
VICKEY: Mining Conditional Keys
on Knowledge Bases

Danai Symeonidou1, Luis Galárraga2, Nathalie Pernelle3,
Fatiha Säıs3, Fabian Suchanek4

1INRA, France 2Aalborg University, Denmark
3LRI, France 4Télécom ParisTech, France

Abstract. A conditional key is a key constraint that is valid in only a
part of the data. In this paper, we show how such keys can be mined
automatically on large knowledge bases (KBs). For this, we combine
techniques from key mining with techniques from rule mining. We show
that our method can scale to KBs of millions of facts. We also show that
the conditional keys we mine can improve the quality of entity linking
by up to 47 percentage points.

1 Introduction
Recent years have seen the rise of large knowledge bases (KBs), such as
YAGO [26], Wikidata [29], and DBpedia [18] on the academic side, and the
Google Knowledge Graph [7] or Microsoft’s Satori graph on the commercial
side. These KBs contain millions of entities (such as people, places, or organiza-
tions), and millions of facts about them. This knowledge is typically expressed
in RDF [19], i.e., as triples of the form 〈Einstein,won,NobelPrize〉. A key con-
straint on such data specifies that no two distinct entities can share a certain
set of properties (e.g., no two people share given name, family name, and birth-
date). Key constraints are used for applications such as knowledge base fusion [8],
knowledge base enrichment [22] and data linking [1, 9, 23].

It is impractical to specify keys manually for large KBs (with millions
of triples and hundreds or thousands of properties). Therefore, several ap-
proaches [4, 21, 25, 27] have been developed to automatically discover keys from
RDF data. However, these works have also shown that for several datasets, there
are no or only few keys that are valid in the entire dataset. This is the reason
why we aim to mine conditional keys in this paper, i.e., keys that are valid in
only a part of the data.

A conditional key is an axiom saying that under particular conditions, no
two distinct entities can have the same values on a particular set of properties.
For example, we can say that at a German university, no two professors can
advise the same doctoral student. The situation might be different at a French or
American university – hence the key is “conditional” to German universities. In
this paper, we distinguish conditional keys from classical keys, which hold for an
atomic class (or for every tuple of a table in a relational database). Conditional
keys can express constraints on entities and are strictly more expressive than
classical keys. Therefore, they can be more productive in tasks such as entity

linking – as we show in our experiments. Apart from this, conditional keys carry
knowledge in themselves. For example, it is interesting to know that France
allows several advisors, while Germany does not.

Mining conditional keys automatically from the data is a challenging en-
deavor, for several reasons. First, the KBs we consider here contain only binary
relations, which means that keys usually do not live in a single table, but can
be a join of up to a dozen relations. Second, KBs are usually incomplete [12].
If a student at a German university has only one advisor in the KB, she could
still have several in real life. Thus, any approach that automatically mines con-
ditional keys risks being misled. Finally, the challenge is to scale: Today’s KBs
contain millions of statements. This means that there are billions of possible
conditions and property combinations that could define a conditional key. In the
example, professors could be distinguished by their doctoral students, but also
by their given and family name or by their discipline and birthdate. These keys
could hold only for German professors, only for Danish ones, only for professors
at a certain university in Mexico, or only for professors born in a certain city in
Iowa. This huge search space is one of the main reasons why there is today no
approach that could mine conditional keys on KBs.

Our proposal is to combine key mining techniques [27] with techniques from
rule mining [13]. More precisely, VICKEY discovers first the set of maximal
non-keys from which the conditional keys can be computed. Thus, the search
space can be significantly reduced while avoiding to scan all the data. Secondly,
VICKEY applies a breadth-first strategy to discover frequent candidate condi-
tional keys and efficiently check their validity. More precisely, our contributions
are as follows:
– We develop an algorithm that can mine conditional keys efficiently.
– We show that our method scales gracefully to KBs of millions of facts.
– We show that the use of our conditional keys improves the F1 measure of KB

linking by up to 47 percentage points over the use of classical keys.
The rest of this paper is structured as follows. We discuss related work in Sec-
tion 2, and introduce preliminaries in Section 3. In Section 4 we present our
approach. Section 5 showcases our experiments, before Section 6 concludes.

2 Related Work

Relational Databases. Two types of key discovery approaches have been pro-
posed for relational databases [16,24]: data-driven [24], where keys are discovered
from the tuples in a table, and schema-based [16], where property combinations
of a certain size are generated and then checked on the tuples. Such approaches
cannot be applied directly to KBs, because they are geared towards relations
that contain one single value for each subject. In KBs, in contrast, a relation
can contain several objects for the same subject.
Knowledge Bases. Approaches for KBs [3, 4, 21, 25, 27] can be roughly clas-
sified into two groups, depending on how they deal with multivalued proper-
ties [2]: The forall-key approaches [4,25] discover keys that fire when two entities

