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Spectral-Spatial Rotation Forest for Hyperspectral
Image Classification

Junshi Xia, Member, IEEE, Lionel Bombrun, Yannick Berthoumieu, Member, IEEE, Christian Germain, and
Peijun Du, Senior Member, IEEE

Abstract—Rotation Forest (RoF) is a recent powerful de-
cision tree (DT) ensemble classifier of hyperspectral images.
RoF exploits random feature selection and data transformation
techniques to improve both the diversity and accuracy of DT
classifiers. Conventional RoF only considers data transformation
on spectral information. To overcome this limitation, we propose
a spectral and spatial Rotation Forest (SSRoF), to further
improve the performance. In SSRoF, pixels are first smoothed by
the multi-scale (MS) spatial weight mean filtering. Then, spectral-
spatial data transformation,which is based on a joint spectral
and spatial rotation matrix, is introduced into the RoF. Finally,
classification results obtained from each scale are integrated by
a majority voting rule. Experimental results on two datasets
indicate the competitive performance of the proposed method
when compared to other state-of-the-art methods.

Index Terms—Rotation Forest, spectral-spatial transformation,
classification ensemble, hyperspectral images

I. INTRODUCTION

Hyperspectral image (HSI) records the reflectance in the
range of visible, NIR and SWIR to monitor the earth’s surface
to make them widely used in mineral identification and agri-
cultural mapping [1], [2]. Classifying pixels given in the scene
are often included in these applications. However, due to the
high dimensionality [3], the spectral/spatial redundancy [4],
[5], the spectral variability [6] and hyperspectral absorption
band mapping [7], [8] of hyperspectral data, as well as the
limited number of training samples, HSI classification is a
challenging task.

In recent years, many kinds of research were devoted to
design pixel-wise classifiers, which only processes each pixel
independently and adopt its spectral information as the input
to the classifier. Kernel methods, such as the support vector
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machines (SVMs), have proven to be a robust classifier of
hyperspectral data, due to their ability in addressing both
the small-size-sample problems and the curse of dimensional-
ity [9], [10].

Multiple classifier systems (MCSs) or classifier ensemble,
which produce the final output based on the decisions made by
a set of individual classifiers according to certain rules, have
been a hot topic in the hyperspectral remote sensing commu-
nity [5], [11]. MCSs is very effective due to complementary
and diverse information provided by the member classifiers,
thus enhancing the classification performance [12]. Random
Forest (RF) [13] is the most popular ensemble classifier in the
hyperspectral remote sensing community. In RF, each decision
tree is trained on a bootstrapped training set, and the randomly
selected features are used to split a node in a decision tree.
Rotation forest (RoF) is one of the current state-of-the-art deci-
sion tree ensemble classifier [14]. In contrast to RF, RoF splits
the features into several disjoint subsets and uses the bootstrap
aggregation (Bagging) technique on each subgroup to select
the bootstrapped training set for applying data transformation.
Then, a new training set for the decision tree (DT) is formed
by concatenating the linear extracted features contained in
each subset. Thus, RoF enhances both accuracy and diversity
within the ensemble and achieves better performance than
Bagging, Boosting, and RF [14]. Our previous studies [15],
[16] supported the superiority of RoF. RoF is competitive with
the SVMs, and needs shorter computational time and fewer
parameters to tune. Studies on the use of RoF and its variants
dealing with hyperspectral classification problems have been
recently published [15]–[19]. Furthermore, RoF has proven to
be effective not only for hyperspectral data analysis but also
for very high spatial resolution optical and SAR images [20],
[21]. Although RoF obtains remarkable performance, data
transformation in RoF is performed only by measuring the
similarity between the samples using spectral information (i.e.,
Euclidean distance) [22]. However, this is insufficient to reveal
the intrinsic relationship between different samples [23]. To
improve the performance, we introduce the spatial information
to compute the sample similarity [23].

