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Abstract

This paper presents a new strategy for scheduling soft real-time tasks
on multiple identical cores. The proposed approach is based on parti-
tioned CPU reservations and it uses a reclaiming mechanism to reduce
the number of missed deadlines. We introduce the possibility for a task
to temporarily migrate to another, less charged, CPU when it has ex-
hausted the reserved bandwidth on its allocated CPU. In addition, we
propose a simple load balancing method to decrease the number of dead-
lines missed by the tasks. The proposed algorithm has been evaluated
through simulations, showing its effectiveness (compared to other multi-
core reclaiming approaches) and comparing the performance of different
partitioning heuristics (Best Fit, Worst Fit and First Fit).

Keywords: Resource reservations, partitioned scheduling, CPU reclaiming

1 Introduction

Many mobile appliances (smart-phones, tablets, smart-watches, etc.) feature
variable workloads which may contain (soft) real-time tasks (audio, video, real-
time communication, gaming, etc); they have strong requirements in terms of
energy consumption, but also of latency, memory etc. They are equipped with
multicore processors, and run with a general purpose OS (e.g. Android, which
is based on the Linux kernel, or iOS).

These OSs generally provide some kind of real-time support for time sensitive
applications. For example, the Linux kernel provides three real-time scheduling
policies: SCHED FIFO and SCHED RR which are based on fixed priorities and are
standardized by POSIX; and SCHED DEADLINE [1], which provides resource reser-
vation on top of Earliest Deadline First (EDF). Thanks to the temporal isolation
property, the latter is particularly useful when mixing real-time and non real-
time workloads in the same system, as required by the appliances mentioned
above. From our experience, the typical workload executed in these systems
consists of a few hard real-time tasks with relatively small utilizations, and a
certain number of soft real-time tasks with variable execution time.
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These scheduling policies are highly configurable, and can be used to imple-
ment either global scheduling or partitioned scheduling by properly setting the
tasks’ CPU affinities or using the cpuset mechanism1.

From a logical point of view, in global scheduling all tasks are ordered by
priority in a single global queue, and the m highest priority tasks are executed
on the m available processors. Due to the intrinsic nature of the global queue,
tasks may migrate from one processor to another one. Task migration enables
automatic load balancing across CPUs, however it is a possible source of over-
head: in addition to the cost of the context switch, tasks may have to reload the
content of at least the L1 cache; in turns this may cause additional contention
on the shared memory bus, cache evictions for the other tasks, increased execu-
tion times, etc. Moreover, global EDF and global FP algorithms do not always
achieve a high schedulable utilization.

In partitioned scheduling, every task is allocated on a processor and it is not
allowed to migrate. Partitioned scheduling may achieve a higher schedulable
utilization than global EDF and global fixed priorities, and it is simpler to
implement in an OS kernel. However, pure (and static) partitioned scheduling
performs poorly in presence of highly dynamically workloads, where tasks have
variable execution times and can dynamically enter and leave the system. In
some extreme cases, a re-allocation of tasks to processors (load balancing) might
be needed every time the system load changes (a task enters (or leaves) the
system).

Recently, it has been shown that semi-partitioned scheduling can achieve in
practice very high (quasi-optimal) schedulable utilization [3], even in presence
of dynamic workloads [4]. Using semi-partitioned scheduling, tasks are split in
two or more sub-tasks, and every sub-task is statically assigned to a CPU /
core. This solution has been shown to work well in practice; however, to enforce
precedence constraints across sub-tasks of the same task, the task algorithm
assigns short relative deadlines to the sub-tasks and imposes that a sub-task
cannot start executing before the absolute deadline of the preceding one. This
complicates the scheduling algorithm and the schedulability analysis (and hence
admission control of newly incoming tasks).

When considering Open Systems running soft real-time tasks, it may be
more convenient to avoid the complexity of task splitting altogether, and use
other simpler techniques, such as resource reservation and reclaiming. We focus
on this proposal because our goal is to support mixed workloads (composed by
both hard and soft real-time tasks): resource reservation can be used to schedule
both hard and soft real-time tasks [5] and a reclaiming mechanism can improve
the performance of soft real-time tasks.

Resource Reservation and reclaiming Resource reservations are used to
provide temporal isolation and individual real-time guarantees to hard and soft
real-time tasks. In the resource reservation framework [6], every task is assigned

1In theory, CPU affinities can even be used to implement even more complex configurations,
but this setup is harder to analyze [2].
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a reservation period and it is reserved a percentage of the computational band-
width: if its resource requirements never exceed the reserved bandwidth, and by
properly assigning the reservation period, the task is guaranteed to never miss
its deadlines.

On the other hand, we can also reserve bandwidth based on the average
computational requirements of the (soft) real-time tasks. In this case, a task
may occasionally miss its deadline. However, we can further opportunistically
reduce the percentage of deadline misses by reclaiming the unused bandwidth
in the system.

There is a vast literature on reclaiming for resource reservation systems in
single processor systems. The problem has been treated much less extensively
in multiprocessor systems. Currently, Linux supports resource reservations with
the SCHED DEADLINE policy (both global and partitioned) and implements
the sequential M-GRUB reclaiming strategy [7] that, as will be shown in Sec-
tion 7.2, can result in a large number of tasks’ migrations.

