18) div t ∇ t S ∈ H -1 2 (Γ).
Denote by ϕ ∈ H 1 (Ω) the harmonic lifting of S to the whole of Ω, namely the unique element in H 1 (Ω) that satisfies γ 0 ϕ = S on Γ, as well as ∆ϕ = 0 in Ω.

Such a function exists (and is unique) by first fixing a lifting ϕ 1 ∈ H 1 (Ω) such that

γ 0 ϕ 1 = S on Γ,
and then by considering the unique solution

ϕ 2 ∈ H 1 0 (Ω) of Ω ∇ϕ 2 • ∇ χ dx = Ω ∇ϕ 1 • ∇ χ dx, ∀χ ∈ H 1 0 (Ω).
Hence we readily check that ϕ = ϕ 1 -ϕ 2 is a hamonic lifting of S. In that way we get a field

E = ∇ϕ such that (2.19) λ imp E t ∈ H -1/2 (div; Γ).
Indeed E t being in L 2 t (Γ) and λ imp being continuous, λ imp E t is even in L 2 t (Γ). Furthermore div t (λ imp E t ) = div t (λ imp ∇ t S), which belongs to H -1/2 (Γ) due to (2.18) and the regularity of λ imp . By Theorem 2.1, there exists a field H ∈ H(curl, Ω) such that

H × n = λ imp E t on Γ.
Since div H does not belong to L 2 (Ω), we subtract to it the field ∇ψ, where ψ ∈ H 1 0 (Ω) is the unique solution to

Ω ∇ψ • ∇ χ dx = - Ω H • ∇ χ dx, ∀χ ∈ H 1 0 (Ω).
In that way the field H = H -∇ψ is divergence free, still belongs to H(curl, Ω) and satisfies

H × n = λ imp E t on Γ.
This furnishes a pair (E, H) that belongs to V, but that cannot be in

H 1 (Ω) 2 since E is not in H 1 (Ω).
Indeed if E would be in H 1 (Ω), then ϕ would be in H 2 (Ω), and therefore its trace S on Γ would be in H 3 2 (Γ), which is not the case. This proves that (2.1) is not valid.

Well Posedness

Let us start with a coerciveness result for the sesquilinear form a.

Theorem 3.1 If Ω is a polyhedron satisfying (2.3), then the sesquilinear form a k,s (•, •) is weakly coercive on V, in the sense that there exists c > 0 independent of k and s such that

(3.1) a k,s ((E, H), (E, H)) ≥ c E 2 1,Ω + H 2 1,Ω -(k 2 + 1) E 2 Ω + H 2 Ω , ∀(E, H) ∈ V.
Proof. Direct consequence of Theorem 2.4, recalling our assumption on λ imp to be real valued.

Remark 3.2 Under the assumptions of the previous Theorem, for k ≥ 1, we have

(E, H) k (E, H) H 1 (Ω) 2 .
The existence of a weak solution to (1.5) for k > 0 directly follows from this coerciveness and the next uniqueness result for problem (1.1).

Lemma 3.3 Let (E, H) ∈ V be a solution of (3.2) curl E -ikH = 0 and curl H + ikE = 0 in Ω, H × n -λ imp E t = 0 on ∂Ω.
Assume that E and H are divergence free. Then (E, H) = (0, 0). Proof. By Green's formula (see [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF]Thm I.2.11]) we have

Ω (| curl E| 2 + | curl H| 2 ) dx = ik Ω (curl H • Ē -curl E • H) dx = ik Ω (H • curl Ē -curl E • H) dx -ik ∂Ω (H × n • Ē) dσ(x).
Hence using the impendance boundary condition in (3.2), we find that

Ω (| curl E| 2 + | curl H| 2 ) dx = ik Ω (H • curl Ē -curl E • H) dx -ik ∂Ω λ imp |E t | 2 dσ(x).
Taking the imaginary part of this identity we find that

k ∂Ω λ imp |E t | 2 dσ(x) = 0.
Hence if k > 0, we deduce that E t = 0 on ∂Ω, as λ imp is positive on ∂Ω. Again by the impendance boundary condition, H also satisfies

H × n = 0 on ∂Ω.
This means that we can extend E and H by zero outside Ω and that these extensions belong to H(curl, R 3 ). Owing to Theorem 4.13 of [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF] we conclude that (E, H) = (0, 0). For k = 0, we notice that (3.2) implies that E and H are curl free, hence as Ω is supposed to be simply connected, by Theorem I.2.6 of [START_REF] Girault | Finite element methods for Navier-Stokes equations, Theory and algorithms[END_REF], there exist Φ E , Φ H ∈ H 1 (Ω) such that

E = ∇Φ E , H = ∇Φ H .
Due to the H 1 regularity of E and H, Φ E and Φ H both belong to H 2 (Ω). Now using the impendance boundary condition, we have

div t (λ imp ∇ t Φ E ) = div t (∇Φ H × n) on ∂Ω,
and by the standard property

div t (v × n) = curl v • n,
valid for all v ∈ H(curl, Ω) (see [6, p.23]), we deduce that

div t (λ imp ∇ t Φ E ) = 0 on ∂Ω.
By its definition (see [START_REF] Buffa | On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra[END_REF]Def 3.3]), this property implies that

∂Ω |λ imp ∇ t Φ E | 2 dσ(x) = 0.
Consequently Φ E is constant on the whole boundary. As E is divergence free, Φ E is harmonic in Ω and consequently it is constant on the whole Ω, which guarantees that E = 0. With this property and recalling the impedance boundary condition, we deduce that ∇ t Φ H = 0 on the whole boundary. As H is also divergence free, Φ H is harmonic in Ω and we conclude that H = 0.

Our next goal is to prove an existence and uniqueness result to problem (1.5), that can be formulated in the more general form

(3.3) a k,s ((E, H); (E , H )) = F; (E , H ) , ∀(E , H ) ∈ V,
with F ∈ V . First, we need to show extra regularities of the divergence of any solution (E, H) of this problem under the assumption that F belongs to L 2 (Ω) × L 2 (Ω) in the sense that

(3.4) F; (E , H ) = Ω f 1 • Ē + f 2 • H dx, with f 1 , f 2 ∈ L 2 (Ω). Lemma 3.4 If the impedance function λ imp satisfies (1.
2) and -k 2 /s is not an eigenvalue of the Laplace operator ∆ with Dirichlet boundary conditions in Ω, then for all

f 1 , f 2 ∈ L 2 (Ω), any solution (E, H) ∈ V to the problem (3.5) a k,s ((E, H); (E , H )) = Ω f 1 • Ē + f 2 • H dx, ∀(E , H ) ∈ V, satisfies div E, div H ∈ H 1 0 (Ω), with div E = -(s∆ + k 2 ) -1 div f 1 , div H = -(s∆ + k 2 ) -1 div f 2 .
Proof. We basically follow the proof of Lemma 4.5.8 of [START_REF] Costabel | Corner Singularities and Analytic Regularity for Linear Elliptic Systems[END_REF] with a slight adaptation due to the change of right-hand side in (3.5) with respect to [START_REF] Costabel | Corner Singularities and Analytic Regularity for Linear Elliptic Systems[END_REF]. In (3.5) we first take test functions in the form (∇ϕ, 0) with an arbitrary ϕ ∈ H 2 (Ω) ∩ H 1 0 (Ω). This directly implies that (∇ϕ, 0) belongs to V, and therefore we get

s Ω div E div ∇ φ dx -k 2 Ω E • ∇ φ dx = Ω f 1 • ∇ φ dx.
Consequently, one deduces that

(3.6) Ω div E (s∆ + k 2 )ϕ dx = -div f 1 ; ϕ , ∀ϕ ∈ H 2 (Ω) ∩ H 1 0 (Ω).
On the other hand, as -k 2 /s is not an eigenvalue of the Laplace operator ∆ with Dirichlet boundary conditions in H 2 (Ω), there exists a unique solution q ∈ H 1 0 (Ω) to

(s∆ + k 2 )q = -div f 1 .
Taking the duality with ϕ ∈ H 2 (Ω) ∩ H 1 0 (Ω), after an integration by parts, we obtain equivalently that

Ω q (s∆ + k 2 )ϕ dx = -div f 1 ; ϕ , ∀ϕ ∈ H 2 (Ω) ∩ H 1 0 (Ω).
Comparing this identity with (3.6), we find that

Ω (div E -q) (s∆ + k 2 )ϕ dx = 0, ∀ϕ ∈ H 2 (Ω) ∩ H 1 0 (Ω),
and since the range of (s∆ + ω 2 ) is the whole L 2 (Ω), one gets that div E = q, as announced.

The result for H follows in the same way by choosing test functions in the form (0, ∇ φ).

We are now ready to prove an existence and uniqueness result to (3.3).

Theorem 3.5

If Ω is a polyhedron satisfying (2.3), the impedance function λ imp satisfies (1.2) and -k 2 /s is not an eigenvalue of the Laplace operator ∆ with Dirichlet boundary conditions in Ω, then for any F ∈ V , the problem (3.3) has a unique solution (E, H) ∈ V.

Proof. We associate to problem (3.3) the continuous operator A k,s from V into its dual by

(A k,s u)(v) = a k,s (u, v), ∀u, v ∈ V.
Now according to Theorem 3.1, the sesquilinear form

a k,s ((E, H), (E, H)) + (k 2 + 1) E 2 L 2 (Ω) + H 2 L 2 (Ω) ,
is strongly coercive in V and by Lax-Milgram lemma, the operator 6 , the operator A k,s is a Fredholm operator of index zero. Hence uniqueness implies existence and uniqueness. So let us fix (E, H) ∈ V be a solution of (3.3) with F = 0. Then by Lemma 4.5.9 of [START_REF] Costabel | Corner Singularities and Analytic Regularity for Linear Elliptic Systems[END_REF] (valid due to Lemma 3.3), we find that (E, H) is solution of the original problem (1.1) with J = 0, namely (3.2). We further notice that Lemma 3.4 guarantees that E and H are divergence free (only useful for k = 0). As Lemma 3.3 yields that (E, H) = (0, 0), we conclude an existence and uniqueness result.

A k,s +(k 2 +1)I is an isomorphism V into its dual. As V is compactly embedded into L 2 (Ω)
As already mentioned, for the particular choice

F; (E , H ) = Ω iωJ • Ē + J • curl H dx, with J ∈ L 2 (Ω), problem (3.
3) reduces to (1.5). Hence under the assumptions of Theorem 3.5 and if J ∈ L 2 (Ω), this last problem has a unique solution (E, H) ∈ V, that owing to Lemma 4.5.9 of [START_REF] Costabel | Corner Singularities and Analytic Regularity for Linear Elliptic Systems[END_REF] is moreover solution of the original problem (1.1) under the additional assumption that J ∈ H(div; Ω). Now under the assumptions of Theorem 3.5, given two functions

f 1 , f 2 ∈ L 2 (Ω), we denote by (E, H) = S k,s (f 1 , f 2 )
, the unique solution of (3.3) with F given by (3.4) or equivalently solution of (3.5). Note that the general considerations from [14, §4.5.d] implies that (E, H) is actually the solution of the boundary value elliptic system

(3.7)                    L k,s (E) = f 1 L k,s (H) = f 2 in Ω div E = 0 div H = 0 T (E, H) = 0 B k (E, H) = 0          on ∂Ω, where L k,s (u) = curl curl u -s∇ div u -k 2 u, T (E, H) = H × n -λ imp E t , B k (E, H) = (curl H) × n + 1 λ imp (curl E) t - ik λ imp H t + ikE × n.
Remark 3.6 As suggested by its definition, under the assumptions of Theorem 3.5, S k,s (f 1 , f 2 ) depends on s, but if the data f 1 and f 2 are divergence free, then as Lemma 3.4 guarantees that each component of S k,s (f 1 , f 2 ) is divergence free, we deduce that

S k,s (f 1 , f 2 ) = S k,s (f 1 , f 2 ),
for all s > 0 such that -k 2 /s is not an eigenvalue of the Laplace operator ∆ with Dirichlet boundary conditions in Ω. In other words, in that case S k,s (f 1 , f 2 ) does not depend on s and hence the parameter s can be chosen independent of k. This is of particular interest for practical applications (see problem (1.5)), since the data f 1 and f 2 are divergence free. The interest of considering non divergence free right-hand side will appear in the error analysis of our numerical schemes, see Remark 6.6.