share all values for each property. In [4], the authors have developed a level-wise
schema-based approach based on TANE [17], to discover pseudo-keys (keys with
exceptions). Rocker [25] is a refinement-operator-based approach that efficiently
discovers pseudo-keys using a top-down strategy guided by a discriminability
score function designed for forall-keys. The some-key approaches [3, 21, 27], on
the other hand, discover keys that fire as soon as two entities share at least one
value for each property. Some-keys can be particularly useful under the Open
World Assumption (OWA), where the KB may not contain all relevant facts.
Thus, it is for example sufficient that two researchers share their last name,
their first name, and one of their publications in order for them to be linked –
even if the KB does not know all of their publications. [3] discovers discriminative
combinations of corresponding properties that can be used to link two datasets
with different schemas. KD2R [21] extends the relational data-driven approach
of [24] in order to exploit ontology axioms (such as the subsumption relation) and
considers multivalued properties. SAKey [27] introduces additional filtering and
pruning techniques to discover efficiently some-keys with exceptions. To avoid
scanning the entire dataset, both KD2R and SAKey discover first the maximal
non-keys and then derive the keys from this set. Yet, none of these approaches
is able to mine the conditional keys that we aim at in this paper.
Conditional Functional Dependency Mining. A conditional functional de-
pendency (CFD) expresses a functional dependency between two sets of at-
tributes that holds on a subset of tuples [6]. For example, a CFD could state
that when two customers are based in the UK, the zipcode uniquely determines
the city. A conditional key is a particular type of CFD, where the second set
of attributes is a unique identifier for a record in the database. CFD discovery
has been addressed in [6, 10, 15]. The work of [6] uses a breadth-first strategy
inspired by the schema-based approach TANE [17]. FastCFD [10] finds a canon-
ical cover of all minimal CFDs that satisfy a given support using a depth-first
strategy. Compared to [6] (which works well when the number of tuples is large),
FastCFD [10] is efficient when the number of attributes is large. Nevertheless,
none of these approaches is able to discover conditional keys in KBs, because
they cannot efficiently deal with multivalued properties and would require a
post-processing to mine conditional keys from the obtained CFDs.
Rule Mining. Finally, one possibility to find conditional keys would be to
use rule mining approaches. AMIE [13], e.g., can learn logical rules with up to
4 atoms on KBs that contain millions of facts. However, even relatively simple
conditional keys can easily contain five or more atoms. This leads to an exponen-
tial increase of the search space that such rule mining approaches cannot handle
– as we show in our experiments. In [5], the authors propose a more efficient rule
mining approach that implements a series of parallelization and pruning tech-
niques. However, it focuses only on Horn rules with ungrounded atoms. Thus,
it cannot be applied for conditional key discovery. In [11], the authors propose
to apply, first, a rule mining tool like [5, 13] and then refine the obtained rules
by adding negated atoms. However, the result are rules with negations, not con-

Table 1. Example dataset

FirstName LastName Gender Lab Nationality

r1 Claude Dupont Female Paris-Sud France

r2 Claude Dupont Male Paris-Sud Belgium

r3 Juan Rodŕıguez Male INRA Spain, Italy

r4 Juan Salvez Male INRA Spain

r5 Anna Georgiou Female INRA Greece, France

r6 Pavlos Markou Male Paris-Sud Greece

r7 Marie Legendre Female INRA France

ditional keys. In this paper, we propose a method called VICKEY, which we
believe is the first approach to mine conditional keys efficiently on large KBs.

3 Preliminaries

Knowledge Bases. The knowledge bases that we consider here [18, 26, 29] use
a set I of instances (such as a researcher identified as r1), a set L of literals,
a set P of properties (such as nationality), and a set C of class names (such as
country). A fact is a triple of a subject s ∈ C∪I, a property p ∈ P, and an object
o ∈ C ∪I ∪L, which we write as p(s, o). Every instance is typically associated to
one or more classes by the type property, and these classes can be arranged in a
hierarchy by the subclassOf property. A set of such facts constitutes a knowledge
base (KB)1. Given a KB K, a dataset D for a class c of K is the set of all facts
that have as subject an instance of c or of a subclass of c. Table 1 shows an
example dataset2 about researchers r1, ..., r7, each having the properties first-
Name, lastName, gender, lab, and nationality – with one or more objects for
each property. When D is given, we write p(x, y) to mean p(x, y) ∈ D.
Keys. In our setting, a key is defined as follows [21,27].

Definition 1. (Key) A key in a dataset D is a set of properties p1, . . . , pn of
D such that:

∀x, y, u1, . . . , un

(∧
i=1...n

pi(x, ui) ∧ pi(y, ui)⇒ x = y

)
In our example, the property set {lastName, gender} is a key while {lab, na-
tionality} is not a key, because r3 and r4 are both Spanish. Note that {lab,
nationality} is a forall-key since no two people share the lab and the entire set
of nationalities.

Definition 2. (Maximal non-key) A maximal non-key for a dataset D is a
set of properties P of D such that P is not a key, and the addition of any other
property makes P a key.

In our example, {firstName, lastName, lab} is a maximal non-key, because
adding any other property makes the set a key.

1 The KBs considered in this work do not contain blank nodes.
2 For readability, the table does not distinguish literals and instances.