Our approach In this paper, we investigate the use of partitioned resource
reservations together with a CPU reclaiming mechanism and a limited (tem-
porary) task migration, plus a simple load balancing algorithm. The simplest
way to combine CPU reclaiming with partitioned resource reservations is to
statically assign tasks/reservations to CPUs, and to perform per-CPU (local)
reclaiming only. This is basically what we get by using the single processor
GRUB algorithm [8]. Such a simple strategy is ineffective when a soft real-time
task needing more than what has been reserved is placed on a CPU where there
is no unused bandwidth, whereas unused bandwidth is available on other CPUs.

On the other end of the spectrum, we can use resource reservations with
global EDF scheduling and an extension of the GRUB algorithm for global
scheduling. This solution has been investigated in [7]: two reclaiming algo-
rithms have been proposed, the sequential reclaiming (where unused bandwidth
is collected on a per-CPU basis) and parallel reclaiming (where unused band-
width is collected at the global level). The latter is very similar to the M-CASH
algorithm proposed by Pellizzoni and Caccamo [9].

The solution investigated in this paper is a trade-off between these two ex-
tremes. We use partitioned reservations (tasks / reservations statically assigned
to CPUs / cores) and global reclaiming (achieved through a temporary migra-
tion mechanism). We complement the temporary migration mechanism with a
load balancing algorithm to better tolerate large variations in the workload.

Organization The paper is structured as follows. In Section 2, we discuss the
state of the art in multiprocessor real-time scheduling. In Section 3 we present
the system model. In Section 4 we recall the Greedy Reclamation of Unused
Bandwidth (GRUB) algorithm. Section 5 presents our proposed framework and
it is the core of our paper: we describe the migration conditions, and we present
the proof that the migration will not affect the correctness of temporal isolation.
Section 6 describes the partitioning and load balancing techniques used when

3



temporary migrations are not sufficient to provide good real-time performance.
Section 7 is reserved to the experimentation and discussions. We conclude in
Section 8.

2 State of the art

Optimality In real-time scheduling theory, all optimal scheduling algorithms
for multiprocessor systems (for example, RUN [10], QPS [11], etc.) belong to the
class of global scheduling algorithms. They are optimal in the sense that, under
certain conditions, they can achieve full utilization of the platform without
any deadline miss. From a practical point of view these algorithms result to
be complex to implement, because they require tight synchronization among
processors. Furthermore, they all produce frequent task migrations which may
increase tasks’ execution times.

Partitioning On the other end of the spectrum we have partitioned schedul-
ing. Partitioned scheduling is simpler to implement as each processor can be
considered as a single independent computing resource. Also, if each task is al-
located on one processor, it cannot migrate, thus reducing the scheduling over-
head. Unfortunately, optimal partitioning is a NP-hard problem (equivalent to
knapsack).

Recently, semi-partitioned scheduling has emerged as an interesting alterna-
tive to global and partitioned scheduling. In semi-partitioned scheduling, most
of the tasks are partitioned among processors, and a few tasks are split in multi-
ple parts (with each part executing on on a different processor). In comparison
with global scheduling, semi-partitioned scheduling permits to reduce and keep
under control the number of migrations; semi-partitioned scheduling also shows
a better utilization factor when compared with pure partitioned scheduling.
Brandenburg and Gl [3] have shown that the use of semi-partitioned scheduling
coupled with a slack reclaiming strategy [12] in practice allows to achieve very
high utilization factors.

Task splitting is usually performed on a static task set before run-time,
thus this technique cannot be easily used on-line on a dynamically varying task
set. Recent work [3, 4] addresses this issues by performing task splitting on
dynamically arriving tasks.

Soft Real-Time scheduling Since respecting all of the tasks’ deadlines on
multi-processor systems is a complex problem, some scheduling algorithms focus
on providing tardiness / lateness guarantees to soft real-time tasks. Many of
these algorithms are based on global scheduling, that has been shown to have
some optimality properties for soft real-time tasks [13, 14].

Scheduling of soft and hard real-time tasks has been mixed by using par-
titioned scheduling for hard tasks and global scheduling for soft tasks (and
scheduling soft tasks in background respect to hard tasks) [15]. In this work,
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a reclaiming mechanism similar to CASH has been used to improve the perfor-
mance of soft real-time tasks.

Finally, it has been noticed that semi-partitioned scheduling is a good choice
for soft real-time tasks too [16].

As explained, in this paper we focus on a different approach, based on par-
titioned scheduling (with some possible load balancing) and CPU reclaiming
associated to temporary migrations to reduce the number of migrations.

Resource reclaiming Many reclaiming algorithms exists for reclaiming un-
used bandwidth on single processors [17, 12, 8]. In particular, we cite here
two reclaiming mechanisms based on EDF. The CASH (Capacity Sharing) [12]
algorithm utilizes a queue of unused capacities, each capacity is a pair of bud-
get and deadline. When a job of a periodic task finishes, the residual budget
together with the task absolute deadline are inserted in the reclaiming queue.
When a task executes, in addition to its own budget, it can use all budgets
in the reclaiming queue with deadline no greater than the task’s deadline. The
algorithm is simple and effective, however it can only reclaim the unused budget
released by periodic tasks.

GRUB (Greedy Reclamation of Unused Bandwidth) [8] uses a different
scheme based on utilization. The algorithm keeps track of the bandwidth of
the active tasks in the system: when a task executes, the budget is decreased by
an amount proportional to the free available bandwidth. GRUB can be effec-
tively used with periodic and sporadic tasks, however it can only treat periodic
reservations with relative deadline equal to period. The techniques based on
this paper are based on GRUB (see Section 4.)