Pixel-wise classifiers do not exploit the relationship among
the neighboring pixels [6], [24]. However, these adjacent pixels
sometimes show similar spectral characteristics. It is necessary
to develop a spectral-spatial classifier which takes into account
both the spectral and spatial information. For instance, Chen et
al. developed a spectral-spatial classifier based on kernel
extreme learning machine [25]. Chen et al. extended deep
belief network into the spectral-spatial framework [26]. Due
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to the excellent performance of RoF, a new spectral-spatial
approach was developed in [16] integrating RoF with local
feature extraction. The spatial information was represented by
Markov random fields (MRF)-based multilevel logistic (MLL)
prior. We refer this method to RoF-MRF. Another popular
strategy to exploit the spatial information is the filtered-
based approaches [27]–[30]. The motivation is due to the
fact that the filtering methods are effective at removing noise
in the regions, but adversely affect edges. In this case, the
performance is significantly improved. Kang et al. [28], [29]
combined a probabilistic SVM with an edge-preserving filter
(EPF) and proposed a spatial feature extraction method with
image fusion and recursive filtering techniques (IFRF). The
main challenge of the above filtering method is to focus on
one scale, which may not work well for a more complex area
because landscapes typically consist of different types of land
covers that vary in size (e.g., trees and buildings). To mitigate
this problem, we adopt the multi-scale filtering methods.

In this paper, we incorporate the spatial information into the
process of RoF, and thus, propose a spectral and spatial RoF
(SSRoF) method. In SSRoF, we exploited the information into
two different ways: spatial filtering and spectral-spatial data
transformation into the RoF. More specifically, a multi-scale
weighted mean filtering (WMF) is used to preprocess the HSI
because the WMF is both efficient and fast. Then, we introduce
the spectral-spatial data transformation that combines local
Fisher discriminant analysis (LFDA) [22] and spatial-domain
data transformation [23], into RoF. Finally, we use a majority
vote rule to combine the results generated by each scale.

The proposed SSRoF extends the traditional RoF by using
both spectral and spatial information with the following char-
acteristics:

• The spatial filtering increases the adjacent pixel con-
sistency. The WMF method brings some dependency
between neighboring pixels and removes the noise and
preserves the primary information of the images in an
efficient way.

• By introducing spectral and spatial data transformation
into RoF, we can increase the accuracy of member DT
classifiers and diversity within the ensemble, to further
improve the performance of RoF.

• The multi-scale method can describe different spatial
structures of HSIs. The rich complementary information
in the multi-scale filtered datasets thus helps to improve
the performance of the subsequent classification results.

The remainder of this paper is organized as follows. Sec-
tion II presents the proposed method. Section III presents the
experimental results and analysis. Conclusions and perspec-
tives are provided in Section IV.

II. PROPOSED METHOD

The flowchart of the proposed method is depicted in Fig. 1.
It consists of the following steps:

• Spatial WMF with N scales are used to preprocess the
HSI pixels.

• SSRoF is used to classify the multi-scale filtered HSIs.

• The final result is generated by combining the classifica-
tion maps of each scale by a majority vote rule.

We detail in the next subsection each of these steps.

A. Spatial WMF

A spatial WMF [31] is used to preprocess the HSI pixels
with the aim of reducing the noise and smoothing the homo-
geneous regions.

Let us denote the coordinates of sample xi as (αi, βi), the
local pixel neighborhood with the center pixel xi is defined
as:

N = {x = (α, β) |α ∈ [αi − a, αi + a] , β ∈ [βi − a, βi + a]}
(1)

where ω = 2a+1 is the scale that represents the width of the
neighborhood window.

The spatial WMF of xi is calculated by

x̃ =

∑
xj∈N (xi) µjxj∑

xj∈N (xi) µj
=

xi +
∑ω2−1

k=1 µkxik

1 +
∑ω2−1

k=1 µk

(2)

where, xi, xi1, ..., xis are the pixels in the neighborhood
of xi. s = ω2 − 1 is the number of neighbors. µk =

exp
{
−τ ‖xi − xik‖2

}
is the weight to measure spectral dis-

tances of the neighboring pixels to xi. τ is the filtering
degree that is empirically set to be 0.3. Furthermore, we
adapt a multi-scale approach in order to capture both small
and large structures in HSI. In this case, we can improve the
performance of the subsequent SSRoF classifier by integrating
the rich complementary information in the multi-scale filter
datasets.

B. Spectral-spatial Rotation Forest (SSRoF)

In this part, we first introduce the spectral-spatial data
transformation and then the main steps of spectral-spatial
rotation forest.