Key Discovery. To discover the keys of a dataset automatically, a naive algo-
rithm would have to compare all subjects of the dataset to all other subjects
– which is prohibitively expensive. To avoid this complexity, the SAKey algo-
rithm [27] first finds maximal non-keys. This is more efficient, because to verify
that a set of properties is a non-key, it suffices to find two subjects that share
values for these properties. SAKey starts with property combinations that con-
tain only a single property, and incrementally adds more and more properties
until it arrives at maximal non-keys. When it has found all non-keys, all other
property combinations must be keys – which is what SAKey outputs.
Conditional Keys. Our example in Table 1 shows two researchers with the last
name Dupont. Therefore the property lastName is not a key. The combination
{firstName, lastName} is not a key either, because there are two researchers with
the same first and last names. However, when we restrict our set of researchers to
those working at INRA, the property lastName identifies researchers uniquely.
In contrast, this is not true for the researchers in Paris-Sud. Thus, {lastName,
lab} is not a key in general. We say that lastName is a conditional key for people
working at INRA. In this work, we chose to focus on conditions that can be
expressed using constraints on property values. More formally, a condition is a
pair composed of a property p and an object o, written p = o (e.g., lab = INRA).
A condition cd with property p and object o holds for a subject x, written cd(x),
if p(x, o). In the example, the condition lab = INRA holds for r3, r4, r5 and r7.

Definition 3. (Conditional key) A conditional key for a dataset D is a
non-empty set of conditions {cd1, ..., cdn} and a non-empty set of properties
{p1, ..., pm} of D (disjoint from the properties in the conditions), such that:

∀x, y, u1, . . . , um

(∧
i=1..n

(cdi(x) ∧ cdi(y)) ∧
∧

i=1..m

(pi(x, ui) ∧ pi(y, ui))⇒ x = y

)

Definition 4. (Minimal conditional key) A conditional key with conditions
CD and properties P is minimal, if the removal of a condition in CD, the
removal of a property from P , or the transfer of a property p from CD to P
(with the corresponding removal of the condition), all result in something that is
neither a conditional key nor a key.

In our example, lastName is a conditional key with condition nationality =
Spanish ∧ lab = INRA, but this conditional key is not minimal, because there
exists a simpler version of the key with fewer conditions, namely nationality =
Spanish. In the same vein, {lastName} with the condition gender=male is not
a minimal conditional key, because {lastName, gender} is a key.

The support of a conditional key with properties {p1, ..., pm} and conditions
{cd1, ..., cdn} is the number of subjects x such that

∧
i=1..m ∃ui : pi(x, ui) and∧

i=1..n cdi(x). A proportional version of the support, which we call the coverage,
measures the ratio of subjects in the dataset identified by the conditional key. In
our example, the support of the key {lastName} under the condition lab=INRA
is 4, and the coverage is 4

7 , since there are 7 subjects.
Keys in OWL. Conditional keys can be defined in the ontology language
OWL2 [20]. OWL2 allows defining keys not just on atomic classes (such as

researcher), but also on more complex class expressions. We can define, e.g., the
class “Researchers who work at INRA” as c = Researcher u∃lab.{INRA}. Then,
{lastName} is a key on the dataset of c according to Definition 1.

4 Mining Conditional Keys

We now present our approach to automatically discover conditional keys on a
dataset. To learn conditional keys under the Open World Assumption, we assume
that all instances in a dataset refer to distinct real world objects, and that all
unknown values are different from the existing ones in the dataset [7,13,14,21,27].
The discovery of simple keys alone already requires checking a large number of
property combinations (of which there are 2|P| in total, where P is the set of
properties). Discovering conditional keys is even more complex, since the search
space is in the order of O(|V||P|), where V is the set of objects in the dataset. Our
algorithm can discover conditional keys efficiently in spite of this large search
space. Our method takes as input a dataset D and a threshold θ for the minimal
support of the discovered keys. We proceed in three phases:
1) Discovery of non-keys: Instead of exploring the whole set of combinations of
properties, we focus our search on those combinations that are not keys.
2) Generation of Conditional Key Graphs: We use the non-keys to generate
candidate keys, which we store in conditional key graphs.
3) Mining of Conditional Key Graphs: The conditional key graphs are then
mined for minimal conditional keys.

4.1 Discovery of non-keys

The naive method to mine conditional keys explores all possible combinations
of properties and conditions in the input KB and verifies whether they fulfill
Definition 3. Such an approach is infeasible on large datasets. Our main idea
(the key insight, so to speak) is the following (see [28] for more details):

Observation 1 (Conditional Keys and Non-Keys) Given a minimal con-
ditional key for a dataset D with properties P and conditions {p1 = o1, ..., pn =
on}, the set of properties P ∪ {p1, ..., pn} must be a non-key for D.

This follows from Definition 4. In our example from Table 1, {firstName} is
a minimal conditional key with condition gender=Female, and {gender, first-
Name} is a non-key. Thus, if we want to mine the complete set of minimal
conditional keys, it suffices to consider only the property combinations given by
non-keys. Since maximal non-keys are super-sets of all other non-keys (Defini-
tion 2), it is sufficient to explore only property combinations given by maximal
non-keys. The maximal non-keys in the input dataset can be mined efficiently
with the SAKey algorithm [27] (Section 3). Thus, we concentrate in the following
on mining the conditional keys from these maximal non-keys. As a running ex-
ample, consider again the dataset in Table 1. It contains two maximal non-keys:
{firstName, lastName, lab} and {firstName, gender, lab, nationality}.

4.2 Generation of Conditional Key Graphs

Our method for discovering conditional keys from non-keys relies on a modifiable
data structure that we call a conditional key graph. Such a graph is a tuple
〈P k, P c, cond , G〉 with the following components:
– P k and P c are disjoint sets of properties, called key properties and condition

properties, respectively.
– cond is a set of conditions on P c.
– G is a directed graph. Each node v is associated to a set v.p ⊆ P k and to a

boolean flag v.explore set by default to true. There is a directed edge from u
to v if u.p ⊂ v.p and |u.p| = |v.p| − 1.