M-CASH is a reclaiming mechanism for multicore systems with global EDF
scheduling [9]. It uses CASH for periodic tasks, and an utilization based al-
gorithm similar to GRUB for sporadic tasks and for reclaiming the extra free
bandwidth in the system.

The authors of [7] propose two different reclaiming mechanism for global
EDF based on GRUB: parallel reclaiming is a global reclamation scheme (similar
to the sporadic mechanism proposed in M-CASH) where all available unused
bandwidth is stored in a single global variable accessible by all cores. Sequential
reclaiming removes this constraint by storing the unused bandwidth on a per-
core basis. Unfortunately, due to the global nature of the scheduler, both M-
CASH, Parallel and Sequential reclaiming schemes suffer from a relatively large
amount of task migrations.

3 System model

A real-time task τi is a (possibly infinite) sequence of jobs Ji,k. Each job Ji,k
arrives at time ai,k and is expected to complete its execution before time ai,k+Di,
where Di is the relative deadline of the task. A job misses its deadline if the
job finishing time fi,k is greater than ai,k + Di. A task is periodic if the arrival
time between two consecutive jobs is fixed to Ti, called period (ai,k = ai,0 +K ·
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Ti). Sporadic tasks relax the last constraint so the arrival time between two
consecutive jobs is equal or greater than the task’s period Ti (ai,k+1−ai,k ≥ Ti).
In this paper we assume that all tasks have deadline equal to their period (or
their minimum inter-arrival time). Let Ci,k denote the execution time of job
Ji,k: its exact value is not know before the execution of the job.

A server is a scheduling abstraction that is used by the scheduler to provide
temporal isolation between different tasks. In the resource reservation frame-
work, each task is assigned a server Si characterized by a budget Qi and a period
Pi. The resource reservation algorithm guarantees that the task can execute for
a minimum amount of time Qi every period Pi. The ratio Qi/Pi is the server
utilization ui: it represents the fraction of CPU time reserved to τi. The total
CPU utilization U of a set of servers is simply the sum of all server utilization’s
U =

∑n
i=1 ui. When using partitioned scheduling, tasks and servers are allo-

cated to CPUs/cores; we denote by Tj the set of tasks allocated on core j, and
Uj the total utilization of Tj .

In this paper we consider an identical multicore platform: all cores have the
same characteristics (architecture, micro-architecture, . . .) and share the same
fixed operating frequency.

4 The GRUB algorithm

In this section, we recall the GRUB (Greedy Reclamation of Unused Bandwidth)
algorithm [8] and its main properties. Therefore, in this section we restrict to
single processor scheduling.

Let τi be a task of T. All jobs of task τi are executed according to their
arriving order: job Ji,k cannot start executing until job Ji,k−1 has finished.
Each task is assigned to a server Si which is characterized by two parameters:
the server bandwidth ui and the server period Pi.

The run-time behavior of each server Si is described by two state variables,
that are computed and updated at run-time: the server deadline di and the
virtual time Vi. The urgency of each job of τi depends on its server’s deadline,
hence jobs of T are scheduled according to their earliest server’s deadline (EDF-
like policy). Please notice that the task’s deadline Di and the server’s deadline
di are two different entities (Di is a relative deadline, while di is an absolute
deadline). Also, please notice that the absolute deadline of job Ji,k is ai,k + Di

and it may or may not coincide with the server’s deadline di. A global variable
Ua stores the current active load on the processor. Ua is initialized to 0.

The GRUB algorithm guarantees that all the servers’ deadlines are respected
(each server Si allows its task τi to execute for Qi time units before di) if
Equation (1) (EDF schedulability) is respected:∑

i

ui ≤ 1. (1)

The dynamic evolution of Si is described by the finite state machine shown
in Figure 1.
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Figure 1: Grub Control automaton

Ready state Server Si is in Ready state when there is at least a pending
job and server’s deadline di is not the earliest.

When the server moves from Inactive to Ready because a new job has
arrived at time t, the server’s virtual time Vi and deadline di are updated as
follows:

Vi ← ai,k (2)

di ← Vi + Pi (3)

Also, its utilization must be added to the utilization of the active tasks:

Ua ← Ua + ui (4)

where Ua is the total utilization of the active servers.
A server Si in Ready state goes into Executing state when its deadline is

the earliest among all ready servers.

Executing state While server Si is in Executing state for ∆t units of time,
its virtual time Vi is updated as follows:

Vi(t+ ∆t)← Vi(t) +
Ua

ui
∆t (5)

If, while in Executing, the server’s deadline becomes equal to its virtual time,
the deadline is postponed to:

di ← Vi(t) + Pi (6)

Notice that deadline postponing can decrease the relative priority of the
server, that can then be preempted by other more urgent servers that are present
in the ready state.
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When a job ends its execution and there are no more pending jobs of the
same task, its server can move out of the Executing state: if its virtual time is
greater than t, it moves to Act-N-Cont state; otherwise, it goes to Inactive.

Act-N-Cont state When the server is in Act-N-Cont state, even if no job
is pending we still consider it as active, because its virtual time is in the future,
which means that it has already consumed all its reserved bandwidth until time
Vit. Hence, its utilization is still accounted for in the active utilization Ua.