Let us denote {X,Y} = {(x1, y1) , ..., (xn, yn)} as the
training samples, where xi ∈ RD is a pixel and yi is a scalar
with classes of interest C = {1, ..., C}, where C is the total
number of classes.

For data transformation, we often assume that there exists a
mapping function f : RD → Rd, d ≤ D, which can transform
each data point xi to zi = f(xi). This mapping is represented
by a D × d matrix V:

zi = f(xi) = V>xi (3)

The projection matrix V = (v1, v2, ...vd) is obtained as
the d eigenvectors corresponding to the d largest eigenvalues
{λ1, λ2, ..., λd}, by solving the following generalized eigen-
value decomposition equation:

S1v = λS2v (4)

where, S1 and S2 are matrices which depend on the considered
data transformation approach.
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Fig. 1. Flowchart of the proposed method.

1) Spectral-domain data transformation: LFDA is used
as the spectral-domain data transformation. LFDA effectively
combines the ideas of Fisher discriminant analysis (FDA) and
locality-preserving projection (LPP). Hence, LFDA maximizes
the between-class separability and preserves the within-class
local structure [22]. Practically, LFDA is obtained by solving
the following eigenvalue decomposition equation:

Slbv = λSlwv (5)

where, Slb and Slw denote respectively the local between-class
and the within-class scatter matrix, which is given by

Slb =
1

2

n∑
i,j=1

ωlb
i,j(xi − xj)(xi − xj)> (6)

Slw =
1

2

n∑
i,j=1

ωlw
i,j(xi − xj)(xi − xj)> (7)

where ωlb and ωlw are n× n matrices defined as

ωlb
i,j =

{
Ai,j(

1
n −

1
nyi

) if yi = yj
1
n otherwise

(8)

ωlw
i,j =

{
Ai,j

nyi
if yi = yj

1
n otherwise

(9)

where nyi is the number of labeled samples in class yi ∈ C
and Ai,j is defined as the affinity between xi and xj given by

Ai,j = exp

(
−‖xi − xj‖

σiσj

)
(10)

where, σi =
∥∥xi − xki

∥∥ denotes the local scaling of xi and xki
is the k-th nearest neighbor of xi in the spectral domain of
training set (k is set to 3).

2) Spatial-domain data transformation: In a spatial local
homogeneous region, neighboring pixels belongs to the same
materials and are within the same class [23]. Under this
situation, the spatial-domain data transformation proposed
in [23] are adopted. Compared to the spectral-domain data
transformation, it uses spatial information to learn the projec-
tions. More specifically, spatial-domain data transformation is
obtained by solving the following eigenvalue decomposition

equation:
Sv = λHv (11)

where H and S are defined as the local pixel neighborhood
preserving matrix and the total scatter matrix, respectively.

H is defined as

H =

n∑
i=1

s∑
k=1

µk∑s
j=1 µj

(xi − xik) (xi − xik)
> (12)

where xik is the k-th neighbor of xi in its spatial neighbors
in N (xi). s is the number of spatial neighbors.

S is given by:

S =

n∑
i=1

(xi −M) (xi −M)
> (13)

where M is the mean of training samples X.
3) Spectral-spatial data transformation: In order to tackle

the spectral and spatial information into data transforma-
tion process, we combine LFDA and spatial-domain data
transformation to obtain a spectral-spatial data transformation
that preserves not only the spectral-domain local Euclidean
neighborhood class information but also the spatial-domain
local pixel neighborhood structures [23].

Thus, the spectral-spatial local neighborhood preserving
scatter matrix and a modified total scatter matrix are defined
as φSlw + (1− φ)H and φSlb + (1− φ)S, respectively [23].

The projection in spectral-spatial data transformation
is achieved by making the trade-off between the eigen-
decomposition in spectral (Eq. (5)) and spatial (Eq. (11)) data
transformation [23]:(

φSlb + (1− φ)S
)

v = λ
(
φSlw + (1− φ)H

)
v (14)

where φ is the control parameter of spectral and spatial
information. When φ = 1 (resp. φ = 0), the spectral-spatial
data transformation is reduced to spectral case. When φ = 0,
spectral-spatial data transformation is reduced to the spectral
(resp. spatial) one.