Let us end up this section with an extra regularity result of the curl of each component of

S k,s (f 1 , f 2 ) if f 1 , f 2 ∈ L 2 (Ω) are divergence free. Lemma 3.7 Under the assumptions of Theorem 3.5, let (E, H) = S k,s (f 1 , f 2 ), with f 1 , f 2 ∈ L 2 (Ω) such that div f 1 = div f 1 = 0.
Then (U, W) = (curl E -ikH, curl H + ikE) belongs to V and satisfies the Maxwell system

(3.8) curl U + ikW = f 1 and curl W -ikU = f 2 in Ω.
Proof. According to Lemma 3.4, E and H are divergence free, hence U and W as well. Hence the identities (3.8) directly follows from the two first identities of (3.7). This directly furnishes the regularities curl U, curl W ∈ L 2 (Ω).

Finally the boundary conditions

W × n -λ imp U t = 0 on ∂Ω,
directly follows from the last boundary conditions in (3.7).

Corner/edge singularities

Here for the sake of simplicity we assume that λ imp = 1 and want to describe the regularity/singularity of

S k,s (f 1 , f 2 ) with f 1 , f 2 ∈ H t (Ω), for t ≥ 0.
As said before as the system (3.7) is an elliptic system, the shift property will be valid far from the corners and edges of Ω, in other words,

S k,s (f 1 , f 2 ) belongs to H t+2 (Ω \ V) × H t+2 (Ω \ V),
for any neighborhood V of the corners and edges. We therefore need to determine the corner and edge singularities of system (3.7).

Corner singularities

For c be a corner of Ω, we recall that Ξ c is the three-dimensional cone that coincides with Ω in a neighbourhood of c and that G c is its section with the unit sphere. For shortness, if no confusion is possible, we will drop the index c. As usual denote by (r, ϑ) the spherical coordinates centred at c. The standard antsatz [START_REF] Dauge | Elliptic boundary value problems on corner domains -smoothness and asymptotics of solutions[END_REF][START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF][START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF] is to look for the corner singularities (E, H) of problem (3.7) in the form

(4.1) (E, H) = r λ (U(ϑ), V(ϑ)), with λ ∈ C such that λ > -1 2 and U, V ∈ H 1 (G)
that is solution of (as our system is invariant by translation)

(4.2)        curl curl E -s∇ div E = 0 in Ξ, curl curl H -s∇ div H = 0 in Ξ, div E = div H = 0 on ∂Ξ, H × n -E t = (curl H) × n + (curl E) t = 0 on ∂Ξ.
Remark 4.1 For the sake of simplicity, we consider here the spectral condition that is stronger than the notion of injectivity modulo the polynomials (from [START_REF] Dauge | Elliptic boundary value problems on corner domains -smoothness and asymptotics of solutions[END_REF]) that consists in replacing the right-hand side in the two first identities of (4.2) by a polynomial of degree λ-2. As a consequence, we eventually add some integer ≥ 2 in the set of corner singular exponent, that at least do not affect the regularity results up to 7 2 . Inspired from [START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF], we introduce the auxiliary variables

q E = div E, q H = div H, ψ E = curl E, ψ H = curl H,
and re-write the above system in the equivalent form

∆q E = 0 in Ξ, q E = 0 on ∂Ξ, ∆q H = 0 in Ξ, q H = 0 on ∂Ξ, (4.3a)        curl ψ E = s∇q E in Ξ, curl ψ H = s∇q H in Ξ, div ψ E = div ψ H = 0 on ∂Ξ, ψ H × n = -(ψ E ) t on ∂Ξ, (4.3b)    curl E = ψ E , div E = q E in Ξ, curl H = ψ H , div H = q H in Ξ, H × n = E t on ∂Ξ. (4.3c)
Then three types of singularities appear: Type 1: (q E , q H ) = (0, 0), (ψ E , ψ H ) = (0, 0) and (E, H) general non-zero solution of (4.3c). Type 2: (q E , q H ) = (0, 0), (ψ E , ψ H ) general non-zero solution of (4.3b) and (E, H) particular solution of (4.3c). Type 3: (q E , q H ) general non-zero solution of (4.3a), (ψ E , ψ H ) particular solution of (4.3b) and (E, H) particular solution of (4.3c).

These singularities are different from those from [START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF] essentially due to the boundary conditions

H × n -E t = (curl H) × n + (curl E) t = 0 on ∂Ξ.
Some singularities from [START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF] will be also singularities of our problem but not the converse, see below.

To describe them, we recall the corner singularities of the Laplace operator with Dirichlet boundary conditions in Ξ, see [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF][START_REF] Dauge | Elliptic boundary value problems on corner domains -smoothness and asymptotics of solutions[END_REF][START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF] for instance. We first denote by L Dir G the positive Laplace-Beltrami operator with Dirichlet boundary conditions on G. Recall that L Dir G is a self-adjoint operators with a compact resolvent in L 2 (G), hence we denote its spectrum by σ(L Dir G ). Then we make the following definition. We denote by Z λ Dir the set of such solutions. Due to the relation

r 2 ∆ = (r∂ r ) 2 + (r∂ r ) + ∆ G ,
for any λ ∈ C and ϕ ∈ H 1 (G), we have

(4.5) ∆(r λ ϕ) = r λ-2 L(λ)ϕ,
where

(4.6) L(λ)ϕ = ∆ G ϕ + λ(λ + 1)ϕ,
with ∆ G the Laplace-Beltrami operator on G. Consequently, the set Λ Dir (Γ) is related to the spectrum σ(L Dir G ) of L Dir G as follows (see [START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF]Lemma 2.4]):

Λ Dir (Γ) = {- 1 2 ± µ + 1 4 : µ ∈ σ(L Dir G )}.
For λ ∈ Λ Dir (Γ), the elements of Z λ Dir are related to the set V Dir (λ) of eigenvectors of L Dir G associated with µ = λ(λ + 1) via the relation

Z λ Dir = {r λ ϕ : ϕ ∈ V Dir (λ)}.
Recalling from the previous section that ω c is the length of the network R c , we finally set

Υ c = { 2kπ ω c : k ∈ Z},
as well as

Υ * c = { 2kπ ω c : k ∈ Z \ {0}}.
We are ready to consider our different types of singularities. We start with singularities of type 1.

Lemma 4.3 Let λ ∈ C be different from -1. Then (E, H) in the form (4.1) is a singularity of type 1 if and only if λ + 1 ∈ Λ Dir (Γ) ∪ Υ * c . Proof. (E, H) in the form (4.1) is a singularity of type 1 if and only if it satisfies (4.7)    curl E = 0, div E = 0 in Ξ, curl H = 0, div H = 0 in Ξ, H × n = E t on ∂Ξ. i) Since a singularity of type 1 from [13] is a vector field E CD that satisfies curl E CD = 0, div E CD = 0 in Ξ, E CD × n = 0 on ∂Ξ,
by Lemma 6.4 of [START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF], we deduce that any λ ∈ C such that λ + 1 ∈ Λ Dir (Γ) induces a singularity of type 1 for our problem (pairs like (E CD , 0) for instance). ii) We now show that other singular exponents appear. As λ = -1, by Lemma 6.1 of [START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF], the scalar fields

Φ E = 1 λ + 1 E • x, Φ H = 1 λ + 1 H • x,
are scalar potentials of E and H, namely

(4.8) E = ∇Φ E , H = ∇Φ H in Ξ.
Consequently by the divergence free property of E and H, we deduce that (4.9

)

∆Φ E = ∆Φ H = 0 in Ξ. Hence if we set u E (ϑ) = 1 λ + 1 E(ϑ) • ϑ, u H (ϑ) = 1 λ + 1 H(ϑ) • ϑ, we have (4.10) Φ E = r λ+1 u E (ϑ), Φ H = r λ+1 u H (ϑ),
and by the identity (4.5), we get

(4.11) L(λ + 1)u E = L(λ + 1)u H = 0 in G.
Now we come back to the boundary condition in (4.7) that can be written in polar coordinates (r, θ) in the form

∂ r φ H = -1 r ∂ θ φ E , 1 r ∂ θ φ H = ∂ r φ E .
Due to (4.10), in term of u E and u H , this is equivalent to

u H = -1 λ+1 ∂ θ u E , ∂ θ u H = (λ + 1)u E .
These two identities imply that u H is known if u E is (or the converse) and then u E has to satisfy

∂ 2 θ u E + (λ + 1) 2 u E = 0 on R c . (4.12)
In other words, u E is an eigenvector of the positive Laplace operator on R c of eigenvalue (λ + 1) 2 . As the set of such eigenvalue is precisely made of µ 2 , with µ ∈ Υ c , two alternatives occur: a. λ + 1 does not belong to Υ c , hence in that case u E = u H = 0 and therefore

Φ E = Φ H = 0 on ∂Ξ,
and we conclude as in Lemma 6.4 of [START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF] that λ + 1 ∈ Λ Dir (Γ). b. λ + 1 belongs to Υ c , hence a non trivial solution u E of (4.12) exists (it is a multiple of an associated eigenvector) and then u H = -1 λ+1 ∂ θ u E . This means that the trace of u E and u H are prescribed on ∂G (that is R c ), call them ϕ E and ϕ H . Recalling (4.11), this means that u E and u H are respective solution of the following boundary value problems on G:

L(λ + 1)u E = 0 in G, u E = ϕ E on ∂G. L(λ + 1)u H = 0 in G, u H = ϕ H on ∂G.
For both problems, either λ + 1 ∈ Λ Dir (Γ) and a solution exists, or λ + 1 ∈ Λ Dir (Γ) and no matter that a solution exists or not, because, by point i), this case already gives rise to a singular exponent.

We go on with singularities of type 2.

Lemma 4.4 Let λ ∈ C. If (E, H) in the form (4.1) is a singularity of type 2, then λ ∈ Λ Dir (Γ)∪Υ * c . Proof. If (E, H) in the form (4.1) is a singularity of type 2, then (see (4.3b)) (ψ E , ψ H ) satisfies        curl ψ E = 0 in Ξ, curl ψ H = 0 in Ξ, div ψ E = div ψ H = 0 on ∂Ξ, ψ H × n = -(ψ E ) t on ∂Ξ.
If we compare this system with (4.7), we deduce equivalently that λ belongs to

Λ Dir (Γ) ∪ Υ * c , recalling that (ψ E , ψ H ) behaves like r λ-1 . Hence we have found that λ ∈ Λ Dir (Γ) ∪ Υ * c is a necessary condition.
We end up with singularities of type 3.

Lemma 4.5 Let λ ∈ C. If (E, H) in the form (4.1) is a singularity of type 3, then λ-1 ∈ Λ Dir (Γ).
Proof. If (E, H) in the form (4.1) is a singularity of type 3, then (q E , q H ) is a solution of (4.3a), which means equivalently that λ -1 ∈ Λ Dir (Γ) is a necessary condition. Among the corner singular exponents exhibited in the previous Lemmas, according to Lemma 3.4, we have to remove the ones for which

div E ∈ H 1 loc (Ξ) or div H ∈ H 1 loc (Ξ).
No more constraint appears for singularities of type 1 or 2 since E and H are divergence free. On the contrary for singularities of type 3 as div E = q E (resp. div H = q H ), we get the restriction

λ -1 > - 1 2 .
As Lemma 4.5 also says that λ -1 ∈ Λ Dir (Γ) and as the set Λ Dir (Γ) ∩ [-1, 0] is always empty, we get the final constraint λ -1 > 0.