In this state, the server does not update its variables: when t reaches Vi, the
server moves to the Inactive state.

If a new job arrives while the server is in Act-N-Cont state, then the server
moves to state Ready without updating its variables.

Inactive state In this state, the server has no pending job to serve. Every
time the server enters this state, the active bandwidth is updated accordingly:

Ua ← Ua − ui (7)

4.1 Properties

In this section we recall some of the properties of the GRUB server that will
be useful later for our proof of correctness. We start by defining the notion of
active server. A server is active if it is in any of the states Ready, Active-
Contending, Active-Non-Contending. Only active servers contribute with
their bandwidth to variable Ua and hence can impact the amount of available
reclaiming. The following property holds.

Lemma 1. Given a single processor system scheduled by the GRUB algorithm,
and let Ua(t) be the sum of the bandwidth of all active servers in the system at
time t.

If ∀t Ua(t) ≤ 1, then no server misses its scheduling deadline, regardless of
the behavior of the served tasks.

Proof. The proof can be found in [18].

Notice that Lemma 1 does not require a static set of servers: a server can
enter the system at any time, and it will not impact the guarantees on the
already existing servers, as long at the total active bandwidth does not exceed
1 at any instant.

A consequence of the previous Lemma is that, to guarantee that no server
ever misses its deadline, we can limit the sum of the bandwidths of all servers
currently in the system, whether active or not.

Corollary 1. If the sum of the utilization of all the servers currently assigned
to the processor does not exceed 1, no server deadline is missed.

Proof. Since ∀t
∑

i Ui ≤ Ua, the corollary simply descends from Lemma 1.
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4.2 Advantages of GRUB

Compared to other reclaiming algorithms (e.g. [12, 17]), GRUB has some ad-
vantages:

• It can be used with periodic, sporadic and aperiodic non-real-time tasks;

• It automatically reclaims the unreserved bandwidth;

• It has the same complexity as the CBS algorithm [5];

• It keeps track of the active bandwidth on the processor; this property will
be used for temporary migration (see Section 5);

• It can be used to lower the processor frequency (DVFS) in order to reduce
energy consumption [19].

The GRUB algorithm has already been extended to multicore systems. In
[9], an algorithm similar to GRUB is used to reclaim global unused bandwidth
in the system; in [7], parallel reclaiming and sequential reclaiming strategies
based on GRUB have been proposed. In both cases, the underlying scheduling
algorithm is global EDF. In this paper, we address partitioned EDF scheduling.

5 GRUB and Migrations

From now on, we assume a platform consisting of m identical CPUs. We propose
to partition a set of GRUB servers into the m available CPUs. Each CPU has
its own ready queue and a single-processor scheduler based on EDF. Servers
are partitioned using one of the classical bin-packing heuristics available in the
literature.

We assume that tasks (and the corresponding servers) may enter and leave
the system at any time. Suppose a new task τi enters the system at time t,
with server parameters Si = (Qi,Pi). Then, the heuristic allocation algorithm
is run to select the CPU on which the server will be allocated. The heuristic
uses an admission control test to find the most suitable core where to allocate
the server. The allocation algorithm will be described in Section 6.1.

After partitioning, tasks are scheduled on each CPU using the GRUB algo-
rithm. Additionally, tasks can temporarily migrate to other CPUs to reclaim
extra bandwidth. For every CPU, the algorithm maintains the following vari-
ables:

• Uj is the total utilization of the servers allocated on core j; this does not
include the tasks that have been temporarily migrated on j.

• Um
j (t) is the total bandwidth at time t of the tasks that have been tem-

porarily migrated on core j.

• Ua
j (t) is the total active utilization of all the active servers on core j at time

t; this may include the bandwidth of the active tasks that have temporarily
been migrated on j.
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Each server is assigned an additional parameter, the migrating utilization
umi . The migrating utilization is used to distribute the unused bandwidth on
the destination core to the (possibly many) incoming servers. As we will see in
the next section, by setting its migrating utilization to 0, temporary migration
is disabled for a given task.

5.1 Temporary Migrations

Suppose that task τi is allocated on core j and it is served by Si. Consider job
Ji,k: it starts executing on core j according to the original GRUB algorithm.
Suppose that at some time t0 the virtual time Vi(t0) of the server becomes
equal to the server’s deadline di: the job has consumed all its budget and can
not reclaim the unused bandwidth of the other tasks allocated to core j.

In the original GRUB algorithm, the server deadline is postponed; in the
partitioned version the job is declared as eligible for migration. This gives
Ji,k a chance to continue its execution with the same server deadline (same
urgency) on a different core j′. In the following discussion, we denote core j′ as
the destination core.

A job is eligible for migration at time t0 when the following two conditions
are verified:

Vi(t0) ≥ di (8)

di > t0 (9)

If (8) is true, task τi cannot continue to execute on its current core without
postponing the current server deadline di, hence we may try to migrate it to a
different core. If Condition (9) is not verified, the current server deadline di has
been reached, so there is no point in migrating the task.

When a job is eligible for migration, the algorithm first selects the destination
core j′ as the one with the smallest active utilization Ua

j′ , because on j′ there is
more chance for the task to reclaim extra bandwidth.