4) Main steps of SSRoF: Spectral-spatial Rotation Forest
(SSRoF) is a variant of RoF, which uses spectral-spatial data
transformation. The main training and prediction steps are
presented in Algorithm 1.
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Algorithm 1 SSRoF
Training phase
Input: {X,Y} = {xi, yi}ni=1: training samples, T : number of

classifiers, K: number of subsets (M : number of features in
each subset), L: base classifier. The ensemble L = ∅. F ∈ RD:
Feature set

Output: The ensemble L
1: for i = 1 : T do
2: Randomly split the features F into K subsets Fi

j

3: for j = 1 : K do
4: Extract from X the new training set Xi,j with the corre-

sponding features Fi
j

5: Transform Xi,j by (14) to get the coefficients
v
(1)
i,j , ..., v

(Mk)
i,j

6: end for
7: Sparse rotation matrix Ri is composed of the above coeffi-

cients

Ri =


v
(1)
i,1 , ..., v

(M1)
i,1 0 · · · 0

0 v
(1)
i,2 , ..., v

(M2)
i,2 · · · 0

...
...

. . .
...

0 0 · · · v
(1)
i,j , ..., v

(MK)
i,j


8: Rearrange Ri to Ra

i with respect to the original feature set,
9: Obtain the new training samples

{
X>Ra

i ,Y
}

10: Build the DT classifier Li using
{

X>Ra
i ,Y

}
11: Add the classifier to the current ensemble, L = L ∪ Li.
12: end for

Prediction phase
Input: The ensemble L = {Li}Ti . A new sample x∗. Rotation

matrix: Ra
i .

Output: class label y∗
1: get the output ensemble with x>∗ Ra

i .
2: the label is assigned to the class having the maximum number

of votes. y∗ = argmax
i∈{1,2,...,C}

T∑
j:Lj(x>∗ Ra

i )=i

1

In the training phase, the ensemble is learned as follows:
• the first step consisting in splitting the feature space of

training set F into K disjoint subsets, and each contains
M features.

• spectral-spatial data transformation is performed on each
subset to obtain the projection matrix. It should be noted
that the numbers of input and output features are both set
to be M .

• a sparse rotation matrix Ri is generated by the projection
matrix in each subset.

• a rotated training set is generated by rotating the original
training set with a rearranged sparse matrix Ra

i .
• an individual DT classifier is trained on this rotated

training set.
• the ensemble is composed of several DT classifiers by

repeating the above steps T times.
In the prediction phase, a new sample x∗ is rotated by

Ra
i . Then, the transformed set, i.e., x>∗ Ra

i , is classified by
the ensemble of several decision trees and the class with the
maximum number of votes is chosen as the final class.

As explained before, SSRoF extends both SpeRoF and
SpaRoF. These latter are respectively obtained by setting
φ = 1 and φ = 0 in (14).

III. EXPERIMENTS AND ANALYSIS

In this section, the proposed method is investigated on the
two benchmark hyperspectral datasets.

A. Hyperspectral datasets

1) Indian Pines: This image was obtained by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
the Indian Pines in Northwestern Indiana, USA. It contains
220 spectral bands in the wavelength range from 0.4 to 2.5
µm (spectral resolution:10 nm) and is composed of 145 × 145
pixels (ground sampling distance (GSD): 20 m). The reference
data with 16 classes of interest consist of 10336 pixels. Three-
band color composite image and the ground truth of AVIRIS
hyperspectral data are shown in Fig. 2.

2) University of Pavia: This image is of an urban area op-
erated by a Reflective Optics Spectrographic Imaging System
(ROSIS)-03 optical airborne sensor. It consists of 610 × 340
pixels with a GSD of 1.3 m. The 12 noisy bands have been
removed, and the remaining 103 bands have been used in the
classification. The reference data with nine classes of interest
is composed of 42776 pixels. Three-band color composite
image and the ground truth are presented in Fig. 3.

Fig. 2. (a) Three-band color composite of AVIRIS image. (b) Ground truth.

Fig. 3. (a) Three-band color composite of ROSIS image. (b) Ground truth.

B. Compared methods

The following methods are used for comparisons:
• MLRsubMLL [32], a Bayesian approach that contains

two components: 1) the posterior probability is achieved
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TABLE I
OVERALL CLASSIFICATION RESULTS (%) OBTAINED FOR THE INDIAN PINES AVIRIS IMAGE USING DIFFERENT NUMBERS OF TRAINING SAMPLES PER

CLASS.