In summary if we denote by Λ c the set of corner singular exponents of the variational problem (3.7) (in H 1 ), we have shown that

(4.13) Λ c,1 ⊂ Λ c ⊂ Λ c,1 ∪ Λ c,2 ∪ Λ c,3 ,
where we have set

Λ c,1 = {λ ∈ R : λ > - 1 2 and λ + 1 ∈ Λ Dir (Γ) ∪ Υ * c } Λ c,2 = {λ ∈ R : λ > - 1 2 and λ ∈ Λ Dir (Γ) ∪ Υ * c }, Λ c,3 = {λ ∈ R : λ > 1 and λ -1 ∈ Λ Dir (Γ)}.
Note that in the particular case of a cuboid, for all corners we have ω c = 3π 2 , while Proposition 18.8 of [START_REF] Dauge | Elliptic boundary value problems on corner domains -smoothness and asymptotics of solutions[END_REF] yields

Λ Dir (Γ) = {3 + 2d : d ∈ N} ∪ {-(4 + 2d) : d ∈ N}.
Consequently, one easily checks that

Λ c,1 = {2 + 2d : d ∈ N} ∪ { 4k 3 -1 : k ∈ N * }, Λ c,2 = {3 + 2d : d ∈ N * } ∪ { 4k 3 : k ∈ N * }, Λ c,3 = {4 + 2d : d ∈ N}.
Hence the smallest corner singular exponent is equal to 1 3 . Similarly with the help of Lemma 18.7 of [START_REF] Dauge | Elliptic boundary value problems on corner domains -smoothness and asymptotics of solutions[END_REF], the sets Λ c,i , i = 1, 2, 3 can be characterized for any prism D × I, where D is any polygon with a Lipschitz boundary and I is an interval.

Edge singularities

Our goal is to describe the edge singularities of problem (3.7). Let us then fix an edge e of Ω, then near an interior point of e, as our system (3.7) is invariant by translation and rotation (using a Piola transformation, that in this case corresponds to the covariant transformation), we may suppose that Ω behaves like W e = C e × R where C e is a two-dimensional cone centred at (0, 0) of opening ω e ∈ (0, 2π), with ω e = π. Here for the sake of generality, we do not assume that ω e < π. Below we will also use the polar coordinates (r, θ) in C e centred at (0, 0). Let us recall that the set Λ Dir (C e ) of singular exponents of the Laplace operator with Dirichlet boundary conditions in C e is defined by

Λ Dir (C e ) = { kπ ω e : k ∈ Z \ {0}}.
Similarly we recall that the set of singular exponents of the Laplace operator with Neumann boundary conditions in C e is defined by

Λ Neu (C) = { kπ ω e : k ∈ Z}.
For convenience, when no confusion is possible, we will drop the index e. As usual, for λ ∈ C, the edge singularities are obtained by looking for a non-polynomial solution (E, H) (independent of the x 3 variable) in the form of

(4.14) (E, H) = r λ Q q=0 (ln r) q (U q (ϑ), V q (ϑ)), of (4.15)        curl curl E -s∇ div E = F E in W, curl curl H -s∇ div H = F H in W, div E = div H = 0 on ∂W, H × n -E t = (curl H) × n + (curl E) t = 0 on ∂W , F E , F H being
a polynomial in the x 1 , x 2 variables. In that way, we see that the pair E = (E 1 , E 2 ) made of the two first components of E and the third component h := H 3 of H satisfy (4.16)

       curl curl E -s∇ div E = F E in C, ∆h = g in C, div E = 0 on ∂C, h + E t = ∂ n h -curl E = 0 on ∂C,
F, g being a polynomial (in the x 1 , x 2 variables) and as usual

curl E = ∂ 1 E 2 -∂ 2 E 1 ,
and

E t = n 1 E 2 -n 2 E 1 on ∂C, if n = (n 1 , n 2 )
on ∂C, further for a scalar field ϕ we have

curl ϕ = ∂ 2 ϕ -∂ 1 ϕ .
The pair (H 1 , H 2 ) made of the two first components of H and -E 3 , where E 3 is the third component of E satisfy the same system, hence we only need to characterize the singularities of (4.16).

Inspired from [START_REF] Costabel | Singularities of electromagnetic fields in polyhedral domains[END_REF], the singularities of system (4.16) are obtained by introducing the scalar variables q = div E and ψ = curl E. In this way, if λ ∈ N 2 := {n ∈ N : n ≥ 2} (or equivalently λ is not an integer or is an integer ≤ 1), we find the equivalent system ∆q = 0 in C, q = 0 on ∂C, (4.17a)

   curl ψ = s∇q in C, ∆h = 0 in C, ∂ n h -ψ = 0 on ∂C, (4.17b) curl E = ψ, div E = q in C, E t = -h on ∂C. (4.17c)
As before three types of singularities appear: Type 1: q = 0, ψ = 0 and E general non-zero solution of (4.17c). Type 2: q = 0, ψ general non-zero solution of (4.17b) and E particular solution of (4.17c). Type 3: q general non-zero solution of (4.17a), ψ particular solution of (4.17b) and E particular solution of (4.17c).

The singularities of type 1 were treated in [13, §5c], where it is shown that λ

∈ N 2 is such that λ + 1 ∈ Λ Dir (C) \ {2}.
Let us now look at singularities of type 2.

Lemma 4.6 Let λ ∈ N 2 be such that λ > 0. Then λ is a singularity of type 2 if and only if λ ∈ Λ Neu (C).

Proof. If (E, h) in the form

(4.18) E = r λ Q q=0 (ln r) q U(ϑ), h = r λ Q q=0 (ln r) q v q (ϑ)),
is a singularity of type 2, then ψ = curl E satisfies (see (4.17b))

   curl ψ = 0 in C, ∆h = 0 in C, ∂ n h -ψ = 0 on ∂C.
In this case, ψ is constant in the whole C. Hence we distinguish the case λ = 1 or not:

1. If λ = 1, then ψ = 0 and consequently h satisfies

(4.19) ∆h = 0 in C, ∂ n h = 0 on ∂C,
which means that λ belongs to Λ Neu (C) and h is in the form h = r λ cos(λθ).

2. If λ = 1, then there exists a constant c such that ψ = c and consequently h satisfies

(4.20) ∆h = 0 in C, ∂ n h = c on ∂C,
For two parameters c 1 and c 2 , denote by

h 0 = c 1 x 1 + c 2 x 2 = r(c 1 cos θ + c 2 sin θ).
Clearly h 0 is harmonic and satisfies

∂ n h 0 (θ = 0) = -c 2 , ∂ n h 0 (θ = ω) = -c 1 sin ω + c 2 cos ω,
hence it fulfils (4.20) if and only if (c 1 , c 2 ) satisfies the 2 × 2 linear system

c 2 = -c, -c 1 sin ω + c 2 cos ω = c.
Since sin ω is different from zero, such a solution exists and therefore d = h -h 0 satsifies (4. [START_REF] Gatica | Finite element analysis of a time harmonic Maxwell problem with an impedance boundary condition[END_REF]). This would mean that 1 belongs to Λ Neu (C), which is not possible. Once ψ and h are found, we look for a particular solution E of (4.17c) with q = 0. From its curl free property, we look for E in the form

E = ∇Φ, with Φ = r λ+1 ϕ(θ),
where ϕ has to satisfy ϕ + (λ + 1) 2 ϕ = 0 in (0, ω), (λ + 1)ϕ(0) = -1, (λ + 1)ϕ(ω) = -cos(λω).

As λ + 1 does not belong to Λ Dir (C) and is different from zero, such a solution ϕ always exists.

Lemma 4.7 Let λ ∈ N 2 be such that λ > 0. Then λ is a singularity of type 3 if and only if λ -1 ∈ Λ Dir (C).

Proof. If (E, h) in the form (4.18) is a singularity of type 3, then q = div E satisfies (4.17a) and consequently λ -1 belongs to Λ Dir (C) and q is equal to

q = r λ-1 sin((λ -1)θ),
up to a non-zero multiplicative factor (that we then fix to be 1). Now we look for (ψ, h) a particular solution of (4.17b). As simple calculations yield

curl(r λ-1 cos((λ -1)θ)) = -∇r λ-1 sin((λ -1)θ),
we deduce that ψ = -sr λ-1 cos((λ -1)θ) + k, for some constant k, that we can fix to be zero since we look for particular solutions. Hence it remains to find h solution of

∆h = 0 in C, ∂ n h = -sr λ-1 cos((λ -1)θ) on ∂C.
Such a h exists in the form

h = r λ η(θ),
since the previous problem is equivalent to

η + λ 2 η = 0 in (0, ω), η (0) = s, η (ω) = ±s(-1) k ,
when λ = kπ ω and this system has a unique solution since λ ∈ Λ Neu (C). Now we look for E a particular solution of (4.17c) with the functions q, ψ and h found before, which then takes the form

   curl E = -sr λ-1 cos((λ -1)θ) in C, div E = r λ-1 sin((λ -1)θ) in C, E t = -r λ η(θ) on ∂C.
Hence we look for E in the form

E = - s 4λ curl(r λ+1 cos((λ -1)θ)) + ∇Φ.
As simple calculations yield

curl curl(r λ+1 cos((λ -1)θ)) = 4λ cos((λ -1)θ),
we deduce that the previous system in E is equivalent to

(4.21) ∆Φ = r λ-1 sin((λ -1)θ) in C, ∂ r Φ(r, 0) = c 0 r λ , ∂ r Φ(r, ω) = c ω r λ ,
for two constants c 0 and c ω . If λ + 1 ∈ Λ Dir (C), then a solution Φ of this problem always exists in the form r λ+1 ϕ(θ), since it is then equivalent to

ϕ + (λ + 1) 2 ϕ = sin((λ -1)θ) in C, ϕ(0) = c0 λ+1 , ∂ r Φ(r, ω) = cω λ+1 .
On the contrary if λ + 1 ∈ Λ Dir (C) (that only occurs when ω = 3π 2 ), then we look for Φ in the form

(4.22) r λ+1 (ϕ 0 (θ) + log rϕ 1 (θ)).
Since, in this particular choice, problem (4.21) is equivalent to

∆Φ = r λ-1 sin((λ -1)θ) in C, Φ(r, 0) = c0 λ+1 r λ+1 , Φ(r, ω) = cω λ+1 r λ+1 ,
by Theorem 4.22 of [START_REF] Nicaise | Polygonal Interface Problems, volume 39 of Methoden und Verfahren der mathematischen Physik[END_REF], we deduce that a solution Φ in the form (4.22) exists.

In both cases, a solution Φ exists, hence the existence of E.

As before among the edge singular exponents, we have to remove the ones for which

div E ∈ H 1 loc (W ) or div H ∈ H 1 loc (W ).
No more constraint appears for singularities of type 1 or 2 since E and H are divergence free. On the contrary for singularities of type 3, we get the restriction λ > 1.

In summary if we denote by Λ e the set of edge singular exponents ∈ N 2 of the variational problem (3.7) (in H 1 , i.e., with λ > 0), we have shown that Note that in the particular case of a cuboid, for all edges we have ω e = π 2 , and consequently Λ e = ∅ (recalling that the natural number in N 2 are excluded from this set). Since one can show that λ = 2 is a singular exponent, the maximal regularity along the edge is H 3-ε , for any ε > 0.