Then we must check that the migrating job fits in the destination core with
its migrating utilization:

umi + Um
j′ (t) + Uj′ ≤ 1 (10)

Recall that bandwidth Uj′ is the total bandwidth of all servers that are allocated
on j′, whereas bandwidth Um

j′ (t) is the total active bandwidth of the jobs that
have temporarily been migrated to j′ at time t. In practice, Equation (10)
guarantees that we are not overloading the destination core with too many
migrating jobs.

If Equation (10) is not respected for the selected core j′, we can still try to
migrate the job by reducing its migrating utilization umi to:

um′i = min{umi , 1− (Uj′ + Um
j′ (t)} (11)

The task is migrated by creating a new server S ′i on the destination core j′

with:
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• the same server period Pi,

• utilization equal to um′i as computed by Equation (11);

• the server state is initialized to Ready;

• its virtual time is initialized to t0 and the server deadline is the same as
di.

Task τi is served by the new temporary server S ′i until the current job Ji,k
completes. This temporary server is managed by the GRUB algorithm like a
regular server.

Once the job completes, the task returns immediately to its original processor
and the temporary migration is concluded: the next jobs of the task will start
executing on the original processor. However, the temporary server S ′i is not
immediately deleted: when the job completes, it follows the rules of the GRUB
algorithm, and if Vi(t) > t, the server first moves to state Act-N-Cont; later,
when Vi(t) = t, it moves to Inactive and it can be deleted from the system.
Notice that a temporary server remains active during its lifespan.

Bandwidth Um
j′ (t) keeps track of the total bandwidth of all tasks that are

temporarily migrated to core j′: it is incremented by um′i when the temporary
server is created, and it is decremented by the same amount when the temporary
server becomes Inactive and it is deleted.

Algorithm 1 modifies the original GRUB algorithm to take into account
job migration. When Vi reaches di (Line 3 of the algorithm, implementing
Condition 8), instead of simply postponing the server deadline as in the original
GRUB, Algorithm 1 tries to migrate the task by first selecting a destination core
(Line 4). The algorithm uses a boolean flag per each task, denoted as migratedi,
initialized to false. If the task has not yet been migrated (condition at Line
5), to ensure that the selected core has enough bandwidth to accommodate for
the incoming task, we update the migrating utilization (Line 7). At Line 8, we
further limit the number of migrations by using an appropriate threshold ε to
guarantee that the task will be able to execute enough time on the target core,
otherwise the overhead of migration can overcome its benefits.

If the current job has already been migrated (migratedi is true) or if it has
not the possibility to execute for enough time on the target core (the test at
Line 8 is false), then the server deadline is postponed (Lines 19 and 22). The
migration flag is set to limit the number of possible migrations of the same job,
and it is reset to false once the job completes.

5.2 Proofs of correctness

In this section we discuss the correctness of our partitioned GRUB algorithm.
In particular, we prove that the temporal isolation property is still valid when
we introduce the temporary migration mechanism.

We start by observing that, on each core, we execute an instance of the
GRUB algorithm independent of the others. Therefore, as long as no migration
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Algorithm 1 Temporary Migration

1: Classic Grub scheduling Code
2: · · ·
3: if (Vi ≥ di) then
4: pm = selectDestinationCore()
5: if (not migratedi) then
6: Uj = Upm +

∑
uma

7: umi = min(umi , 1− Uj)
8: if (umi (di − t)/(umi + Ua

m) > ε) then
9: Create temporary server S ′i = (umi ,Pi)

10: Assign task τi to S ′i
11: migratedi = true
12: d′i = di
13: V′i(t) = t
14: State of S ′i = Ready;
15: DoMigration();
16: else
17: migratedi = false
18: di = Vi(t) + Pi

19: end if
20: else
21: migratedi = false
22: di = Vi(t) + Pi

23: end if
24: end if
25: · · ·
26: Classic Grub scheduling Code

is allowed, we can use Equation (1) as an admission control for every core. Let
us now consider the case of a temporary migration.

Lemma 2. Assume that task τi is migrated from core j to core j′ at time t0.
Then,

∀t > t0, Ua
j (t) ≤ 1 ∧ Ua

j′(t) ≤ 1

Proof. Assume that, before migration, the active bandwidths on core j and j′

are not greater than 1:

∀t < t0, Ua
j (t) ≤ 1 ∧ Ua

j′(t) ≤ 1

This property is clearly true before the first migration: we want to prove that
it remains true after each migration.

The lemma is trivially true on core j: in fact, the original server of the task
is not deleted: it remains initially in Active-Non-Contending and then it
may move to Inactive: in any case, the active bandwidth on core j cannot not
increase due to the migration.
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Regarding core j′, by definition:

∀t < t0, Ua
j′(t) ≤ Uj′ + Um

j′ (t) (12)

i.e. the total active bandwidth does not exceed the sum of the bandwidth of
the tasks allocated on j′ and the bandwidth of the temporary servers on j′.

At time t0, a temporary server is created on core j′ with server utilization
calculated according to Equation (11). Notice that the temporary server is
active for the duration of its lifespan, and hence its utilization is immediately
summed to the active utilization on core j′. Let us denote by t−0 the instant
before the migration takes place:

Ua
j′(t0) = Ua

j′(t
−
0 ) + um′i ≤ Ua

j′(t
−
0 ) + 1− (Uj′ + Um

j′ (t
−
0 )) ≤ 1,

the last inequality is verified by substituting Equation (12).
Furthermore, Um

j′ (t0) = Um
j′ (t
−
0 ) + um′i , and Uj′ + Um

j′ (t0) ≤ 1. By definition
of the GRUB algorithm, Ua

j′(t) ≤ Uj′ + Um
j′ (t), so the active bandwidth cannot

exceed 1 after the migration.
Finally, notice that, once the migrated job has finished, the server is deleted

only when its state becomes Inactive: at that point, its bandwidth is sub-
tracted both from Um

j′ (t) and from Ua
j′(t), so Ua

j′(t) ≤ Uj′+Um
j′ (t) even after the

migration is over.
Hence the lemma is proved.