Fig. 1. Example of a conditional key graph with P k = {firstName, lab, nationality},
P c ={gender}, cond = {gender = Female}.

We construct the initial conditional key graphs with Algorithm 1. This algorithm
takes as input the dataset, the support threshold θ, and the non-keys discovered
in Section 4.1. We first construct all possible conditions p = a that combine
a property p from the non-keys with an instance or literal a from the dataset
(Lines 2-3). Conditions with support less than θ are not considered (Line 4).
We then look at all non-keys N in which p appears (Line 5). The conditional
key graph for the condition p = a will contain as nodes all subsets of N \ {p}
(Line 6) except the empty set (Line 7). As an example, let us consider again the
dataset of Table 1 and its two maximal non-keys {firstName, lastName, lab} and
{firstName, gender, lab, nationality}. Figure 1 depicts the conditional key graph
associated to the condition gender = Female constructed by Algorithm 1.

Lemma 1. (Graph Construction) If Algorithm 1 is given a dataset D, a
complete set of maximal non-keys N for D and a support threshold θ, then for
each conditional key of D with a single condition and with at least support θ,
there is a graph in the output that contains the key condition and a node with
the key properties.

Lemma 1 follows from the fact that Algorithm 1 (a) iterates over all conditions
p = o with a least support θ and (b) considers all the possible subsets of prop-
erties 2N\{p} with N ∈ N (except for ∅). From Observation 1 we recall that for
any conditional key with properties P and condition p = o, the set of properties
P ∪ {p} must be a non-key. Thus, from the completeness of our set of maximal
non-keys, it follows that our graph contains in its nodes all possible keys with
support higher than θ for a given condition p = o.

Algorithm 1: ConstructGraphs

Input: dataset D, min. support θ, set of non-keys N
Output: set of conditional key graphs G

1 G ← ∅
2 for p ∈

⋃
N∈N N do

3 for a ∈ I ∪ L such that ∃x : p(x, a) ∈ D do
4 if number of x with p(x, a) is at least θ then
5 V ← ∅
6 for N ∈ N where p ∈ N do V ← V ∪ 2N\{p}

7 V ← V \ ∅
8 for v ∈ V do v.explore = true
9 E ← {u, v ∈ V : u.p ⊂ v.p ∧ |u.p| = |v.p| − 1}

10 P k =
⋃

v∈V v.p
11 P c = {p}
12 cond = {p = a}
13 G ← G ∪ {〈P k, P c, cond, (V,E)〉}

14 return G

4.3 Mining of Conditional Key Graphs

Mining conditional keys. We mine the conditional key graphs for keys with
Algorithm 2. It takes as input a dataset, a support threshold, and the set of
conditional key graphs constructed in the previous phase. All these conditional
key graphs have conditions of size 1 (see Algorithm 1). The algorithm proceeds in
batches, looking first at the graphs with condition size 1, then size 2, etc. (Lines
2-3). For each batch, it mines the conditional keys (Line 6). The graphs in one
batch are then post-processed (Line 7) to give rise to new graphs with conditions
of larger size. The algorithm iterates until all sizes are processed (Line 4).

Algorithm 2: ConditionalKeyDiscovery

Input: dataset D, minimum support θ, set of conditional key graphs G
Output: set of minimal conditional keys CKs

1 CKs ← ∅
2 for size = 1 to ∞ do
3 G′ ← {g ∈ G : |g.cond | = size}
4 if G′ = ∅ then return CKs

5 for 〈P k, P c, cond , G〉 ∈ G′ do
6 CKs ← CKs ∪MineGraph(D, θ, 〈P k, P c, cond , G〉,CKs)

7 G ← newConditions(size,G, θ,D)

Mining a conditional key graph. Let us now discuss how one conditional
key graph can be mined for keys (Line 7 in Algorithm 2). This task is done by
Algorithm 3. This algorithm takes as input a dataset, the support threshold, a
conditional key graph, and the set of conditional keys found so far. The algorithm
proceeds in levels, looking first at the nodes that contain one property, then two
properties, etc. For each level, we consider every node cand . If the node is still

marked for exploration (Line 3), we construct a candidate conditional key, with
the input conditions as condition part, and the properties in cand .p as the key
part (Line 4). We then verify if the candidate key (a) meets the definition of
a conditional key and (b) is minimal with respect to the other keys that have
already been mined (Lines 5-6). If that is the case, the conditional key is added
to the ouput (Line 7). If the key is a minimal key, then any extension of the
key with more properties in the key part must be non-minimal and can safely
be abandoned. Likewise, if the support of the candidate key is below the given
threshold, so are its refinements. In both cases, we can prune the node and all
descendants (Lines 8-11).