In conclusion, for any polyhedral domain satisfying the assumption (2.3), there exists 2 , for all t < t Ω . For instance for a cuboid, we have t Ω = 11 6 .

t Ω ∈ (1, 2] such that for any f 1 , f 2 ∈ L 2 (Ω), S k,s (f 1 , f 2 ) belongs to H t (Ω)

Wavenumber explicit stability analysis

The basic block for a wavenumber explicit error analysis of problem (3.7) (or (3.5)) is a so-called stability estimate at the energy level; for the Helmholtz equation, see [START_REF] Cummings | Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations[END_REF][START_REF] Esterhazy | On Stability of Discretizations of the Helmholtz Equation[END_REF][START_REF] Hetmaniuk | Stability estimates for a class of Helmholtz problems[END_REF], while for problem (1.3), see [START_REF] Hiptmair | Stability results for the time-harmonic Maxwell equations with impedance boundary conditions[END_REF]. Hence we make the following definition.

Definition 5.1 We will say that system (3.7) satisfies the k-stability property with exponent α ≥ 0 (independent of k and s) if there exists k 0 > 0 such that for all k ≥ k 0 and all f 1 , f 2 ∈ L 2 (Ω), the solution (E, H) ∈ V of (3.5) satisfies

(5.1) (E, H) k k α ( f 1 0,Ω + f 2 0,Ω ).
Before going on, let us show that this property is valid for some particular domains, in particular it will be valid for rectangular cuboids of rational lengths, some tetrahedra and some prisms. To prove such a result, we first start with a similar property with divergence free data. In this case, our proof is a simple consequence of a result obtained in [START_REF] Nicaise | Boundary stabilization of Maxwell's equations with space-time variable coefficients[END_REF] for the time-dependent Maxwell system with impedance boundary conditions combined with the next result of functional analysis [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF][START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF]. Lemma 5.2 A C 0 semigroup (e tA ) t≥0 of contractions on a Hilbert space H is exponentially stable, i.e., satisfies

e tA U 0 H ≤ C e -ωt U 0 H , ∀U 0 ∈ H, ∀t ≥ 0,
for some positive constants C and ω if and only if

(5.2) ρ(A) ⊃ iβ β ∈ R ≡ iR, and 
(5.3) sup β∈R (iβI -A) -1 L(H) < ∞,
where ρ(A) denotes the resolvent set of the operator A.

Theorem 5.3 In addition to the assumptions of Theorem 3.5, assume that Ω is star-shaped with respect to a point. Then for all k ≥ 0 and all f 1 , f 2 ∈ L 2 (Ω) such that div f 1 = div f 2 = 0, the solution (E, H) ∈ V of (3.5) satisfies (5.1) with α = 1.

Proof. As the data are divergence free, by Lemma 3.7, the auxiliary unknown (U, W) = (curl E -ikH, curl H + ikE) belongs to V, is divergence free and satisfies the Maxwell system (3.8). Now we notice that Theorem 4.1 of [START_REF] Nicaise | Boundary stabilization of Maxwell's equations with space-time variable coefficients[END_REF] (valid for star-shaped domain with a Lipschitz boundary) shows that the time-dependent Maxwell system

∂ t E + curl H = 0 and ∂ t H -curl E = 0 in Ω, H × n -λ imp E t = 0 on Ξ, is exponentially stable in H = {(E, H) ∈ L 2 (Ω) × L 2 (Ω) : div E = div H = 0}.
This equivalently means that the operator A defined by

A(E, H) = (-curl H, curl E), ∀(E, H) ∈ D(A), with domain D(A) = {(E, H) ∈ V : div E = div H = 0},
generates an exponentially stable C 0 semigroup in H. Hence by Lemma 5.2, we deduce that its resolvent is bounded on the imaginary axis. This precisely implies that (5.4)

U Ω + W Ω f 1 Ω + f 2 Ω ,
for all k ≥ 0. But coming back to the definition of U and W, we can look at (E, H) as a solution in D(A) of the Maxwell system

curl E -ikH = U, curl H + ikE = W.
Hence the previous arguments show that

E Ω + H Ω U Ω + W Ω .
By the estimate (5.4), we deduce that (5.5)

E Ω + H Ω f 1 Ω + f 2 Ω .
Finally as

(E, H) k ∼ curl E Ω + curl H Ω + k( E Ω + H Ω ),
by the triangular inequality, we get that

(E, H) k curl E -ikH Ω + curl H + ikE Ω + k( E Ω + H Ω ) U Ω + V Ω + k( E Ω + H Ω ).
By the estimates (5.4) and (5.5), we conclude that

(E, H) k k( f 1 Ω + f 2 Ω ),
as announced. Now we leave out the divergence free constraint on the data. Before let us denote by {λ n } n∈N * , the set of eigenvalues enumerated in increasing order (and not repeated according to their multiplicity) of the positive Laplace operator -∆ with Dirichlet boundary conditions in Ω. For each n ∈ N * , we also denote by ϕ n, , = 1, • • • , m(n), the orthonormal eigenvectors associated with λ n . For all k > 0 and each s ∈ [1, 2], let us define the unique integer n(k, s) such that (5.6)

λ n(k,s) ≤ k 2 s < λ n(k,s)+1 ,
and denote by

g n(k,s) = λ n(k,s)+1 -λ n(k,s) ,
the gap between these consecutive eigenvalues. Now we show that if g n(k,s) satifies some uniform lower bound, then the k-stability property holds.

Lemma 5.4 In addition to the assumptions of Theorem 5.3, assume that there exists a non negative real number β and two positive real number γ 0 and k 1 such that

(5.7) ∀k ≥ k 1 ∃s ∈ [1, 2] : g n(k,s) ≥ γ 0 k -2β .
Then there exist two positive real numbers s 0 , s 1 such that s 0 < s 1 (depending on β, γ 0 and k 1 ) and for an appropriate choice of s ∈ [s 0 , s 1 ] (but such that -k 2 /s is not an eigenvalue of the Laplace operator ∆ with Dirichlet boundary conditions in Ω), the k-stability property with exponent α = 2β + 1 holds.

Proof. The first step is to reduce the problem to divergence free right-hand sides. For that purpose, for i = 1 or 2, we consider u i , ϕ i ∈ H 1 0 (Ω) variational solutions of

∆u i = div f i in Ω, (∆ϕ i + k 2 s ϕ i ) = -s -1 u i in Ω.
Then simple calculations show that ( Ẽ, H) = (E -∇ϕ 1 , H -∇ϕ 2 ) belongs to V and is solution of (3.7) with divergence free right-hand side, namely (5.8)

                   L k,s ( Ẽ) = f1 = f 1 -∇u 1 , L k,s ( H) = f2 = f 2 -∇u 2 , in Ω, div Ẽ = 0 div H = 0 T ( Ẽ, H) = 0 B( Ẽ, H) = 0          on ∂Ω,
In a first step we estimate the H 1 -norm of ϕ i . Since we assume that k 2 s does not encounter the spectrum of the Laplace operator, by the spectral theorem, we can write

ϕ i = -s -1 n∈N * ( k 2 s -λ n ) -1 m(n) =1 (u i , ϕ n, ) Ω ϕ n, .
Consequently, we have (5.9)

ϕ i 2 1,Ω ∼ s -2 n∈N * ( k 2 s -λ n ) -2 m(n) =1 |(u i , ϕ n, ) Ω | 2 λ n .
Hence our goal is to chosse s in an interval [s 0 , s 1 ] with s 0 and s 1 independent of k satisfying 0 < s 0 ≤ s 1 < ∞ and such that (5.10)

k 2 s -λ n k -2β , ∀n ∈ N * , k ≥ k 0 ,
with k 0 large enough. Indeed if this estimate is valid, then (5.9) can be transformed into

ϕ i 2 1,Ω k 4β n∈N * m(n) =1 |(u i , ϕ n, ) Ω | 2 λ n .
and therefore

ϕ i 1,Ω k 2β u i 1,Ω .
As clearly (5.11)

u i 1,Ω f i Ω ,
we conclude that (5.12)

ϕ i 1,Ω k 2β f i Ω . As (5.13) (∇ϕ 1 , ∇ϕ 2 ) k ∼ √ s( ∆ϕ 1 Ω + ∆ϕ 2 Ω )) + k( ϕ 1 1,Ω + ϕ 2 1,Ω ),
we need to estimate the L 2 -norm of ∆ϕ 1 . But from its definition, we have

∆ϕ i + k 2 s ϕ i = -s -1 u i ,
and taking the L 2 -inner product with ϕ i , we get

(∆ϕ i , ϕ i ) Ω + k 2 s ϕ i 2 Ω = -s -1 (u i , ϕ i ) Ω .
Using Cauchy-Schwarz's inequality, we get

k 2 s ϕ i 2 Ω ≤ s -1 u i Ω ϕ i Ω + |ϕ i | 2 1,Ω .
With the help of (5.11) and (5.12), we obtain

k 2 ϕ i 2 Ω f i Ω ϕ i Ω + k 4β f i 2 Ω .
Hence by Young's inequality, we get

k 2 ϕ i 2 Ω k 4β f i 2 Ω ,
which proves that (5.14)

ϕ i Ω k 2β-1 f i Ω .
This directly implies that

∆ϕ i Ω ≤ k 2 s ϕ i Ω + s -1 u i Ω k 2β+1 f i Ω .
Using this estimate and (5.12) in (5.13) leads to

(5.15) (∇ϕ 1 , ∇ϕ 2 ) k k 2β+1 ( f 1 Ω + f 2 Ω ).
At this stage, we use Theorem 5.3 that yields

( Ẽ, H) k k( f1 Ω + f2 Ω ).
Hence by the definition of fi and (5.11), we deduce that

( Ẽ, H) k k( f 1 Ω + f 2 Ω ).
As (E, H) = ( Ẽ, H) + (∇ϕ 1 , ∇ϕ 2 ), the combination of this last estimate with (5.15) leads to (5.16)

(E, H) k k 2β+1 ( f 1 Ω + f 2 Ω ),
which proves the stability estimate with α = 2β + 1.

It remains to prove that (5.10) holds for an appropriate choice of s. This is done with the help of our assumption (5.7), by an eventual slight modification of s from this assumption. To be more precise, for all k ≥ k 1 , we fix one s ∈ [START_REF] Amrouche | Vector potentials in three-dimensional nonsmooth domains[END_REF][START_REF] Apel | Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains[END_REF] such that (5.7) holds and denote it by s(k). We now distinguish between three cases. a

) If λ n(k,s(k)) ≤ k 2 s(k) ≤ λ n(k,s(k)) + γ0 3k 2β
, then we fix s such that (5.17)

k 2 s = λ n(k,s(k)) + γ 0 3k 2β .
With this choice, we clearly have

k 2 s -λ n(k,s(k)) = γ 0 3k 2β , while λ n(k,s(k))+1 - k 2 s = λ n(k,s(k))+1 -λ n(k,s(k)) - γ 0 3k 2β ≥ 2γ 0 3k 2β
, which proves that (5.10) holds. Let us now show that s remains in a (uniformly) bounded interval. Indeed (5.17) is equivalent to

s = k 2 λ n(k,s(k)) + γ0 3k 2β . As by assumption k 2 ≤ s(k) λ n(k,s(k)) + γ0
3k 2β , we directly deduce that s ≤ s(k) ≤ 2. Conversely, from (5.6), we deduce that

k 2 λ n(k,s(k)) + γ0 3k 2β ≥ k 2 k 2 s(k) + γ0 3k 2β ≥ s(k) 1 + γ0s(k) 3k 2(β+1) ≥ 1 1 + 2γ0 3k 2(β+1) 1 . b) If λ n(k,s(k))+1 -γ0 3k 2β ≤ k 2 s(k) ≤ λ n(k,s(k))+1
, then we fix s such that

k 2 s = λ n(k,s(k))+1 - γ 0 3k 2β .
We check exactly as in the first case that (5.10) holds. Furthermore, by assumption s ≥ 1, while for the lower bound we see that

s = k 2 λ n(k,s(k))+1 -γ0 3k 2β ≤ k 2 k 2 s(k) -γ0 3k 2β ≤ s(k) 1 -s(k)γ0 3k 2β ≤ 2 1 -2γ0 3k 2β . Hence s ≤ 3 for k ≥ k 0 with k 0 large enough. c) If λ n(k,s(k)) + γ0 3k 2β < k 2 s(k) < λ n(k,s(k))+1 -γ0 3k 2β
, then we fix s = s(k). In such a case, we directly see that (5.10) holds since

k 2 -λ n(k,s(k)) ≥ γ 0 3k 2β , and λ n(k,s(k))+1 -k 2 ≥ γ 0 3k 2β .
The proof is then complete.