Theorem 1. Let us assume a multicore platform with m cores, and a set of
servers partitioned on the m cores such that:

∀j = 1, . . . ,m Uj ≤ 1

Then, when scheduled by partitioned GRUB with temporary migration, no server
misses its scheduling deadline.

Proof. It descends from Lemma 2 and from Lemma 1.

5.3 Short server periods

In general, job deadline ai,k + Di can be different than the server deadline di.
In fact, in many cases it is useful to set the server period Pi equal to a divisor
of the task’s period Ti, Ti = kPi. For example, in the adaptive reservation
framework described in [20, 21] the authors suggest to use such technique to
improve the performances of the adaptive control mechanism.

In this case, when the virtual time Vi(t0) reaches the current server deadline
di, the job deadline ai,k + Di can still be far in the future and a migration may
be not strictly needed: the job has still a chances to meet its deadline without
migrating.

For the sake of simplicity in this paper we only describe the case when the
server’s period is equal to the task period. However, it is easy to modify our
algorithm to account for this case by adding an additional server parameter
MinPost that imposes a minimum number of deadline postponing before mak-
ing the task eligible for migration. This will be the subject of a future work.
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6 Permanent Migrations

Temporary migration is useful for reclaiming extra bandwidth. However, it may
happen that a task still suffers too many deadline misses even with temporary
migration enabled. When a task consistently misses too many deadlines, it can
be useful to permanently migrate it to a different core, using some kind of load
balancing mechanism. More specifically, if more than a specified amount of jobs
have missed their deadlines in an interval of time of size wi, it may be necessary
to permanently migrate the task in the hope to improve its quality of service.

In contrast to temporary job migration which happens while the job is run-
ning, the condition for permanent task migration is checked at the end of the
execution of a job. If a task is permanently migrated, all its future jobs will
start executing on the new processor.

First, we select a destination core for the task. We distinguish two cases:

• The task seeks to migrate immediately, thus the migration core must verify
the following condition:

ui ≤ 1− Uj − Um
j

If this is verified, we can immediately migrate the task with its server in
the new core (see below).

• If no processor guarantees the above condition, then we can try to delay
the migration to some time in the next future. In this case, we first look
for a processor in which:

ui ≤ 1− Uj

Then, we disable incoming migrations on the destination core, and we
wait for Um

j ≤ 1 − (ui + Uj). We have to wait at most for the longest
response time of any migrating job: this depends on the job execution
time and cannot be easily bounded a-priori. Therefore, we additionally
start a timer, and if the migration bandwidth has not decreased enough
within the timeout, we abort the load balancing operation.

• If none of the conditions above is verified, permanent task migration is
not possible.

If permanent migration is possible, the task and the corresponding server
are migrated on the destination core j′ with their own variables, and Uj′ is
incremented. We can decrease the Uj on the original core only once the original
server becomes inactive (i.e. the server virtual time Vi = t). This can be easily
achieved by setting an appropriate timer.

If multiple target cores are available as destination for permanent migrations,
some “classical” heuristics such as Best Fit (BF), First Fit (FF) and Worst Fit
(WF) can be used to select the destination core. The same heuristics can be
used for the allocation strategy presented in the next section, and will be used
for the simulations reported in Section 7.

The proof of correctness of this mechanism is similar to the proof of Corollary
1, and it is not reported here because of space constraints.
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6.1 Allocation strategy

When a new task τn enters the system, the allocation strategy used to schedule
it on the most suitable core is similar to the strategy used for load balancing.
We first try to immediately allocate the task on one of the cores were 1− (Uj +
Um
j ) ≥ un. If no core meets the condition, we select one of the cores where

1 − Uj ≥ un, we disable migration onto the selected core and we wait for the
migrating utilization to decrease. If more than one possible target core is found,
we select one according to one of the heuristics mentioned above (BF, FF, or
WF). When a task leaves the system, its servers utilization is subtracted from
the processor utilization only when the server becomes Inactive.

If none of the cores guarantees that 1−Uj ≥ un, or if the maximum timeout
for decreasing the migrating utilization expires, the incoming task is rejected.
In this case, the user may decide to assign the task a smaller un, of course losing
in quality of service, or to kill some other running task to make place for the
new one.

7 Experimental Evaluation

The performance of the proposed solution have been evaluated through an ex-
tensive set of simulations, and the most interesting results are reported in this
section. The simulations have been performed by using a discrete time simu-
lator built in SCALA that adopts a functional programming paradigm. The
simulator supports both partitioned and global scheduling and can simulate
both sporadic and periodic tasks. It implements the GRUB reclaiming algo-
rithm in all its known incarnations: single-core [8], partitioned (as proposed in
this paper, using various heuristics for load balancing and tasks allocation) and
global [7] (either with sequential or parallel reclaiming). Global GRUB with
sequential and parallel reclaiming will be referred as “G-Seq” and “G-Par” in
the following.