Number of training samples per class 10 15 20 25 30 35 40 45 50
MLRsubMLL 61.75 63.89 66.75 67.21 68.37 71.02 74.86 76.17 79.34

RoF-MRF 73.43 77.86 81.74 83.28 85.72 86.37 87.68 88.67 91.03
RS-EMAPs 82.14 85.21 87.64 88.62 90.86 92.16 92.45 93.64 93.75
SVM-CK 80.74 82.68 84.94 86.21 87.52 89.16 90.15 91.25 91.98

EPF 61.01 65.89 72.34 76.45 79.87 81.42 83.14 85.01 86.21
IFRF 78.21 83.45 87.24 88.64 90.42 90.86 91.69 92.97 93.48
RF 46.49 54.47 57.03 60.19 60.67 61.89 63.38 64.62 65.19

SpeRoF 57.73 65.33 66.74 72.00 73.17 73.57 75.87 76.29 77.74
SpaRoF 58.98 66.21 68.20 72.48 73.65 73.99 76.71 77.01 77.57
SSRoF 60.05 66.97 68.53 72.69 74.48 74.58 76.91 77.31 78.12

SpeRoFopt 78.51 80.75 84.38 86.86 88.45 90.23 91.98 92.50 92.97
SpaRoFopt 78.52 81.17 85.05 87.02 88.55 90.36 92.06 92.24 92.53
SSRoFopt 79.67 82.69 85.32 87.56 88.98 91.58 92.12 93.02 93.14

SpeRoFMS 80.71 84.04 85.91 87.84 89.32 91.89 92.99 93.98 94.07
SpaRoFMS 81.27 84.32 86.36 88.35 89.45 92.04 93.30 94.36 94.93
SSRoFMS 82.55 85.24 87.45 88.67 90.21 92.53 94.40 94.39 95.12

TABLE II
OVERALL CLASSIFICATION RESULTS (%) OBTAINED FOR THE UNIVERSITY OF PAVIA ROSIS IMAGE USING DIFFERENT NUMBERS OF TRAINING

SAMPLES PER CLASS.

Number of training samples per class 10 15 20 25 30 35 40 45 50
MLRsubMLL 75.24 78.01 81.87 83.75 86.42 86.92 87.01 87.34 88.13

RoF-MRF 78.21 82.15 85.78 86.21 88.70 88.64 91.52 91.99 92.95
RS-EMAPs 85.24 87.64 89.75 90.75 92.75 93.04 93.45 94.02 94.56
SVM-CK 82.74 85.05 87.24 88.55 90.18 91.61 91.73 92.82 93.02

EPF 75.58 79.05 85.24 86.34 88.52 89.64 91.54 92.07 92.86
IFRF 74.84 82.21 85.96 87.67 88.24 89.56 91.78 92.86 92.86
RF 59.27 59.89 66.41 67.94 68.90 69.15 72.73 73.37 73.95

SpeRoF 69.73 72.71 77.05 78.33 82.36 82.12 82.15 83.15 85.42
SpaRoF 70.30 73.87 77.78 80.12 82.58 82.33 82.96 83.51 85.38
SSRoF 72.05 74.53 78.66 80.53 82.73 83.34 83.68 84.03 86.04

SpeRoFopt 81.18 83.87 86.36 89.39 91.18 91.70 92.66 93.47 94.08
SpaRoFopt 80.42 83.95 87.76 90.87 91.40 92.44 92.97 93.82 94.19
SSRoFopt 82.51 84.04 88.22 90.76 92.02 92.69 93.07 94.90 95.08

SpeRoFMS 82.96 86.78 88.14 91.01 93.29 94.12 94.44 96.21 97.05
SpaRoFMS 82.73 87.62 89.86 91.24 93.78 94.45 95.66 97.08 97.10
SSRoFMS 86.80 88.37 90.33 91.53 93.93 94.68 95.98 97.21 97.79
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Fig. 4. Influence of the neighborhood scale on the proposed method (10
samples per class). (a) Indina Pines AVIRIS. (b) University of Pavia ROSIS.

by a subspace multinomial logistic regression (MLRsub)
classifier and 2) segmentation, which refers to an image

of class labels from a posterior distribution built on the
aforementioned classifier and on an MLL prior.