Remark 5.5

The parameter s fixed in the previous Lemma clearly depends on k. Furthermore if β is positive, the quantity k 2 s approaches the spectrum of -∆, and hence the norm of the resolvent operator ∆ + k 2 s blows up, but the estimate (5.16) controls this blow up since it yields

div E Ω + div H Ω k 2β+1 ( f 1 Ω + f 2 Ω ).
Let us now show that (5.7) always holds with β = 1 2 .

Lemma 5.6 For all bounded domain Ω (of R 3 ), the assumption (5.7) holds with β = 1 2 .

Proof. Assume that (5.7) does not hold with β = 1 2 , in other words (5.18)

∀γ 0 > 0, k 1 > 0 ∃k ≥ k 1 ∀s ∈ [1, 2] : g n(k,s) < γ 0 k -1 .
We first fix γ 0 such that

(5.19) γ 0 < 1 48 √ 2c|Ω| ,
where |Ω| is the measure of Ω and c = 1 6π 2 is the universal constant such that Weyl's formula (5.20)

lim t→∞ N (t) c|Ω|t 3 2 = 1,
holds, where N (t) is the eigenvalue counting function of the positive Laplace operator -∆ with Dirichlet boundary conditions in Ω, i.e., the number of its eigenvalues, which are less than t. Then we fix k 1 large enough, namely k 3 1 ≥ 12γ 0 . Then for all k ≥ k 1 , we define the real numbers

s i = 1 + 3γ 0 i k 3 , ∀i = 1, • • • , N k ,
where N k = k 3 6γ0 -1 (where x is the integral part of any real number x, namely the unique integer such that x ≤ x < x + 1). By our assumption N k is larger than 1 and for k large it behaves like k 3 . It is easy to see that all s i belongs to [1, 3 2 ]. Now we look at the intervals

I i = k 2 s i - γ 0 2k , k 2 s i + γ 0 2k , ∀i = 1, • • • , N k ,
and show that they are disjoint, i.e.,

(5.21)

I i ∩ I j = ∅, ∀i = j,
and included into the closed interval k 2 2 , 2k 2 :

(5.22)

I i ⊂ k 2 2 , 2k 2 , ∀i = 1, • • • , N k .
Indeed for the second assertion it suffices to show that (5.23)

k 2 s i - γ 0 2k ≥ k 2 2 ,
and that (5.24)

k 2 s i + γ 0 2k ≥ 2k 2 .
This second estimate holds if and only if

k 2 s 1 + γ 0 2k ≥ 2k 2 , or equivalently 1 s 1 ≤ 2 - γ 0 2k 3 .
Since s 1 = 1 + 3γ0 k 3 , this holds if and only if

(2 - γ 0 2k 3 )(1 + 3γ 0 k 3 ) ≥ 1,
which means that γ0 k 3 has to satisfy

11 - √ 145 6 ≤ γ 0 k 3 ≤ 11 + √ 145 6 ,
that is valid owing to our assumption on k 1 (and the fact that k ≥ k 1 ).

In the same spirit, the estimate (5.23) holds if and only if

s N k ≤ 2 1 + γ0 k 3
, which holds because our assumption on k 1 implies that

3 2 ≤ 2 1 + 2γ0 k 3
. Now to prove (5.21), it suffices to show that

I i ∩ I i+1 = ∅, ∀i = 1, • • • , N k -1, or k 2 s i+1 + γ 0 2k < k 2 s i - γ 0 2k , ∀i = 1, • • • , N k -1.
By the definition of the s i , this holds if and only if

s i s i+1 < 3.
Since s i s i+1 ≤ 9 4 , we deduce that (5.21) is valid. Since the length of I i is exactly equal to γ0 k and due to our assumption (5.18), λ n(k,si) or λ n(k,si)+1 belongs to I i . Due to (5.21) and (5.22), for all k ≥ k 1 , we have found

N k distinct eigenvalues in the interval [ k 2 2 , 2k 2 ]. This implies that N (2k 2 ) ≥ N k ≥ k 3 6γ 0 -1 ≥ k 3 12γ 0 , ∀k ≥ k 1 .
But Weyl's formula (5.20) implies that there exists k 2 > 0 large enough such that

N (2k 2 ) ≤ 2c|Ω|(2k 2 ) 3 2 , ∀k ≥ k 2 .
These two estimates yield

γ 0 ≥ 1 48 √ 2c|Ω| ,
which contradicts (5.19).

We now notice that (5.7) may hold for β ≤ 1 2 , in particular it holds with β = 0 once the next gap condition (5.25) ∃g 0 > 0 : λ n+1 -λ n ≥ g 0 , ∀n ∈ N * , holds.

Lemma 5.7 Assume that (5.25) holds, then the assumption (5.7) is valid with β = 0 and γ 0 = g 0 .

Proof. If k 2 2 is different from λ n(k,2)
, then we take s = 2 and find g n(k,2) ≥ g 0 , hence the result. On the contrary if

k 2 2 = λ n(k,2) , then we choose s = 2 -ε with ε ∈ (0, 1) small enough such that k 2 2 -ε < λ n(k,2)+1 . Since k 2 = 2λ n(k,2)
, this means that we additionally require that

ε < 2 1 - λ n(k,2) λ n(k,2)+1 ,
which is always possible since this right-hand side is positive. With this choice, we have that n(k, s) = n(k, 2) and we conclude that g n(k,s) ≥ g 0 .

Corollary 5.8 Assume that Ω = (0, √ a 1 ) × (0, √ a 2 ) × (0, √ a 3 ), with positive real numbers a i , i = 1, 2, 3 such that ai a1 is a rational number, i = 2, 3. Then the gap condition (5.25) holds with β = 0 and hence for an appropriate choice of s, the k-stability property with exponent α = 1 holds.

Proof. For such a cuboid, it is well known that the spectrum of the Laplace operator -∆ with Dirichlet boundary condition is given by

π 2 ( k 2 1 a 1 + k 2 2 a 2 + k 2 3 a 3 ),
for any k i ∈ N * , i = 1, 2, 3. Hence writting ai a1 = ni d , with n i , d ∈ N * , the spectrum is equivalently characterized by the set of

π 2 a 1 n 2 n 3 (k 2 1 n 2 n 3 + k 2 2 n 1 n 3 + k 2 3 n 1 n 2 ), for any k i ∈ N * , i = 1, 2, 3. Since, in our situation, k 2 1 n 2 n 3 + k 2 2 n 1 n 3 + k 2 3 n 1 n 2 is a natural number, the spectrum is a subset of g 0 N * ,
where g 0 = π 2 a1n2n3 . Hence the distance between two consecutive different eigenvalues is at most larger than g 0 . Remark 5.9 If the cuboid Ω = (0, √ a 1 ) × (0, √ a 2 ) × (0, √ a 3 ), with positive real numbers a i , i = 1, 2, 3 such that a2 a1 = a3 a1 is an irrational number badly approximable. Then by the same arguments than before and the use of Proposition 2.1 of [START_REF] Blomer | Small gaps in the spectrum of the rectangular billard[END_REF], the gap condition (5.25) holds with β = 1 and hence for an appropriate choice of s, the k-stability property with exponent α = 3 holds.

Corollary 5.10 Assume that Ω is a prism in the form Ω = T a ×(0, √ h), with positive real numbers a and h such that h a is a rational number and T a is an equilateral triangle of side of length √ a. Then the gap condition (5.25) holds with β = 0 and hence for an appropriate choice of s, the k-stability property with exponent α = 1 holds.

Proof. For such a prism, using a separation of variables, a scaling argument and Theorem 1 of [START_REF] Pinsky | The eigenvalues of an equilateral triangle[END_REF] (see also Theorem 3.2 of [START_REF] Hoshikawa | Affine Weyl groups and the boundary value eigenvalue problems of the Laplacian[END_REF], case of type A 2 ), we deduce that the spectrum of the Laplace operator -∆ with Dirichlet boundary condition is given by

16π 2 27a (k 2 1 + k 2 2 + k 1 k 2 ) + k 2 3 π 2 h , for any k 3 ∈ N * and k 1 ∈ Z * , k 2 ∈ Z such that k 1 + k 2 = 0.
Hence writting h a = n d with n, d ∈ N * , the eigenvalues can be written as

π 2 27an ((k 2 1 + k 2 + k 1 k 2 )n + 27dk 2 3 ),
for the previous parameters k i . As in the previous Corollary, this means that the distance between two consecutive different eigenvalues is at most larger than g 0 = π 2 27an .

Remark 5.11 By Theorem 3.2 of [START_REF] Hoshikawa | Affine Weyl groups and the boundary value eigenvalue problems of the Laplacian[END_REF] (case of type C 2 or D 2 , see also [4, Prop. 9]), Corollary 5.10 remains valid is T a is an isosceles right triangle with two sides of lenght √ a, with a positive number a.

Corollary 5.12 Assume that Ω is a tetrahedron with vertices (0, 0, 0), ( √ a, 0, 0), (

√ a/2, √ a/2, - √ a/2), ( √ a/2, √ a/2, √ a/2
), with a positive number a. Then the gap condition (5.25) holds with β = 0 and hence for appropriate choice of s, the k-stability property with exponent α = 1 holds.

Proof. For such a tetrahedron, by a scaling argument and Theorem 3.2 of [START_REF] Hoshikawa | Affine Weyl groups and the boundary value eigenvalue problems of the Laplacian[END_REF] (case of type A 3 = D 3 , see also [START_REF] Bérard | Spectres et groupes cristallographiques[END_REF]Prop. 9]) we deduce that the spectrum of the Laplace operator -∆ with Dirichlet boundary condition is given by

4π 2 a (k 2 1 + 3 4 (k 2 2 + k 2 3 ) + k 1 k 2 + k 1 k 3 + 1 2 k 2 k 3 ),
for any k i ∈ N * , i = 1, 2, 3. This means that the distance between two consecutive different eigenvalues is at most larger than g 0 = π 2 a .

h-finite element approximations

For the sake of simplicity, we here perform some error analyses when λ imp = 1, but for polyhedral domains satisfying the assumption (2.3) and for which the stability estimate is valid. Before stating some convergence results for different finite element approximations, we state some regularity results and a priori bounds.