Algorithm 3: MineGraph

Input: dataset D, minimum support θ,
conditional key graph 〈P k, P c, cond , G = (V,E)〉,
set of conditional keys found so far CKs
Output: modified CKs

1 for level = 1 to maxv∈V |v.p| do
2 for cand ∈ V where |cand.p| = level do
3 if cand .explore then
4 ck ← 〈cond , cand .p〉
5 isMinimal ← ck is a minimal key w.r.t CKs
6 if isMinimal ∧ support(ck,D) ≥ θ then
7 CKs = CKs ∪ {ck}
8 if isMinimal ∨ support(ck,D) < θ then
9 cand.explore ← false

10 for child ∈ descendants(cand,G) do
11 child .explore ← false

12 return CKs

Fig. 2. (a) Keys of size 1 explored for the condition gender = Female. (b) Example
of a merged graph with condition {gender = Female, lab = INRA}

As an example, let us consider again the data from Table 1, with the condition
gender=Female and the maximal non-key {firstName, gender, lab, nationality}.
The corresponding conditional key graph after scanning the first level is shown
in Figure 2(a). Nodes with the explore flag set to false are greyed out. At the
end of this step, only the property firstName is discovered as a key, since first

names are unique among female researchers. It follows that nodes containing
this property in the next levels of the graph define non-minimal keys. They are
therefore discarded for further exploration (the explore flag is set to false). The
search for conditional keys is then applied to the nodes on levels 2 and 3, for
which the explore flag is still true.

Lemma 2. (Graph Mining) Given a conditional key graph 〈P k, P c, cond , G〉
for a dataset D and a threshold θ, Algorithm 3 will ensure that the result set
CKs contains all minimal conditional keys for the condition set cond whose key
properties are given by one of the nodes in G, and whose support is at least θ.

This lemma holds because Algorithm 3 traverses all nodes in the conditional key
graph, and checks each of them for being a conditional key. It excludes only (a)
those nodes whose ancestors already had a support smaller than θ, in which case
the node itself must also have a support smaller than θ, and (b) the nodes that
lead to non-minimal keys.

Merging conditions. Let us now look at the process of generating more com-
plex conditions (Line 8 in Algorithm 2). This work is done by Algorithm 4. It
takes as input a set of conditional key graphs, a support threshold, a dataset,
and a size parameter. It looks at all conditional key graphs that have a con-
dition set of the given size (Lines 2-3). For each of them, it constructs a clone
(Line 4). It then adds one more condition to the condition set of the clone. This
new condition consists of a property and a constant (Section 3). The property
is taken from a node of size 1 having its explore flag still set to true (Lines 5-6).
The constant is taken from the constants that appear with that property in the
conditional key graphs of size 1 (Line 9). If the new combined condition has a
support that is large enough (Line 10), the conditional key graph of the singleton
condition is merged with the clone and added to the output set.

Algorithm 4: newConditions

Input: size of condition set size
set of conditional key graphs G
support threshold θ, dataset D
Output: modified set of conditional key graphs G

1 G1 ← {g ∈ G : |g .cond | = 1}
2 Gsize ← {g ∈ G : |g .cond | = size}
3 for g ∈ Gsize do
4 g ← clone(g)
5 for v ∈ g.V where |g.V.p| = 1 do
6 if v.explore then
7 v.explore ← false
8 for v′ ∈ g.descendants(v) do v′.explore ← false
9 for g1 ∈ G1 where g1.P

c = v.p do
10 if support(g.cond ∧ g1 .cond ,D) ≥ θ then G ← G ∪merge(g, g1)

11 return G

The merge operation between two conditional key graphs 〈P k
1 , P

c
1 , cond1,

(V1, E1)〉 and 〈P k
2 , P

c
2 , cond2, (V2, E2)〉 with P c

1 ∩P c
2 = ∅, produces a new condi-

tional graph 〈P k, P c, cond , (V,E)〉 with:
– P k = P k

1 ∩ P k
2 and P c = P c

1 ∪ P c
2 .

– cond = cond1 ∪ cond2

– V = {〈v.p, v.explore〉 : ∃v1 ∈ V1, v2 ∈ V2 : v1.p = v2.p = v.p ∧ v.explore =
(v1.explore ∧ v2.explore)}

– E = {u, v ∈ V : u.p ⊂ v.p ∧ |u.p| = |v.p| − 1}
As an example, Figure 2(b) shows the conditional graph with the set of conditions
{gender = Female, lab = INRA} produced by Algorithm 4 from the conditional
graphs with conditions gender = Female and lab = INRA. This graph is a
clone of the graph with the condition gender = Female. A node is marked to be
explored only if it was marked to be explored in both of the original graphs.

Lemma 3. (New Conditions) Given a dataset D, a set of conditional key
graphs G, a size parameter size, and a threshold θ, Algorithm 4 produces all
conditional key graphs that contain condition sets of size size+1. Each of those
graphs contains all the conditional keys for the given condition.

We can prove Lemma 3 by induction. For size = 0, Lemma 1 guarantees
that Algorithm 4 starts with all conditional key graphs for conditions of size 1.
For size > 0, we need to show that (a) Algorithm 4 generates all conditional
key graphs of size size + 1 and (b) each of these graphs contains all minimal
conditional keys for their condition.

We start by showing (b), that is, the merge operation between two conditional
key graphs G1 = 〈P k

1 , P
c
1 , cond1, (V1, E1)〉 and G2 = 〈P k

2 , P
c
2 , cond2, (V2, E2)〉

does not skip any minimal conditional key for the new condition. There are only
two ways a node can be excluded from exploration in the merge operation: (1)
the node is explicitly marked for non-exploration and (2) the node does not occur
in one of the conditional key graphs. Case (1) occurs when the corresponding
nodes are below the support threshold θ or they define non-minimal keys. In
Case (2), the claim follows from the fact that if a node v is not contained in one
of the graphs (e.g., v 6∈ V1), then v.p∪P c

1 must be a key, i.e., it is not contained
in any maximal non-key. This rationale applies analogously if v 6∈ V2.