• RoF-MRF [16], integration of RoF with local feature
extraction and spatial information is represented by MRF-
MLL prior.

• RS-EMAPs [19], random subspace (RS) ensemble clas-
sifier with extended morphological attribute profiles
(EMAPs).

• SVM-CK [33], composite kernels of SVMs for inte-
grating spectral information and extended morphological
attribute profiles (EMAPs).

• EPF [28]: a spatial regularization method for a proba-
bilistic SVM by using an EPF.

• IFRF [29]: the extraction of spatial features with image
fusion and recursive filtering (IFRF).

The parameter settings of the compared algorithms follow
these of the original papers [16], [28], [29], [32]. For the
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TABLE III
INDIAN PINES AVIRIS: Z VALUES OF MCNEMAR’S TEST TO VALIDATE WHETHER THE DIFFERENCE BETWEEN CLASSIFICATION ACCRUES OF THE

PROPOSED METHODS IS SIGNIFICANTLY DIFFERENT FROM OTHER METHODS.

Samples per class 10 15 20 25 30 35 40 45 50
SSRoFMS vs. SSRoFopt 7.62 6.92 6.71 2.01 4.75 2.15 6.18 2.74 7.15

SSRoFMS vs. SSRoF 29.56 28.13 27.37 26.11 26.82 25.18 27.03 26.78 26.31
SSRoFMS vs. MLRsubMLL 27.81 30.45 29.88 32.13 33.42 28.28 29.32 27.91 23.14

SSRoFMS vs. RoF-MRF 19.81 15.62 12.46 11.74 10.43 10.39 10.67 11.42 12.75
SSRoFMS vs. RS-EMAPs 1.14 0.72 -0.58 0.94 -0.48 0.78 3.14 2.06 3.78
SSRoFMS vs. SVM-CK 7.81 6.94 6.47 6.82 6.12 7.01 7.23 7.84 8.45

SSRoFMS vs. EPF 28.15 28.62 20.13 21.63 18.82 17.48 15.47 17.18 18.41
SSRoFMS vs. IFRF 13.25 5.92 1.99 1.97 -0.45 3.78 5.26 4.26 4.01

TABLE IV
UNIVERSITY OF PAVIA ROSIS: Z VALUES OF MCNEMAR’S TEST TO VALIDATE WHETHER THE DIFFERENCE BETWEEN CLASSIFICATION ACCRUES OF THE

PROPOSED METHODS IS SIGNIFICANTLY DIFFERENT FROM OTHER METHODS.

Samples per class 10 15 20 25 30 35 40 45 50
SSRoFMS vs. SSRoFopt 25.34 26.78 21.46 15.48 11.42 14.67 16.42 15.38 18.03

SSRoFMS vs. SSRoF 50.28 49.26 49.13 48.72 47.24 45.44 46.82 44.80 46.21
SSRoFMS vs. MLRsubMLL 33.81 32.24 31.62 32.74 31.60 30.48 29.53 28.14 30.14

SSRoFMS vs. RoF-MRF 25.47 26.98 24.51 24.80 27.17 27.63 28.92 24.45 20.34
SSRoFMS vs. RS-EMAPs 3.19 2.63 2.08 2.76 3.20 3.46 3.98 4/64 5.96
SSRoFMS vs. SVM-CK 25.94 21.62 20.74 20.15 19.63 19.74 18.47 18.10 18.63

SSRoFMS vs. EPF 33.29 31.28 28.46 27.16 20.12 18.64 17.43 16.81 13.52
SSRoFMS vs. IFRF 34.58 30.01 28.64 27.52 24.63 20.06 18.04 16.74 12.17

(a) (b) (c) (d) (e)

Fig. 5. Classification maps of Indina Pines AVIRIS image (20 samples per class). (a) SpeRoF, OA = 70.11%. (b) SSRoF, OA = 72.01%. (c) SSRoFopt, OA
= 85.92%. (d) SSRoFMS , OA = 88.75%. (e) RS-EMAPs, OA = 87.35%.