6.1 Some regularity results and a priori bounds Theorem 6.1 Assume that λ imp = 1, and that Ω is a polyhedron satisfying the assumption (2.3) and that the k-stability property with exponent α holds. Then for any

f 1 , f 2 ∈ L 2 (Ω), S k,s (f 1 , f 2 ) belongs to H t (Ω) 2 , for all t < t Ω with (6.1) S k,s (f 1 , f 2 ) t,Ω (1 + k 1+α ) (f 1 , f 2 ) Ω .
Proof. Since the regularity of S k,s (f 1 , f 2 ) was already stated in section 4, we only concentrate on the estimate (6.1). It indeed holds by looking at S k,s (f 1 , f 2 ) as solution of (3.3) with k = 0 and a right-hand side defined by

F, (E , H ) = Ω ((f 1 + k 2 E) • Ē + (f 2 + k 2 H) • H )) dx + ik ∂Ω (E t • Ē t + H t • H t ) dσ.
By elliptic regularity and the stability estimate (5.1), we obtain

S k,s (f 1 , f 2 ) t,Ω (f 1 , f 2 ) Ω + k 2 S k,s (f 1 , f 2 ) Ω + k S k,s (f 1 , f 2 ) 1 2 ,∂Ω (1 + k 1+α ) (f 1 , f 2 ) Ω ,
which proves (6.1). Now we show similar results in weighted Sobolev spaces (in the absence of edge singularities), namely for all ∈ N, ≥ 2, and all non-negative real numbers ν, if r(x) is the distance from x to the corners of Ω, then we introduce the weighted space

H ,ν (Ω) := {v ∈ H 1 (Ω) : r α D β v ∈ L 2 (Ω), ∀β ∈ N 3 : 2 ≤ |β| ≤ },
which is a Hilbert space with its natural norm • ,ν;Ω . Theorem 6.2 In addition to the assumptions of Theorem 6.1, assume that ω e ≤ π 2 , for all edge e of Ω and that λ = 1 2 , for all λ ∈ Λ c and all corners c of Ω. Then for any

f 1 , f 2 ∈ L 2 (Ω), S k,s (f 1 , f 2
) can be decomposed as follows:

(6.2) S k,s (f 1 , f 2 ) = (E R , H R ) + c∈C λ∈Λc∩(-1 2 , 1 2 ) κ c,λ r λ c (ϕ E,c,λ (ϑ c ), ϕ H,c,λ (ϑ c )), with (E R , H R ) ∈ H 2 (Ω) 2 , C
is the set of corners of Ω, (r c , ϑ c ) are the spherical coordinates centred at c, κ c,λ is a constant and ϕ E,c,λ , ϕ H,c,λ belongs to H 2 (G c ). Furthermore we will have

(6.3) (E R , H R ) 2,Ω + c∈C λ∈Λc:0<λ< 1 2 |κ c,λ | (1 + k 1+α ) (f 1 , f 2 ) Ω .
In particular it holds S k,s (f 1 , f 2 ) ∈ H 2,ν (Ω) 6 , for all ν > 2 -t Ω with

(6.4) S k,s (f 1 , f 2 ) 2,ν;Ω (1 + k 1+α ) (f 1 , f 2 ) Ω .
Proof. Since there is no edge singular exponent in the interval [0, 1], the results of section 4 and of section 8.2 of [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF] (global regularity results in weighted Sobolev spaces for elliptic systems on domains with point singularities) allow to show that the splitting (6.2) and the estimate (6.3) hold.

The regularity S k,s (f 1 , f 2 ) ∈ H 2,ν (Ω) 6 , for all ν > 2 -t Ω and the estimate (6.4) directly follow from the fact that r λ c (ϕ E,c,λ (ϑ c ), ϕ H,c,λ (ϑ c )) belongs to H 2,ν (Ω) 6 , for all ν > 2 -t Ω . Finally still in the absence of edge singularities, we want to improve the previous result for a regular part almost in H 3 , namely we prove the next result. Theorem 6.3 Under the assumptions of Theorem 6.2, for any f 1 , f 2 ∈ L 2 (Ω), S k,s (f 1 , f 2 ) can be decomposed as follows: 6 (for shortness their dependence in s is skipped), for any ε > 0 and any ν 0 > 3 -t Ω , such that

(6.5) S k,s (f 1 , f 2 ) = S 0,s (f 1 , f 2 ) + (R E,reg , R H,reg ) + (R E,sing , R H,sing ), with S 0,s (f 1 , f 2 ) ∈ H 2,ν (Ω) 6 , for any ν > 2 -t Ω , satisfying (6.6) 
S 0,s (f 1 , f 2 ) 2,ν;Ω (f 1 , f 2 ) Ω , (R E,reg , R H,reg ) ∈ H 3-ε (Ω) 2 and (R E,sing , R H,sing ) ∈ H 3,ν0 (Ω)
(6.7) (R E,reg , R H,reg ) 3-ε,Ω + (R E,sing , R H,sing ) 3,ν0;Ω (1 + k 2+α ) (f 1 , f 2 ) Ω .
Proof. In a first step, we split up (E, H) := S k,s (f 1 , f 2 ) (see [START_REF] Chaumont-Frelet | Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems[END_REF] for a similar approach in domains with a smooth boundary) as follows:

(6.8) S k,s (f 1 , f 2 ) = S 0,s (f 1 , f 2 ) + (R E , R H ),
where the remainder (R E , R H ) ∈ V (for shortness it dependence in s is skipped) satisfies

a 0,s ((R E , R H ), (E , H )) = k 2 Ω (E • Ē + H • H ) dx (6.9) -ik ∂Ω (E t • Ē t + H t • H t ) dσ, ∀(E , H ) ∈ V.
By Theorem 3.5, the existence and uniqueness of S 0,s (f 1 , f 2 ) and of (R E , R H ) are guaranteed. Moreover from the estimate (6.4) (with k = 0), we see that S 0,s (f 1 , f 2 ) belongs to H 2,ν (Ω) 6 , for any ν > 2 -t Ω and that the estimate (6.6) holds. A similar result is valid for (R E , R H ), but we are interested in an improved regularity. More precisely, we want to show that (6.10)

(R E , R H ) = (R E,reg , R H,reg ) + (R E,sing , R H,sing ),
with (R E,reg , R H,reg ) and (R E,sing , R H,sing ) as stated in the Theorem. Indeed we first notice that the volumic term in the right-hand side of (6.9) has the appropriate regularity to obtain a decomposition of (R E , R H ) into a regular part in H 3-ε (Ω) 2 and a singular (corner) part. Unfortunately this is not the case for the boundary term, because (E, H) is not in H 2 (Ω) 2 , but due to its splitting (6.2), we can use a lifting of the singular part. More precisely by using Lemma 6.1.13 of [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF], for all corners c, and all λ ∈ ∩(-1 2 , 1 2 ), there exists a field (E c,λ , H c,λ ) in the form

(E c,λ , H c,λ ) = r 1+λ c κ(λ) =0 ϕ c,λ, (ϑ c )(ln r c ) , with κ(λ) ∈ N and ϕ c,λ, ∈ H 3-ε (G c ) such that                    L k,s (E c,λ ) = 0 L k,s (H c,λ ) = 0 in Ξ c div E c,λ = 0 div H c,λ = 0 T (E c,λ , H c,λ ) = 0 B 0 (E c,λ , H c,λ ) = 2ϕ E,c,λ,t          on ∂Ξ c .
Hence for any corner c by fixing a smooth cut-off function η c equal to 1 near c and equal to 0 near the other corners, we introduce (6.11)

( RE , RH ) = (R E , R H ) -ik c∈C λ∈Λc∩(-1 2 , 1 2 ) κ c,λ η c (E c,λ , H c,λ ),
that still belongs to V and is solution of

a 0,s (( RE , RH ), (E , H )) = k 2 Ω (E • Ē + H • H ) dx (6.12) -ikF (E , H ), ∀(E , H ) ∈ V,
where

F (E , H ) = ∂Ω (E t • Ē t + H t • H t ) dσ - c∈C λ∈Λc∩(-1 2 , 1 2 ) κ c,λ a 0,s (η c (E c , H c ), (E , H )) = ∂Ω (E R,t • Ē t + H R,t • H t ) dσ + c∈C λ∈Λc∩(-1 2 , 1 2 ) κ c,λ ∂Ω r λ c (1 -η c )(ϕ E,c,λ,t • Ē t + ϕ H,c,λ,t • H t ) dσ - c∈C λ∈Λc∩(-1 2 , 1 2 ) κ c,λ Ω (L k,s (η c E c,λ ) • Ē + L k,s (η c H c,λ ) • H ) dx. Since (1 -η c )ϕ E,c,λ,t , (1 -η c )ϕ H,c,λ,t , L k,s (η c E c,λ ), L k,s (η c H c,λ
) are sufficiently regular, by the shift theorem, we deduce that ( RE , RH ) admits a decomposition into a regular part in H 3-ε (Ω) 2 for any ε > 0 and a singular part that corresponds to corner singularities, namely (6.13)

( RE , RH ) = (R E,reg , R H,reg ) + c∈C λ∈Λc∩(-1 2 , 3 2 -ε) κ λ,c S λ c ,
where (R E,reg , R H,reg ) ∈ H 3-ε (Ω) 2 , S λ c is the singular function associated with λ, and κ λ,c ∈ C. Furthermore we have the estimate

(R E,reg , R H,reg ) 3-ε,Ω + c∈C λ∈Λc∩(-1 2 , 3 2 -ε) |κ λ,c | k 2 S k,s (f 1 , f 2 ) Ω +k (E R , H R ) 2,Ω + k c∈C λ∈Λc∩(-1 2 , 1 2 ) |κ c,λ |.
Hence by the stability estimate (5.1) and the estimate (6.3), we get

(6.14) (R E,reg , R H,reg ) 3-ε,Ω + c∈C λ∈Λc∩(-1 2 , 3 2 -ε) |κ λ,c | (1 + k 2+α ) (f 1 , f 2 ) 0,Ω .
Coming back to the definition (6.11) of ( RE , RH ) and using its splitting (6.13), we find the decomposition (6.10) of (R E , R H ) with

(R E,sing , R H,sing ) = ik c∈C λ∈Λc∩(-1 2 , 1 2 ) κ c,λ η c (E c,λ , H c,λ ) + c∈C λ∈Λc∩(-1 2 , 3 2 -ε) κ λ,c S λ c ,
that clearly belongs to H 3,ν0 (Ω) 6 for any ν 0 > 3 -t Ω , with the estimate

(R E,sing , R H,sing ) 3,nu0;Ω k λ∈Λc∩(-1 2 , 1 2 ) |κ c,λ | + c∈C λ∈Λc∩(-1 2 , 3 2 -ε) |κ λ,c |.
Using the estimates (6.3) and (6.14), we conclude that (6.7) is valid.

Obviously the same regularity results are valid for the solution (E * , H * ) = S * k,s (F, G) of the adjoint problem (6.15)

a k,s ((E , H ), (E * , H * )) = Ω ( F • E + Ḡ • H ), ∀(E , H ) ∈ V.
Indeed as

a k,s ((E , H ), (E * , H * )) = a k,s ( Ē * , Ē ) + a k,s ( H * , H ) + ik ∂Ω ( Ē * t • E t + H * t • H t ) dσ,
we deduce that ( Ē * , H * ) = S k,s ( F, Ḡ).

Wavenumber explicit error analyses

With the above regularity results from Theorems 6.1 or 6.2 in hands, we can perform some error analyses following a standard approach (see [START_REF] Melenk | On generalized finite element methods[END_REF]Chap. 8] and [32, §4]), the differences with these references are the loss of regularity and/or the use of refined meshes. The situation from Theorem 6.3 is different and uses similar ideas than in [START_REF] Chaumont-Frelet | Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems[END_REF].