Thanks to the usage of the functional programming paradigm and to its
modular design, the simulator code can be easily extended with new reclaiming
policies.

The simulator will be soon available online at https://github.com/zahoussem/
reclaiming_simulator

7.1 Experimental Setup

Each simulation scenario consists of randomly generated task sets. First we fix
the number of tasks to generate to a fixed number n and the number of cores m,
and we set a target total utilization level. Then we generate a set of n servers’
utilization {ui} by using the UUNIFAST-discard algorithm [22].

Then, we generate the execution times of the jobs. Execution times are gen-
erated according to a certain probability distribution between a minimum and
a maximum value. First we randomly select a minimum execution time minexec
and a maximum execution time maxexec for each task as random samples from a
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random variable Unif(5, 200) with uniform distribution. Then a sequence of job
execution time is generated from a random variable between [minexec,maxexec].
In this paper we considered two different distributions: the two-level uniform
distribution and the Weibull distribution.

Two-level uniform distribution takes as an additional parameter a desired
budget B and a probability PM (set to 0.75 in the experiments). Then, the
execution time is chosen with an uniform distribution between [minexec, B] with
probability PM, and with an uniform distribution between [B+1,maxexec] with
probability 1−PM. In this way we can precisely and easily control the number
of jobs with execution time larger than B. However, the two-level uniform
distribution does not represent realistic workloads.

The Weibull distribution is known to be a good model of the execution time
of many real-time workloads [23] because it effectively represents the statis-
tical behavior of typical execution time profiles with long tails. The Weibull
probability density function can be expressed as:

f(x) =
k

λ

(
x− θ
λ

)k−1

e−( x−θλ )
k

where k is the shape parameter, λ is the scale parameter, and θ is the location
(or displacement) parameter.

Once execution times are generated, the budget B for the task is selected so
to ensure that approximately a certain percentage PM of jobs will have execution
time greater than B. In both cases, the task period and the server period are
computed as B/ui. For every server, the migrating utilization has been set to
0.1.

In the simulation experiments that we performed, we did not observe statis-
tically relevant differences between the two-levels uniform distribution and the
Weibull distribution for the migration ratio and the deadline miss rate ratio.
Therefore, in this paper we discuss only the results obtained using the two-level
distribution.

Once the set of server is generated, we test schedulability and allocation. In
particular, we test that the set can be partitioned using FF, BF and WF; and
we test the schedulability of the servers with the schedulability tests for global
EDF described in [7]. If any of the allocation algorithms fails, or any of the
scheduling tests fails, we discard the generated task set.

In the rest of this section, the results of simulations are presented and dis-
cussed. We compare the performances of different partitioning heuristics and
the parallel and sequential reclaiming techniques described in [7] according to
the number of deadlines missed and the number of job and task migrations.

7.2 Impact of Temporary Migrations

To evaluate the effects of job migration, we set the number of cores to m = 4
and the number of tasks to n = 25. The total utilization ranges between [0.5, 3].
In fact, it is very difficult to generate task sets with high total utilization that
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Figure 2: Migrations per job as a function of the system load.

are schedulable by all the scheduling methods considered in this comparison.
For each utilization level, 100 scenarios have been generated. For our parti-
tioned reclaiming scheme, in the figures presented in this section job migration
is enabled and load balancing is disabled.

Figure 2 shows the average number of migrations per job as a function of
total utilization. The figure compares the results of global parallel reclaiming
(G-Par), global sequential reclaiming (G-Seq), and our reclaiming scheme with
Worst-Fit (WF), First-Fit (FF) and Best-Fit (BF). As expected, the number of
migrations in global algorithms G-Par and G-Seq is much larger compared to
partitioned schemes.

Notice that for utilization 0.5, the reclaiming algorithm is able to respect
the tasks constraints without postponing the scheduling deadlines; hence, the
partitioned algorithms do not produce any migration. When the load increases,
BF and FF exhibit a different behavior compared to WF: FF and BF tend to
allocate the maximum number of tasks on the least possible number of cores, so
this may lead to cores that are very packed while other cores are less loaded. In
contrast, WF tends to spread the workload evenly across cores. Thus, in BF and
FF many jobs have less opportunities to reclaim the local unused bandwidth
and are more eligible to migrate compared to WF.

For example, when the utilization is 1.0, FF and BF allocate all the jobs on
the first core, leaving all the other cores completely unloaded. Hence, all the
tasks will migrate to reclaim CPU time from the unloaded cores. This is why for
utilization 1.0 BF and FF show a large increment in the number of migrations
per job. When the load increases, BF and FF start to assign tasks to the second
core (then to the third and to the fourth). Since the number of tasks is fixed,
when increasing the total utilization, the average utilization of every single task
also increases, so BF and FF tend to distribute the load more uniformly. As
a result, the number of migrations per job decreases and for utilization 3.0 the
numbers of migrations for BF, FF and WF are similar.
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Figure 3: Average missed deadlines ratio.

For the same simulation experiment, Figure 3 shows the average ratio be-
tween number of deadline misses and total number of jobs as a function of total
utilization.