TABLE V
COMPARISON BETWEEN SSROF AND SPEROF (SPAROF). FOR EACH

METHOD, ”OA (%)”, ”AOA (%)”, AND DIVERSITIES ARE REPORTED. 10
SAMPLES PER CLASS ARE USED AS THE TRAINING SET.

Indian Pines University of Pavia

SpeRoF SpaRoF SSRoF SpeRoF SpaRoF SSRoF

OA (%) 57.73 58.98 60.05 69.73 70.30 72.05
AOA (%) 44.68 44.79 45.87 57.41 57.62 58.34

CFD 46.89 47.32 47.87 55.87 56.82 59.02

SVMs in SVM-CK, EPF, and IFRF, they are selected by a
five-fold cross-validation procedure.

In addition to the aforementioned five algorithms, the
methods only considering the spectral information or spatial
information in single scale are added to compare to the
proposed method: SSRoFMS .
• RF: RF with spectral information.
• SpeRoF: RoF only considering the spectral-based data

transformation (LFDA).
• SpaRoF: RoF only considering the spatial-based data

transformation.

• SSRoF: RoF considering the spectral-spatial data trans-
formation.

• SpeRoFopt or SpaRoFopt or SSRoFopt: SpeRoF or
SpaRoF or SSRoF with the single optimized scale, which
obtains the highest accuracy.

• SpeRoFMS or SpaRoFMS : SpeRoF or SpaRoF with the
multi-scale features obtained after the WMF filter.

C. Results

In the first experiment, we present the overall accuracies
(OAs) of different methods with the various numbers of
training samples on Indian Pines AVIRIS and University of
Pavia ROSIS image in Tables I and II, respectively. The
Number of classifiers (T ) and the control parameter φ are
set to be 20 and 0.5, respectively. Number of features in a
subset (M ) are respectively set to 110 and 10 on AVIRIS and
ROSIS image. Six different scales, i.e., 5×5,..., 15×15 are
considered. It can be seen that SSRoF outperforms SpeRoF
and SpaRoF because we introduce both spectral and spatial
information into the data transformation techniques. When
the WMF filters are incorporated into the Rotation Forest,
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(a) (b) (c) (d) (e)

Fig. 6. Classification maps of University of Pavia ROSIS image (20 samples per class). (a) SpeRoF, OA = 77.37%. (b) SSRoF, OA = 80.14%. (c) SSRoFopt,
OA = 88.55%. (d) SSRoFMS , OA = 92.14%. (e) RS-EMAPs, OA = 90.33%.

TABLE VI
INDIAN PINES AVIRIS (10 SAMPLES PER CLASS): SENSITIVITY TO THE

CHANGE OF M .

M 10 25 55 110
SSRoF 54.64 56.86 58.82 60.05

SSRoFopt 79.11 79.21 79.65 79.67
SSRoFMS 81.69 81.97 81.29 82.55

the classification performances of SSRoFopt are significantly
improved when compared to SSRoF. The OAs of SSRoF
with different scales are shown in Fig. 4. Different scales
achieve various performances for two hyperspectral images.
For instance, SSRoF with a neighborhood size of 11×11
delivers the best performance for Indian Pines AVIRIS image,
whereas SSRoF with a neighborhood size of 15×15 gets
the highest OA for University of Pavia Image. To take all
the advantages of different scales, we proposed to combine
their classification results using a majority vote rule. As we
expected, SSRoFMS performs the best performance. Further-
more, according to the Mcneamar statistic test 1 presented in
Tables III and IV, our proposed SSRoFMS is superior and
comparable to the spectral-spatial classifiers. For Indian Pines
AVIRIS image, when the small sizes of training set (e.g., 10,
15,..,30 samples per class) is adopted, there is no difference
between our proposed method and RS-EMAPs classifier. In
other cases, our proposed method is significantly better than
other classifiers. Figs. 5 and 6 shows the obtained classification
maps provided by different classification methods for the two
images. As shown in Figs. 5 and 6, the classification map
produced by SSRoFMS is more accurate than those generated
by other algorithms.

In the second experiment, besides OA, the percentage aver-
age overall accuracies of the individual DT classifier, ”AOA
(%),” and the coincident failure diversity (CFD) [34] are added

1McNemar’s test is computed by Z = f12−f21√
f12+f21

. f12 represents the
number of samples classified correctly by classifier 1 and incorrectly by
classifier 2. The difference between classifiers 1 and 2 is to be statistically
significant if |Z| > 1.96 with α = 0.05 using two-tail test. Z > 0 indicates
that classifier 1 is more accurate than classifier 2.