P 1 -elements with regular meshes

We start with the simplest case where we approximate V by a subspace made of piecewise polynomials of degree 1 on a regular (in the Ciarlet sense) mesh T h of Ω made of tetrahedra, namely we take

V h := V ∩ P 1,h , where P 1,h := {(E h , H h ) ∈ L 2 (Ω) 2 : E h|T , H h|T ∈ (P 1 (T )) 3 , ∀T ∈ T h }.
At this stage, a finite element approximation of (E,

H) = S k,s (f 1 , f 2 ) ∈ V with f 1 , f 2 ∈ L 2 (Ω) consists in looking for (E h , H h ) = S k,s,h (f 1 , f 2 ) ∈ V h solution of (6.16) a k,s ((E h , H h ); (E , H )) = Ω (f 1 • Ē h + f 1 • H h ), ∀(E h , H h ) ∈ V h .
To analyse the existence of such a solution S k,s,h (f 1 , f 2 ) and the error between this approximated solution and S k,s (f 1 , f 2 ), according to a general principle (see for instance [START_REF] Melenk | Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions[END_REF][START_REF] Melenk | Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation[END_REF] for the Helmholtz equation), we introduce the adjoint approximability

η(V h ) = sup (F,G)∈L 2 (Ω) 2 \{(0,0)} inf (U h ,V h )∈V h S * k,s (F, G) -(U h , V h ) k (F, G) Ω .
By Theorem 4.2 of [START_REF] Melenk | Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions[END_REF] (that directly extends to our setting), the existence and uniqueness of a solution to (6.16) is guaranteed if kη(V h ) is small enough (stated precisely below).

To show such a result we will use the standard Lagrange interpolant. Namely for any (E, H) ∈ H t (Ω) 2 , with t > 3 2 , by the Sobolev embedding theorem, its Lagrange interpolant I h (E, H) (defined as the unique element of P 1,h that coincides with (E, H) at the nodes of the triangulation) has a meaning. If furthermore (E, H) belongs to V, then I h (E, H) will be also in V, hence in V h , since the normal vector is constant along the faces of Ω.

Recall that for any t > 3 2 , we also have the error estimate (6.17) (E, H) -I h (E, H) ,Ω h t-(E, H) t,Ω , for = 0 or 1, see [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]Thm 3.2.1] in the case t ∈ N and easily extended to non-integer t. These estimates directly allow to bound η(V h ).

Lemma 6.4 In addition to the assumptions of Theorem 6.1, assume that t Ω > 3 2 . Then for all t ∈ ( 3 2 , t Ω ) and all k ≥ k 0 , we have

(6.18) η(V h ) k 1+α h t-1 (1 + kh).
Proof. Fix an arbitrary datum (F, G) ∈ L 2 (Ω) 2 and denote (E * , H * ) = S * k,s (F, G). Then owing to (6.17), we have

(E * , H * ) -I h (E * , H * ) k k (E * , H * ) -I h (E * , H * ) 0,Ω + (E * , H * ) -I h (E * , H * ) 1,Ω (kh t + h t-1 ) (E * , H * ) t,Ω .
The estimate (6.1) allows to obtain the result.

Corollary 6.5 Under the assumptions of Lemma 6.4, for any fixed t ∈ ( 3 2 , t Ω ), there exists C > 0 (small enough and depending only on Ω and t) such that if (6.19)

k 2+α t-1 h ≤ C,
then for all k ≥ k 0 and all f 1 , f 2 ∈ L 2 (Ω), problem (6.16) has a unique solution S k,s,h (f 1 , f 2 ) and the following error estimate holds

(6.20) S k,s (f 1 , f 2 ) -S k,s,h (f 1 , f 2 ) k k 1+α h t-1 .
Proof. We first notice that the assumption (6. [START_REF] Gatica | Finite element analysis of a time harmonic Maxwell problem with an impedance boundary condition[END_REF]) is equivalent to

k 2+α h t-1 ≤ C t-1
and also implies that kh ≤ C, since t ≤ 2. As (6.18) means that there exists C 0 > 0 (independent of k, s, and h) such that

kη(V h ) ≤ C 0 k 2+α h t-1 (1 + kh), we deduce that kη(V h ) ≤ C 0 k 2+α h t-1 (1 + kh) ≤ C 0 C t-1 (1 + C).
As mentioned before, the existence of S k,s,h (f 1 , f 2 ) then follows from Theorem 4.2 of [START_REF] Melenk | Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions[END_REF] if

C 0 C t-1 (1 + C) ≤ 1 4C c ,
where C c is the continuity constant of a k,s (that here is equal to max{1, s 1 }). Now, we use the arguments from Theorem 4.2 of [START_REF] Melenk | Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions[END_REF]. Namely, we notice that

a k,s ((U, W), (U, W)) ≥ min{1, s 0 } (U, W) 2 k -2k 2 U 2 Ω + W 2 Ω) ,
where for shortness we write (U, W) = S k,s (f 1 , f 2 ) -S k,s,h (f 1 , f 2 ). Therefore by (6.15), one has

a k,s ((U, W), (U, W) + 2k 2 S * k,s (U, W)) = a k,s ((U, W), (U, W)) + 2k 2 a k,s ((U, W), S * k,s (U, W)) = a k,s ((U, W), (U, W)) + 2k 2 U 2 Ω + W 2 Ω ,
and by the previous estimate we deduce that

min{1, s 0 } (U, W) 2 k ≤ a k,s ((U, W), (U, W) + 2k 2 S * k,s (U, W)).
By Galerkin orthogonality, we can transform the right-hand side of this estimate as follows:

a k,s ((U, W), (U, W) + 2k 2 S * k,s (U, W)) = a k,s ((U, W), S k,s (f 1 , f 2 ) -(Y h , Z h )) + 2k 2 a k,s ((U, W), S * k,s (U, W)) -(U h , W h )), for any (U h , W h ), (Y h , Z h ) ∈ V h .
By the continuity of the sesquilinear form a with respect to the norm • k , the previous estimate and identity yield

(U, W) 2 k (U, W) k ( S k,s (f 1 , f 2 ) -(Y h , Z h ) k + k 2 S * k,s (U, W) -(U h , W h ) k .
As (U h , W h ) and (Y h , Z h ) are arbitrary in V h , by taking the infimum, we deduce that

(U, W) k inf (Y h ,Z h )∈V h S k,s (f 1 , f 2 ) -(Y h , Z h ) k + k 2 η(V h ) (U, W) Ω inf (Y h ,Z h )∈V h S k,s (f 1 , f 2 ) -(Y h , Z h ) k + kη(V h ) (U, W) k .
Hence for kη(V h ) small enough we deduce that (6.21)

(U, W) k inf (Y h ,Z h )∈V h S k,s (f 1 , f 2 ) -(Y h , Z h ) k .
By the estimates (6.1) and (6.17), we conclude that

(U, W) k (kh t + h t-1 )k 1+α = k 1+α h t-1 (1 + kh) k 1+α h t-1 .
Remark 6.6 The interest of considering non divergence free right-hand side in problem (3.5) appears in the definition of η(V h ) (and its estimate) and in the above proof. In both cases, the problem comes from the fact that even for divergence free fields

f 1 , f 2 , each component of S k,s,h (f 1 , f 2 ) is not divergence free. As a consequence, S * k,s (S k,s (f 1 , f 2 ) -S k,s,h (f 1 , f 2 
)) depends on s, but this plays no role in the estimate (6.20), except that s has to be fixed so that the stability estimate holds. Consequently at least theoretically S k,s,h (f 1 , f 2 ) has to be computed with such an s, even if S k,h (f 1 , f 2 ) is independent of s in case of divergence free fields f 1 , f 2 , while practically (see below) it is fixed by comparing k 2 with the spectrum of the Laplace operator -∆ with Dirichlet boundary condition in Ω (or an approximation of it). Remark 6.7 For the unit cuboid, as α = 1 (see Corollary 5.8) and t can be as close as we want to 11 6 , the condition (6.19) is mostly k 18 5 h small enough.

Remark 6.8 Let us notice that the estimate (6.21) is valid under the above assumptions, but if S k,s (f 1 , f 2 ) belongs to H p+1 (Ω) 2 and polynomials of degree p will be used to define V h , then the rate of convergence in h in the estimate (6.20) will be improved, passing from h t-1 to h p .

P 1 -elements with refined meshes

Here we assume that the assumptions of Theorem 6.2 hold and want to take advantage of the regularity of S k,s (f 1 , f 2 ) in H 2,ν (Ω) 6 , for any ν > 2 -t Ω (see estimate (6.4)). More precisely following the arguments from [30, Thm 3.3] (see also [START_REF] Apel | Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains[END_REF]) using a family of refined meshes T h satisfying the refined rules

h T h inf x∈T r(x) ν if T is far away from the corners of Ω, (6.22) h T h 1 1-ν
if T has a corners of Ω as vertex, (6.23) with a fixed but arbitrary ν ∈ (2 -t Ω , 1) (as close as we want from 2 -t Ω ), we have that

(E, H) -I h (E, H) ,Ω h 2-(E, H) 2,ν;Ω ,
for = 0 or 1. Consequently as in the previous subsection, for V h build on such meshes, there exists a positive constant C (independent of k, s and h) such that if

k 2+α h ≤ C,
then for all k ≥ k 0 and all f 1 , f 2 ∈ L 2 (Ω), problem (6.16) has a unique solution S k,s,h (f 1 , f 2 ) and the following error estimate holds (6.24)

S k,s (f 1 , f 2 ) -S k,s,h (f 1 , f 2 ) k k 1+α h.

P 2 -elements with refined meshes

Under the assumptions of Theorem 6.2 we can improve the previous orders of convergence and reduce the constraint between k and h. For that purposes, we use the splitting (6.8) of S k,s (f 1 , f 2 ) and the estimates (6.6) and (6.7) (recalling (6.10)). Then as in the previous subsection, we need to use a family of refined meshes T h satisfying the refined rules

h T h inf x∈T r(x) ν 0 2
if T is far away from the corners of Ω, (6.25)

h T h 2 2-ν 0
if T has a corners of Ω as vertex, (6.26) with a fixed but arbitrary ν 0 ∈ (3 -t Ω , 2). In such a situation, again by (6.17) and by [START_REF] Lubuma | Dirichlet problems in polyhedral domains II: approximation by FEM and BEM[END_REF]Thm 3.3] we have

(R E,reg , R H,reg ) -I h (R E,reg , R H,reg ) ,Ω h 3-ε-(R E,reg , R H,reg ) 3-ε,Ω , (6.27) 
(R E,sing , R H,sing ) -I h (R E,sing , R H,sing ) ,Ω h 3-(R E,sing , R H,sing ) 3,ν0;Ω , (6.28) for = 0 or 1.

Let us now show that (6.25) (resp. (6.26)) guarantees that (6.22) (resp. (6.23)) holds with ν = ν 0 -1. In the first case, we simply notice that r(x)

ν 0 2 = r(x) ν+1 2 ,
and therefore r(x)

ν+1 2 r(x) ν if and only if r(x) ν+1 r(x) 2ν .
This last estimate is valid for any x ∈ T because ν belongs to (0, 1) and r(x) is bounded. The second implication is a simple consequence of the fact that

h 2 2-ν 0 = h 2 1-ν h 1 1-ν .
Since our family of meshes then satisfies (6.22) and (6.23) with ν = ν 0 -1 > 2 -t Ω , we deduce that (6.29)

S 0 (f 1 , f 2 ) -I h S 0 (f 1 , f 2 ) ,Ω h 2-S 0 (f 1 , f 2 ) 2,ν;Ω ,
for = 0 or 1. With such estimates in hand, we can estimate the adjoint approximability. Lemma 6.9 For V h build on meshes satisfying (6.25) and (6.26), we have

(6.30) η(V h ) (1 + kh) h + k 3 h 2-ε .
Proof. Fix an arbitrary datum (F, G) ∈ L 2 (Ω) 2 , we denote (E * , H * ) = S * k,s (F, G). Then we use its splitting

(E * , H * ) = S * 0 (F, G) + (R * E,reg , R * H,reg ) + (R * E,sing , R * H,sing
). Owing to (6.27), (6.28), and (6.29), we have

(E * , H * ) -I h (E * , H * ) k (1 + kh)h S 0 (f 1 , f 2 ) 2,ν;Ω + (1 + kh)h 2-ε (R * E,reg , R * H,reg ) 3-ε,Ω + (1 + kh)h 2 (R E,sing , R H,sing ) 3,ν0;Ω .
The estimates (6.6) and (6.7) allow to obtain the result.