To show (a) we need to prove that our conditions are complete and cor-
rect. To show completeness we observe that Algorithm 4 builds conditions with
|cond | = size + 1 based on the complete set of conditions with |cond | = size
and |cond | = 1. From the monotonicity of support, it follows that all condi-
tions with |cond| = size + 1 with support greater than θ can be computed
from these sets. To show correctness we note that for each graph with condition
cond = {p1 = o1, . . . , psize = osize} and key properties P k, Algorithm 4 will
merge the graph with all conditions of the form psize = osize where psize ∈ P k

(conditions of size 1, Line 5). This will produce graphs with conditions of the
form {p1 = o1, . . . , psize−1 = osize−1, psize = osize} with key part P k \ {psize}
with support greater than θ. (a) follows from Observation 1, since we have just
transferred a property from the key part to the condition part.

Theorem 1. (Conditional Key Discovery) Given a dataset D, a set of con-
ditional key graphs G, and a threshold θ, Algorithm 2 produces all conditional
keys whose properties are a subset of the properties of any node in any graph
in G, whose conditions are built from conditions or properties in G, and whose
support is at least θ.

This theorem follows from the fact that Algorithm 2 calls Algorithm 3 for all
sizes between 1 and the maximal number of property combinations. Lemma 2
makes sure that all possible graphs are generated. Lemma 3 ensures that all
possible combinations of conditions are treated.

Corollary 1. (Conditional Key Mining) Our method for conditional key
mining is complete and correct.

The correctness follows from the fact that Algorithm 3 adds a new key if and
only if it is a key (Line 5). The completeness follows from Observation 1 and
Theorem 1.

4.4 Implementation

Our method, VICKEY, is implemented in Java 7. The conditional key graphs
have large condition sets and large associated graphs. Therefore, we do not
store the graphs in memory, but rather generate them on the fly when they are
accessed [28]. Furthermore, we parallelize the algorithm: the set of input non-keys
is split into batches containing up to 50 (potentially non-distinct) properties.
The batches are then scheduled to threads in the system, each one running
Algorithms 1 and 2. This may lead to mining the same non-key multiple times,
and therefore we perform a de-duplication before reporting the final results.

5 Experiments

We evaluate VICKEY in two series of experiments. First, we show the abil-
ity of VICKEY to discover conditional keys in large datasets with millions of
triples. We compare the runtime of VICKEY to a generic rule mining approach,
AMIE [13]. Then, we evaluate the utility of conditional keys for the task of data
linking. We compare the conditional keys mined by VICKEY to the classical
keys mined by SAKey [27].

5.1 Runtime Experiments

Setting. To evaluate the performance of VICKEY and AMIE [13], we
adapt AMIE to mine rules of the form: Pc ∧ Pk ⇒ x = y. Here, Pc =∧

1..n pci(x,Ai) ∧ pci(y,Ai) corresponds to the condition part of a key expression,
and Pk =

∧
1..m pki(x, ui) ∧ pki(y, ui) represents the key part. Both AMIE and

VICKEY take as input a set of maximal non-keys. These non-keys are obtained
from the input dataset using SAKey [27]. Like VICKEY, our adapted variant of

AMIE uses the non-keys to restrict the search space by pruning the combinations
of properties that do not occur in the non-keys. Unlike VICKEY, AMIE searches
exhaustively for all rules that define conditional keys in the input dataset, regard-
less of their minimality. AMIE therefore requires a post-processing phase where
all non-minimal conditional keys are removed. Both AMIE and VICKEY are
run with a coverage threshold of 1%. We set the confidence threshold of AMIE
to 100%, so that VICKEY and the modified AMIE mine exactly the same set
of conditional keys. As datasets, we have used nine classes from DBpedia [18],
covering different domains such as people, organizations, and locations. All ex-
periments are run on a server with an AMD Opteron 6376 Processor (2.40GHz),
8 cores, and 128GB of RAM under Ubuntu Server 16.04.

Table 2. VICKEY vs AMIE on DBpedia
Class Triples Inst. #Pro #NKs VICKEY AMIE #CKs
Actor 57.2k 5.8k 71 137 4.52m 12.58h 311
Album 786.1k 85.3k 39 68 1.53h 3.90h 304
Book 258.4k 30.0k 51 95 11.84h > 1d 419
Film 832.1k 82.6k 74 132 1.37h 3.64h 185
Mount. 127.8k 16.4k 58 47 2.86m 23.57m 257
Museum 12.9k 1.9k 65 17 1.46s 6.45s 58
Organiz. 1.82M 178.7k 553 3221 26.32h > 36h 28
Scientist 258.5k 19.7k 73 309 27.67m > 1d 582
Univ. 85.8k 8.7k 89 140 14.45h > 1d 941

Table 3. Linked classes stats
Class #Pro #Ks #NKs #CKs
Actor 16 93 22 748
Album 5 1 2 5864
Book 7 5 2 538
Film 9 14 13 26750
Mount. 5 3 2 775
Museum 7 14 5 80
Organiz. 17 149 3 9737
Scientist 10 22 8 407
Univ. 9 5 5 449