TABLE VII
UNIVERSITY OF PAVIA ROSIS (10 SAMPLES PER CLASS): SENSITIVITY TO

THE CHANGE OF M .

M 10 25 50
SSRoF 73.05 68.81 65.77

SSRoFopt 82.51 82.56 81.49
SSRoFMS 86.80 86.46 84.21

TABLE VIII
INDIAN PINES AVIRIS (10 SAMPLES PER CLASS): SENSITIVITY TO THE

CHANGE OF φ.

φ 0.1 0.3 0.5 0.7 0.9
SSRoF 59.64 59.81 60.05 60.04 60.17

SSRoFopt 78.99 79.65 79.67 79.14 79.54
SSRoFMS 81.99 82.65 82.55 82.14 82.38

TABLE IX
UNIVERSITY OF PAVIA ROSIS (10 SAMPLES PER CLASS): SENSITIVITY TO

THE CHANGE OF φ.

φ 0.1 0.3 0.5 0.7 0.9
SSRoF 72.07 72.46 73.05 72.49 73.45

SSRoFopt 81.96 81.78 82.51 82.54 82.64
SSRoFMS 86.41 86.52 86.80 86.74 86.81

to analyze SpeRoF, SpaRoF, and SSRoF. A stronger diversity
is represented by a higher value of CFD. As shown in Table V,
higher values of AOAs and diversities achieved by SSRoF are
greater than those obtained from SpeRoF and SpaRoF, leading
to better classification performance.

In the third experiment, we focus on the analysis of the
sensitivity of two parameters, M , which represents the num-
ber of features in a subset, and φ, which is the control
parameter between spectral and spatial information for the
construction of SSRoF. The results of such analysis are shown
in Tables. VI, VII, VIII, and IX. From Table. VI, as M
increase, SSRoF tends to have better performance for the
AVIRIS image. However, the situation in ROSIS image is
exactly reversed (Table. VII). The results are consistent with
our previous studies [16].
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In conclusion, M has a significant influence on the clas-
sification result. This parameter is application dependent.
However, when the WMF is introduced into SSRoF, the clas-
sification performances of SSRoFopt and SSRoFMS become
very stable. Moreover, from Tables. VIII and IX, larger values
of φ could yield the better classification results. However, the
difference is quite small (less than 0.7 percentage points) and
not significant according to the McNemar’s test. Therefore, we
can conclude that the proposed method is not sensitive to φ.

In our previous studies, we have developed rotation random
forest (RoRF) via kernel PCA (KPCA) [35], and the com-
bination of rotation forest and multi-scale segmentation [36]
for the classification of hyperspectral images. The former
method used KPCA instead of PCA in the construction
of RoRF. Although it can achieve better performance than
RoF and RoRF with spectral information, the computational
time is much longer than the ones of RoF and RoRF. The
latter method applied RoF to classify the objects extracted
from the multi-scale segmentation techniques (i.e., eCognition
software) and then combined the results to generate the final
result. In the eCognition, we should carefully configure the
settings of segmentations, such as the scales, spectral and
shape heterogeneity. Compared to the two mentioned methods,
our proposed method is simple but effective. The computa-
tional time is short than RoRF via KPCA. For the parameter
selection, we only consider the scales.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, a spectral and spatial Rotation Forest (SSRoF)
is proposed for hyperspectral image classification. We aim at
improving RoF in two aspects: 1) using multi-scale WMF and
2) introducing spectral-spatial data transformation into RoF.
The main conclusion can be drawn as follows:
• By introducing spectral-spatial data transformation, SS-

RoF is superior to SpeRoF and SpaRoF.
• With the help of multi-scale WMF, the proposed

SSRoFMS gains the highest classification results.
• The proposed algorithm is very competitive with other

state-of-the-art spectral-spatial classifiers.
The future studies will include, but will not be limited to, the
following topics.
• We will include more base classifiers into our SSRoF

framework.
• We will adopt our proposed method into other datasets,

such as LiDAR, or other applications, such as change
detection.
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