
Extending the SPARQL Algebra for the optimization of Property Paths
Louis Jachiet, Pierre Genevès, Nabil Layaïda and Nils Gesbert

ENS, Inria, Université Grenoble Alpes, LIG

Introduction

sparql is the w3c standard language for query-
ing rdf graphs. Since its 1.1 version, sparql al-
lows queries with Property Paths. They correspond
to a form of regular path queries over graphs that
raises new challenges for sparql evaluators and
rdf stores.

Related Work

The evaluation of the conjunctive fragment of
sparql is a well-studied subject. Property Paths
can be recursive and the optimization of recursive
queries remains a challenge both in the relational [1]
and in the semantic web world [2].

Our proposal

We present µ-algebra, a variation of the sparql Al-
gebra that allows for the optimization of sparql
especially with Property Paths. Similarly to the
sparql Algebra, sparql 1.1 queries can be trans-
lated into our algebra but the obtained µ-algebra
terms can be rewritten into multiple equivalent
terms. Each of these terms is a possible execution
plan of the initial sparql query.

Our µ-algebra algebra

Our proposed algebra is:
•derived from the sparql algebra
• equipped with fixpoints
• equipped with a type analysis
• allowing powerful rewriting rules
• compilable into efficient code
• compilable into distributed code

Algebra

ϕ ::= formula
| ϕ1 ∪ ϕ2 union
| ϕ1\\ϕ2 normal minus
| ϕ1 − ϕ2 set minus
| ϕ1 \ ϕ2 strict minus
| ϕ1 ϕ2 left-join
| ϕ1 ϕ2 join
| ρba (ϕ) exchange column (or rename)
| πa (ϕ) column dropping (projection)
| βba (ϕ) column multiplying
| θ(ϕ, f : C → D) UDF map
| Θ(ϕ, f : C → D) UDF reduce
| σf(ϕ) row filtering
| µ(X = ϕ) fixpoint
| let (X = ϕ) in ψ let-binder
| X variable
| ∅ no mapping
| |c1→ v1, . . . , cn→ vn| constant

Rewritings

Nam quis odio enim, in molestie libero. Vivamus
cursus mi at nulla elementum sollicitudin. Nam quis
odio enim, in molestie libero. Vivamus cursus mi at
nulla elementum sollicitudin. Nam quis odio enim,
in molestie libero. Vivamus cursus mi at nulla ele-
mentum sollicitudin. Nam quis odio enim, in mo-
lestie libero. Vivamus cursus mi at nulla elementum
sollicitudin.

Fixpoints rewritings

We implemented a prototype based on this algebra
equipped

Treatments Response 1 Response 2
Treatment 1 0.0003262 0.562
Treatment 2 0.0015681 0.910
Treatment 3 0.0009271 0.296

Table 1:Table caption

Experiments

Nunc tempus venenatis facilisis. Curabitur suscipit consequat eros non porttitor. Sed a massa dolor, id ornare
enim:

0 0.25 0.75 1
·104

0

1 ·108

n

Ti
m

e(
µ

s)

psql
SQLite

Prototype
Virtuoso
ARQ1
ARQ2
DLV
DLV2

datalog2
datalog 0 0.7 1

·105

0

1 ·108

n
Ti

m
e(
µ

s)
Figure 1:Evaluation time for the query {?x knows ∗ ?y .?x named name_42.} on a graph of size n

Conclusion

Our method generates terms corresponding to ex-
ecution plans that are not considered by existing
methods and we experimentally demonstrate the ad-
vantages of our approach.
Our prototype that translates, optimizes and eval-
uates sparql queries using our algebra shows on
experiments that our method outperforms other ex-
isting methods on recursive queries.

Future work

Our algebra can be seen as a step toward the ambi-
tious goal of unifying various traits of the relational
algebra with traits of NoSQL languages in a com-
mon framework (syntax, semantics, typing, rewrit-
ing schemes). As a perspective for further work,
we plan to investigate how our approach can be im-
proved along several directions: finer-grained car-
dinality estimation, distributed implementations for
evaluating terms of our algebra, and extensions for
the compilation of query languages with other data
models.

Contact Information

•Web: http://tyrex.inria.fr
•Email: research@jachiet.com

References

[1] R. Agrawal.
Alpha: an extension of relational algebra to express a class
of recursive queries.
IEEE Transactions on Software Engineering,
14(7):879–885, July 1988.

[2] Guillaume Bagan, Angela Bonifati, Radu Ciucanu,
George HL Fletcher, Aurélien Lemay, and Nicky
Advokaat.
gmark: schema-driven generation of graphs and queries.
IEEE Transactions on Knowledge and Data
Engineering, 29(4):856–869, 2017.

http://tyrex.inria.fr
mailto:research@jachiet.com