Results. Our results are shown in Table 2. The first three columns show some
statistics about the testing datasets, followed by the number of discovered non-
keys (NKs), the runtimes of both VICKEY and AMIE and finally the number
of obtained conditional keys (CKs). We observe that a generic rule mining solu-
tion cannot handle some of the input datasets in less than 1 day. VICKEY, in
contrast, runs on the smaller datasets Actor, Mountain, Museum and Scientist
in less than 1 hour. This is because VICKEY’s strategy prunes the search space
much more effectively by avoiding candidate CKs that are not minimal. Other
classes, such as University and Organization, are more challenging because they
have many long non-keys (up to 15 properties). The longer the non-keys, the
larger the number of property combinations in the search space. For example,
for the class Album, AMIE explores more than 12.3k rules (including intermedi-
ate rules), where 6.4k rules correspond to potential conditional keys. In contrast,
VICKEY explores only 4.1k candidates. This shows that VICKEY’s strategy in-
deed prunes the search space much more effectively. It can mine conditional keys
on hundreds of thousands of facts in a matter of minutes.

5.2 Extrinsic Evaluation

Setting. One of the primary application areas of keys is the discovery of equiv-
alent entities across two KBs: If some combination of properties is a key, and if
an entity in one KB shares values of these properties with an entity in the other
KB, then the two entities must be the same. In this section we investigate the
performance of conditional keys with respect to classical keys for this task. We
emphasize that entity linking is not the primary goal of this paper. Instead, we

want to show the potential of conditional keys, introduced in this paper, over
classical keys introduced by other approaches such as SAKey [27]. Entity linking
is only an example setting to this end.

As KBs, we chose DBpedia [18] and YAGO [26], because there is a gold
standard available for the entity links on the YAGO Web page. We have used
the same set of classes as for the runtime experiments. As this type of entity
linking assumes that the properties have been aligned, we mapped the properties
of these classes manually, and rewrote the properties of YAGO using its DBpedia
counterparts. We ran SAKey [27] and VICKEY on DBpedia to find standard and
conditional keys, respectively. Table 3 shows the number of common properties,
the number of keys (Ks), non-keys (NKs) and conditional keys (CKs) in each
DBpedia class. Among others, VICKEY finds that motto is a key for universities
in Italy and some other countries – but not in all countries; and that the name
is a key for organizations in certain places – but not all places. To link the
datasets, we use a simple algorithm [27]: For each key, we iterate over the entities
in DBpedia that have the key properties. If there is an entity in YAGO that
shares at least one value for every of these properties, we link the two. For
conditional keys, we also check whether the conditions of the key are fulfilled in
both datasets.

Table 4. Linking results with classical keys (Ks), conditional keys (CKs), and both.
Class Recall Precision F1
Actor Ks [27] 0.27 0.99 0.43

�
CKs 0.57 0.99 0.73 × 1.75
Ks+CKs 0.60 0.99 0.75

Album Ks [27] 0.00 1 0.00

�
CKs 0.15 0.99 0.26 × 869
Ks+CKs 0.15 0.99 0.26

Book Ks [27] 0.03 1 0.06

�
CKs 0.11 0.99 0.20 × 3.48
Ks+CKs 0.13 0.99 0.23

Film Ks [27] 0.04 0.99 0.08

�
CKs 0.38 0.96 0.54 × 7.1
Ks+CKs 0.39 0.98 0.55

Mountain Ks [27] 0.00 1 0.00

�
CKs 0.28 0.99 0.44 × 101
Ks+CKs 0.29 0.99 0.45

Museum Ks [27] 0.12 1 0.21

�
CKs 0.25 1 0.40 × 2.19
Ks+CKs 0.31 1 0.47

Organization Ks [27] 0.01 1 0.02

�
CKs 0.14 0.98 0.24 × 11
Ks+CKs 0.14 0.99 0.24

Scientist Ks [27] 0.05 0.98 0.11

�
CKs 0.16 0.99 0.28 × 2.96
Ks+CKs 0.19 0.99 0.32

University Ks [27] 0.09 0.99 0.16

�
CKs 0.22 0.99 0.36 × 2.44
Ks+CKs 0.25 0.99 0.40

Results. Table 4 shows the precision, recall and F1 measure of the entity linking
task using a) classical keys mined by SAKey [27], b) conditional keys alone and
c) both types of keys (VICKEY). We first observe that the precision is always
over 98%. Conversely, the recall is low in some cases. This happens mainly due
to our simple linking method, which uses a strict string equality when compar-
ing the values of properties, and also due to the incompleteness of the data in

both YAGO and DBpedia. However, even with this simple method, the use of
conditional keys can lead to a significant increase in recall – with a negligible
impact on precision. For example, for the class Film, recall increases from 4% to
38% when conditional keys are considered. Furthermore, when combining classic
keys and conditional keys, the recall improves further. Overall, we observe an
average increase of 21 percentage points in recall, and of 29 points in F1 when
both standard keys and conditional keys are used to link the data. The average
drop in precision is only 0.5 percentage points. This shows that conditional keys
can significantly increase the performance of entity linking.