At low total utilization, all scheduling techniques allow all tasks to respect
their deadlines. The higher the total bandwidth, the higher is the probability of
missing the deadline. However, partitioned schemes present significantly better
performance. While all of the algorithms show almost zero deadline miss for
utilizations up to 1.0, the partitioned schedulers cause much less migrations (in
particular, WF causes 0 migrations up to utilization 1.0). This shows that with a
proper partitioning the local reclaiming rule of the GRUB algorithm can reclaim
enough bandwidth for all jobs to complete within their deadlines. Moreover,
when the utilization grows above 2.0 the number of deadline misses with the
two global schedulers is much higher than with the partitioned schedulers.

When comparing partitioned scheme against each other, again WF shows a
slightly better behavior, because it can more effectively balance the load across
all processor.

The confidence interval for partitioned techniques is less than ±0.0025 and
less than ±0.0047 for the global techniques. Similar values of the confidence
interval has been noticed for all figures presented in this section.

7.3 Impact of Permanent Migrations

In this section, we evaluate the performances of our heuristics when both job
migration and load balancing are activated. Load balancing is useful only in
partitioned schemes, so in this section we only compare the three partitioning
heuristic against each other and against WF with load balancing disabled. The
total utilization is varied between 0.5 to 3.5 in steps of 0.5.

Figure 4 presents the average deadline miss ratio as a function of total band-
width. The line labeled WF-a presents the results when task migration is dis-
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Figure 4: Average deadline miss ratio when load balancing is active (w = 20
jobs).

abled. In all others, the task migration is activated, monitoring the deadline
miss ratio on time intervals of size equal to 20 jobs. As you can see, load balanc-
ing helps to reduce the number of deadline misses for all partitioning techniques,
and once again WF is the best heuristic. When the load is very high, all cores are
heavily loaded and it is more difficult to apply load balancing, so all heuristics
present the same number of migrations.

Figure 5 shows the average number of migrations per job for the same set
of experiments and it confirms the results of the previous figures. In particular,
FF and BF show a bad behavior even at low workloads, because they tend to
concentrate all load on a few processors, and hence reduce the possibility of
local reclaiming, whereas WF ensures an already good load balancing in the
initial allocation.

The number of migrations is greater when total bandwidth is between 1.5 and
2.5. This is due to the fact that at low utilization, all deadlines are respected. At
high utilizations, all core are highly loaded and task migrations are not possible,
hence all heuristics behave in the same way. At average load, tasks miss their
deadline, and they have the possibility to move from a core to another one,
hence the number of task migrations number is higher.

7.4 Dynamic Workloads

In this subsection we investigate the dynamic behavior of the load balancing
algorithm. The scenario is generated for a platform with 2 cores (marked with
a blue and a pink line, respectively). In the presented scenario, the task set
has a total utilization of 1.2. The initial allocation is done using Worst Fit
heuristics. A new task enters the system at time t = 2000 and leave it at time
t = 6000. The new task has a high processor demands. The server utilization
for the new task is set to 0.3.
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Figure 5: Migrations per job when load balancing is active.
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Figure 6: Active utilization when a new task is inserted at t = 2000, and leaves
at t = 6000.

Figure 6 presents active utilization for every core, with load balancing en-
abled (left) and disabled (right). For clarity of presentation, in the plots we
show the exponential average of the active utilization with ratio 1/200.

In the case the load balancing is activated, at the beginning tasks migrate
between the two cores thanks to load balancing, and the load is evenly dis-
tributed between cores (left plot). This does not happen in the right scenario
where load balancing is disabled, so the pink core remains more loaded than the
blue one. At t = 2000, when the new task enters the system, in the left scenario
the load of the pink core is increased by an amount equal to the utilization of
the new task, and remains high during the interval [2000, 6000]. On the other
hand, when task migration is activated, cores start exchanging tasks in order to
miss less deadlines.

In Figure 7, we present the deadline miss ratio (fraction of jobs missing
their deadline in an interval of time of size w starting at time t) when the load
balancing is enabled (left) and disabled (right) at each instant of time t. Before
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Figure 7: Deadline miss ration on each core for the task inserting scenario

task inserting, both cores have a deadline miss ratio equals to 0. When the task
arrives, the deadline miss ratio increases on both cores. When the task migration
is disabled, the pink core has a higher load and the tasks that are allocated there
miss more deadlines compared to the blue core which has smaller load. On the
other hand, when load balancing is activated, tasks can permanently migrate
from the blue core to the pink one and vice-versa. Again, the load is spread
more evenly, and this explains the fact that we have a smaller deadline miss
ratio compared to the one where the task migration is disabled. This does not
come for free: the tasks on the blue core miss slightly more deadlines compared
to the case of disabled migration (figure on the right). However, as the total
bandwidth is balanced in the activated task migration scenario, the gain on the
blue core is quantitatively higher than the loss on the pink core.

8 Conclusion

We presented a partitioning scheduling algorithms with temporary migration
for soft real-time tasks. When a task exhausts its budget, it first reclaims the
unused bandwidth on the local core, and migrates only if it is necessary to
reclaim extra bandwidth on the other cores. Simulation experiments show that
our technique permits to greatly reduce the number of migrations with respect
to global scheduling without increasing the number of deadline misses. The
Worst-Fit heuristic seems to be the most effective for balancing the load across
cores and to distribute the extra bandwidth.

As a future work, we plan to implement our algorithm on Linux to evaluate
the overhead of the scheduler and the complexity of the temporary migration
mechanism. We also plan to extend our technique to heterogeneous multi-
core processors, such as the ARM big-Little, and complement it with DVFS
and power management schemes, in order to reduce the energy consumption of
modern mobile appliances.
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