Consequently as in the previous subsection, for V h build on such meshes, there exists a positive constant C (independent of k, s and h) such that if

k 4 h 2-ε ≤ C, then for all k ≥ k 0 and all f 1 , f 2 ∈ L 2 (Ω), problem (6.16) has a unique solution S k,s,h (f 1 , f 2 ) with the error estimate S k,s (f 1 , f 2 ) -S k,s,h (f 1 , f 2 ) k k 3 h 2-ε .
Remark 6.10 Note that the impedance boundary conditions are imposed as essential boundary conditions. As we are dealing with polyhedral domains, Lagrange elements can be used to construct conforming subspaces V h . The extension to curved domains seems to be difficult, but a penalisation technique can be used [START_REF] Tomezyk | Méthodes d'éléments finis pour des problèmes aux limites non définis positifs[END_REF].

Some numerical tests

For the sake of simplicity, we restrict ourselves to the T E/T H polarization of the problem (3.7).

In other words, we take

Ω = D × R,
where D is a two-dimensional polygon and assume that the solution of our problem is independent of the third variable. In such a case, the original problem splits up into a T E polarization problem in (E 1 , E 2 , H 3 ) in D, and a T H polarization one in (H 1 , H 2 , E 3 ) in D, whose variational formulations are fully similar to (3.3). Furthermore the singularities of such problems correspond to the edge singularities of the original one. We first use a toy experiment in the unit square D = (0, 1) 2 to illustrate our results. In such a case, as exact solution, we take E 1 (x 1 , x 2 ) = -π cos( πx 1 ) sin( πx 2 ), E 2 (x 1 , x 2 ) = π sin( πx 1 ) cos( πx 2 ), H 3 (x 1 , x 2 ) = sin( πx 1 ) sin( πx 2 ), where ∈ N * . With such a choice, we notice that (E 1 , E 2 ) is divergence free, that

∆E 1 + k 2 E 1 = ∆E 1 + k 2 E 2 = ∆H 3 + k 2 H 3 = 0,
with k 2 = 2 2 π 2 and that they satisfy the impedance boundary condition. We then compute the right-hand side of (3.3) accordingly (where only a boundary term occurs). In our numerical experiments, we have chosen either = 2, 5, 8, 10, 15 or 29 and s = 14.3. This choice of s is made because it yields satisfactory numerical results, but it is also in accordance with the condition that k 2 s is different from the eigenvalues of the Laplace operator ∆ with Dirichlet boundary conditions in D, which in this case means that (6.31)

k 2 s = ( 2 1 + 2 2 )π 2 ,
for all positive integers 1 , 2 . Indeed in the first case = 2, the ratio k 2 s is smaller than the smallest eigenvalue 2π 2 , while in the other cases, it is strictly between two eigenvalues.

In Figures 1 to 3, we have depicted the different orders of convergence for different values of h, k, and p = 1, 2, and 4. From these figures, we see that if polynomials of order p are used, then in the asymptotic regime, the convergence rate is p for h small enough as theoretically expected, since the solution is smooth (see Remark 6.8).

The second main result from subsections 6.2.2 and 6.2.3 states that if k p+2 h p 1 with p = 1 or 2 (up to ε for p = 2), then (6.32)

S k,s (f 1 , f 2 ) -S k,s,h (f 1 , f 2 ) k S k,s (f 1 , f 2 ) -P h S k,s (f 1 , f 2 ) k ,
where P h is the orthogonal projection on V h for the inner product associated with the norm • k , namely for (U, V) ∈ V, P h (U, V) is the unique solution of

(P h (U, V), (U h , V h )) k = ((U, V), (U h , V h )) k , ∀(U h , V h ) ∈ V h , where 
((U, V), (U , V )) k = Ω (curl U • curl Ū + s div U div Ū + k 2 U • Ū ) dx + Ω (curl V • curl V + s div V div V + k 2 V • V ) dx.
In order to see if this bound is sharp or not, we compute S k,s,h (f 1 , f 2 ) and P h S k,s (f 1 , f 2 ) for different values of h, p, and k. For each k and p, we denote by h (k) the greatest value h 0 such that (6.33)

S k,s (f 1 , f 2 ) -S k,s,h (f 1 , f 2 ) k ≤ 2 S k,s (f 1 , f 2 ) -P h S k,s (f 1 , f 2 ) k , ∀h ≤ h 0 .
The value of h (k) for a given k is obtained by inspecting the ratio

S k,s (f 1 , f 2 ) -S k,s,h (f 1 , f 2 ) k S k,s (f 1 , f 2 ) -P h S k,s (f 1 , f 2 ) k .
Condition (6.33) state that the finite element solution must be quasi optimal in the • k norm, uniformly in k (with the arbitrary constant 2). The graph of h (k) is represented in Figure 4(a), 4(b) and 4(c) for P 1 , P 2 and P 4 elements, respectively. We observe that in both cases h (k) ∼ k -1-1/p , which is better than the condition k p+2 h p 1 that would furnish h (k) ∼ k -1-2/p . Indeed, it means that quasi-optimality in the sense of (6.33) is achieved under the condition that h ≤ h (k) ∼ k -1-1/p , which is equivalent to 

k p+1 h p ≤ k p+1 [h (k)]
p 1, that is better than k p+2 h p 1. We thus conclude that our stability condition seems to be not sharp and can probably be improved. Note that our experiments indicate that this stability condition remains valid for values of p larger than the theoretical one, that is here equal to 2.

As a second example, we take on the square (-1, 1) 2 the exact solution given by E 1 (x 1 , x 2 ) = x 2 e ikx1 , E 2 (x 1 , x 2 ) = -x 1 e ikx1 , H 3 (x 1 , x 2 ) = λ imp e ikx1 , that satisfies the homogeneous impedance boundary condition We have computed the numerical approximation of this solution for k = 30, the choice s = 14.3 (again with this choice, k 2 s is smaller than the smallest eigenvalue 2π 2 ), and for different values of λ imp , namely we have chosen λ imp = 1, 10, 50, and 100. In Figure 5, we have depicted the different orders of convergence for p = 1, 2, and 4 and different values of h. Again since the solution is regular, the rate of convergence p is observed in the asymptotic regime and seems not to be affected by the variation of λ imp .

Finally, we have tested the case when a corner singularity appears. Namely on the L-shaped domain L = (-1, 1) 2 \ ((0, 1) × (-1, 0)), we take as exact solution (written in polar coordinates (r, θ) centred at (0, 0)) E(r, θ) = ∇ r This solution exhibits the typical edge singularity of our Maxwell system described in subsection 4.2. This solution does not satisfies the homogeneous impedance boundary condition (with λ imp = 1), hence we have imposed to our numerical solutions (E h , H 3h ) to satisfy

H 3h (v) -E h,t (v) = -E t (v),
at all nodes of the boundary of L. The convergence rates for k = 1, 50 and 100 are presented in Figures 6 and7 for different values of h and p. There we observe, in the asymptotic regime, that for k = 1, the use of quasi-uniform meshes affects the rate of convergence since for p = 1 it is equal to 1 3 , while the use of refined meshes restores the optimal rate of convergence 1 (as theoreticaly expected). On the contrary for k = 50 or 100, we see, again in the asymptotic range, that the rate of convergence is p. This observation is in accordance with a recent result proved in [START_REF] Chaumont-Frelet | High frequency behaviour of corner singularities in helmholtz problems[END_REF] for Helmholtz problems in polygonal domains, which shows that in high frequency the dominant part of the solution is the regular part of the solution (which in our case is zero). Note that we have also chosen s = 14.3. Indeed for k = 1, the spectral condition on k 2 s holds since the smallest eigenvalue of the Laplace operator with Dirichlet boundary conditions in L is approximatively equal to 9.6387, see [START_REF] Fox | Approximations and bounds for eigenvalues of elliptic operators[END_REF][START_REF] Still | Approximation theory methods for solving elliptic eigenvalue problems[END_REF]. We are not able to check if the spectral condition is valid for k = 50 or 100 since the approximated values of the eigenvalues of the Laplace operator with Dirichlet boundary conditions in L seem to be only available up to 97, see [41, Table 1], but since our numerical results are satisfactory, we suppose that it is satisfied. Note that our numerical tests are performed with the help of XLife++, a FEM library developed in C++ by P.O.E.M.S. (Ensta) and I.R.M.A.R. (Rennes) laboratories. 

Definition 4 . 2

 42 The set Λ Dir (Γ) of corner singular exponents of the Laplace operator with Dirichlet boundary conditions in Ξ is defined as the set of λ ∈ C such that there exists a non-trivial solution ϕ ∈ H 1 0 (G) of (4.4) ∆(r λ ϕ(ϑ)) = 0.

(4. 23 )

 23 Λ e = Λ e,1 ∪ Λ e,2 ∪ Λ e,3 , where we have set Λ e,1 = {λ ∈ R : λ > 0 and λ + 1 ∈ Λ Dir (C) \ {2}} Λ e,2 = {λ ∈ R : λ > 0 and λ ∈ Λ Neu (C)}, Λ c,3 = {λ ∈ R : λ > 1 and λ -1 ∈ Λ Dir (C)}.

Figure 1 :

 1 Figure 1: Rates of convergence for p= 1, k = 2 √ 2π or 8 √ 2π (U = S k,s (f 1 , f 2 ), U h,p = S k,s,h (f 1 , f 2 ), W h,p = P h S k,s (f 1 , f 2 )).

H 3 -

 3 λ imp E t = 0 on ∂D.

Figure 2 :

 2 Figure 2: Rates of convergence for p = 2, k = 5 √ 2π or 10 √ 2π.

H 3

 3 (r, θ) = 0.

Figure 3 :

 3 Figure 3: Rates of convergence for p = 4, k = 15 √ 2π or 29 √ 2π.

Figure 4 :

 4 Figure 4: Asymptotic range of h * (k) for p = 1, 2, 4.

(a) p = 1 (b) p = 2 (c) p = 4 Figure 5 :Figure 6 :

 12456 Figure 5: Rates of convergence for λ imp = 1, 10, 50, 100 with p = 1, 2, 4.

(a) p = 1 (b) p = 2
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Figure 7 :

 7 Figure 7: Rates of convergence for the singular solution in the L-shaped domain for k = 50 or 100 with p = 1 (left) and p = 2 (right).

  Any convex polyhedron satisfies (2.3), since by [43, Problem 1.10.1], one always have ω c < 2π, for all c ∈ C. But the class of polyhedra satisfying (2.3) is quite larger since the Fichera corner and any prism D × I, where D is any polygon with a Lipschitz boundary and I is an interval satisfy (2.3). If Ω is a polyhedron satisfying (2.3), then the continuous embedding (2.1) remains valid.

	1 2 ,Γ ,
	and is exactly (2.5).
	Remark 2.3 Theorem 2.4

  ).

	Likewise, as w • n = 0 and w ∈ H	1 2 (Γ), let us show that w t also belongs H -1/2 (div; Γ) with
	(2.11)		
	with		
	(2.9)		div ∇ϕ Ω	div E Ω .
	By (2.7) the trace E As H belongs to H(curl, Ω), by Theorem 2.1 its trace H × n belongs to H -1/2 (div; Γ). By the
	impedance condition H × n = λ imp E t , we deduce that λ imp E t also belongs to H -1/2 (div; Γ) with
	(2.10)	λ imp E t H -1/2 (div;Γ)	H H(curl,Ω) .

t coincides with w t + ∇ t ϕ, i.e., E t = w t + ∇ t ϕ on Γ.

λ imp ∈ C 0,1 (∂Ω) is sufficient

(Γ),
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