6 Conclusion

We have presented VICKEY, an approach to mine conditional keys on knowledge
bases. Our approach overcomes the complexity of the search space by restricting
it to the non-keys found by SAKey [27], and by pruning it smartly. This allows
VICKEY to mine minimal conditional keys in datasets of up to 1.8M triples. In
an extrinsic evaluation, we have shown that conditional keys can increase the
recall of entity linking by up to 34 percentage points. As future work we plan to
extend VICKEY by exploiting ontological classes and axioms, to discover more
expressive conditional keys. The VICKEY system, as well as the datasets and
evaluations, are available at https://github.com/lgalarra/vickey.

Acknowledgments. This research was supported by the grants ANR-11-
LABEX-0045-DIGICOSME and ANR-16-CE23-0007-01 (“DICOS”), by the
Chair “Machine Learning for Big Data” of Télécom ParisTech, and by the AG-
INFRA+ project (Grant Agreement no. 731001).

References

1. Mustafa Al-Bakri, Manuel Atencia, Jérôme David, Steffen Lalande, and Marie-
Christine Rousset. Uncertainty-sensitive reasoning for inferring sameas facts in
linked data. In ECAI, 2016.

2. Manuel Atencia, Michel Chein, Madalina Croitoru, Jérôme David, Michel Leclère,
Nathalie Pernelle, Fatiha Säıs, François Scharffe, and Danai Symeonidou. Defining
key semantics for the RDF datasets: Experiments and evaluations. In ICCS, 2014.

3. Manuel Atencia, Jérôme David, and Jérôme Euzenat. Data interlinking through
robust linkkey extraction. In ECAI, Czech Republic, 2014.

4. Manuel Atencia, Jérôme David, and François Scharffe. Keys and pseudo-keys
detection for web datasets cleansing and interlinking. In EKAW, 2012.

5. Yang Chen, Sean Louis Goldberg, Daisy Zhe Wang, and Soumitra Siddharth Johri.
Ontological pathfinding. In SIGMOD, 2016.

6. Fei Chiang and Renée J. Miller. Discovering data quality rules. In VLDB, 2008.
7. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,

S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In KDD, 2014.

8. Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Kevin Murphy,
Shaohua Sun, and Wei Zhang. From data fusion to knowledge fusion. In VLDB,
2014.

9. Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. Keys for graphs. In VLDB,
2015.

10. Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering conditional
functional dependencies. IEEE Trans. on Knowl. and Data Eng., 2011.

11. Mohamed H Gad-Elrab, Daria Stepanova, Jacopo Urbani, and Gerhard Weikum.
Exception-enriched rule learning from knowledge graphs. In ISWC, 2016.

12. Luis Galarraga, Simon Razniewski, Antoine Amarilli, and Fabian M. Suchanek.
Predicting Completeness in Knowledge Bases. In WSDM, 2017.

13. Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. AMIE:
association rule mining under incomplete evidence in ontological knowledge bases.
In WWW, 2013.

14. Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast
rule mining in ontological knowledge bases with AMIE+. VLDB J., 24(6), 2015.

15. Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. On
generating near-optimal tableaux for conditional functional dependencies. VLDB,
2008.

16. A. Heise, Jorge-Arnulfo, Quiane-Ruiz, Z. Abedjan, A. Jentzsch, and F. Naumann.
Scalable discovery of unique column combinations. In VLDB, 2013.

17. Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An
efficient algorithm for discovering functional and approximate dependencies. Com-
puter Journal, 42(2), 1999.

18. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören
Auer, and Christian Bizer. DBpedia - a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web J., 6(2), 2015.

19. Frank Manola and Eric Miller. RDF primer. W3C recommendation, W3C, Febru-
ary 2004. http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

20. Peter Patel-Schneider, Bijan Parsia, Sebastian Rudolph, Markus Krötzsch, and
Pascal Hitzler. OWL 2 web ontology language primer. W3C recommendation,
W3C, October 2009. http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.

21. Nathalie Pernelle, Fatiha Säıs, and Danai Symeonidou. An automatic key discovery
approach for data linking. J. of Web Semantics, 23, 2013.

22. Nicoleta Preda, Gjergji Kasneci, Fabian M. Suchanek, Thomas Neumann, Wen-
jun Yuan, and Gerhard Weikum. Active knowledge: dynamically enriching RDF
knowledge bases by web services. In SIGMOD, 2010.

23. Fatiha Säıs, Nathalie Pernelle, and Marie-Christine Rousset. Combining a logical
and a numerical method for data reconciliation. J. Data Semantics, 12, 2009.

24. Yannis Sismanis, Paul Brown, Peter J. Haas, and Berthold Reinwald. Gordian:
efficient and scalable discovery of composite keys. In VLDB, 2006.

25. Tommaso Soru, Edgard Marx, and Axel-Cyrille Ngonga Ngomo. ROCKER: A
refinement operator for key discovery. In WWW, 2015.

26. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In WWW, 2007.

27. Danai Symeonidou, Vincent Armant, Nathalie Pernelle, and Fatiha Säıs. SAKey:
Scalable Almost Key discovery in RDF data. In ISWC, 2014.

28. Danai Symeonidou, Luis Galarrága, Nathalie Pernelle, Fatiha Säıs, and Fabian
Suchanek. VICKEY: Mining Conditional Keys on RDF datasets. Technical report,
https://doi.org/10.5281/zenodo.835647, 2017.

29. Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-
base. Comm. of the ACM, 57(10), 2014.

