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Abstract

In this work, we investigate mathematical models for electromagnetic wave propagation in dispersive
isotropic media. We emphasize the link between physical requirements and mathematical properties of
the models. A particular attention is devoted to the notion of non-dissipativity and passivity. We consider
successively the case of so-called local media and general passive media. The models are studied through
energy techniques, spectral theory and dispersion analysis of plane waves. For making the article self-
contained, we provide in appendix some useful mathematical background.

Keywords: Maxwell’s equations in dispersive media, Herglotz functions, passivity and dissipativity, Lorentz
materials, energy and dispersion analysis, spectral theory.

1 Introduction, motivation
The theory of wave propagation in dispersive media, and more specifically negative index materials in
electromagnetism, had known recently a regain of interest with the appearance of electromagnetic meta-
materials. Their theoretical behaviour had been, much before their experimental realization, predicted in
the pioneering article of Veselago [50]. Since the beginning of the century, several works [46], [16], [8]
have shown a practical realisability of metamaterials, with the help of a periodic assembly of small res-
onators whose effective macroscopic behaviour corresponds to a negative index (acoustic metamaterials
with similar effects can also be produced [15]). Their existence opened new perspectives of application
for physicists, in particular in optics and photonic crystals, related to new physical phenomena such as
backward propagating waves, negative refraction [50] or plasmonic surface waves [35] which are used for
creating perfect lenses [43], in superlensing [38] or cloaking [39]. On the other hand the study of the cor-
responding mathematical models raised new exciting questions for mathematicians (see [34] for a recent
review), in particular numerical analysts [33], [55], [52].

Writing this paper has been decided at a EPSRC Workshop held in Durham on Mathematical and Compu-
tational Aspects of Maxwell’s Equations in July 2016, where the first two authors gave oral presentations
about the mathematics of metamaterials, one of the main topics of the Workshop. During the past three
years, the authors have been working, in collaboration or independently, on wave propagation problems
involving dispersive electromagnetic materials, and, more specifically, negative index materials. For in-
stance, in [10], [11], [12], we studied a transmission problem between a negative index and the vacuum
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(Centre National de la Recherche Scientifique), ENSTA ParisTech (Ecole Nationale Supérieure de Techniques Avancées) and INRIA
(Institut National de Recherche en Informatique et en Automatique).
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and more especially the large time behaviour of the solution of the evolution problem with a time har-
monic source. In [2], [3], [4] we addressed the question of the construction and analysis of stable Perfectly
Matched Layers (PML’s) for dispersive Maxwell’s equations, for the time domain numerical simulation
purpose. Finally, in [13], we address the question of broadband passive cloaking, in other words, whether
it possible to construct an electromagnetic passive cloak that cloaks an object over a whole frequency band.
We answer negatively to this question in the so-called quasistatic regime and provide quantitative limita-
tions on the cloaking effect over a finite frequency range.

When working on this subject we have encountered two main difficulties. The first one is the absence of a
work that would provide a unified, rigorous presentation and analysis of the existing mathematical models,
despite the fact that many related publications can be found in a broad range of fields including applied
and theoretical physics [27], [32], electric circuit theory and pure and applied mathematics [1], [28], [18].
The second difficulty lies in the fact that, because of the abundance of the specialized literature it is not
clear which statements are proven and which are simply commonly admitted. Thus, in the present work,
we would like to partially fill these gaps.

Properly speaking, this article is not a research paper. It has to be considered more as a review paper in
which we try to gather the results from the literature that we found the most useful for applied mathe-
maticians, provide an original presentation of these results and propose some new ideas (which, to our
knowledge, have not occurred in the existing literature). We tried to keep the presentation rigorous, even
though sometimes, for the sake of readability, we sacrificed formalism. Most proofs are detailed and only
use elementary tools (and those that do not are postponed to appendix). In this way, the article is self-
contained and accessible to readers (physicists, engineers) who are not mathematicians. We hope that it
can be seen as a useful toolbox for any scientist starting to study the subject, especially for applied mathe-
maticians and numerical analysts. We are happy to dedicate this work to Peter Monk, who has been a major
contributor of the numerical analysis of Maxwell’s equations [40], on the occasion of his 60th birthday.

We conclude this introduction by a brief outline of the rest of the paper. In Section 2 we formulate properties
of the electric permittivity and magnetic permeability, studying them from mathematics and physics based
points of view. In particular, we concentrate on the mathematical description of the so-called passivity
property (Section 2.2) and discuss the relationship between its physical and mathematical interpretation in
Section 2.3. In Section 3, we address the case when the permittivity and permeability are rational fractions
(or ’local’ materials, the name will be explained later). In the time domain they give rise to the Maxwell’s
equations coupled with ODEs. The results of this section include: the mathematical characterization of
local passive materials (Section 3.1), the equivalence of passivity and well-posedness for a class of models
(Section 3.2), a characterization of forward and backward propagating waves based on the analysis of the
dispersion relation (Section 3.3). Finally, Section 4 is dedicated to the extension of the analysis of Section
3 to general passive media.

2 Mathematical models for dispersive electromagnetic waves

2.1 Maxwell’s equations in dispersive media: introduction
Maxwell’s equations relate the space variations of the electric and magnetic fields E(x, t) and H(x, t)
(where x ∈ R3 denotes the space variable and t > 0 is the time) to the time variations of the corresponding
electric and magnetic inductions D(x, t) and B(x, t):

∂tB + rotE = 0, ∂tD− rotH = 0, x ∈ R3, t > 0. (1)

These equations need to be completed by so-called constitutive laws that characterize the material in
which electromagnetic waves propagate by relating the electric (or magnetic) field and the corresponding
induction. In this paper, we shall restrict ourselves to materials which are local in space (i.e. the induction
at a given point only depends on the corresponding field) and linear (this dependence is linear).
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In standard dielectric media, it is common to assume that the relationship is also local in time (typically the
electric induction D at a given point only depends on the magnetic field E). If, moreover, one assumes that
the medium is isotropic (roughly speaking, the relationship between D and E does not see the orientation
of the fields), it is natural to suggest that the fields are proportional

D(x, t) = ε(x)E(x, t), B(x, t) = µ(x)H(x, t), (2)

where at any point x, ε(x) and µ(x) are positive numbers called respectively the electric permittivity and
the magnetic permeability of the material at a point x. The fact that they may depend of x characterizes the
possible heterogeneity of the material. In the vacuum, these coefficients are of course independent of x:
ε(x) = ε0 ≈ (36π)−1 10−9Fm−1, µ(x) = µ0 = 4π 10−7Hm−1. In the matter, the law (2) cannot be true
and can be seen only as an approximation (often accurate). It appears that simple proportionality laws can
be valid only in the vacuum, otherwise this would violate some physical principles ([32]). In order to be
consistent with such physical principles, one needs to abandon the idea that the constitutive laws are local
in time and to accept e.g. that D(x, t) depends on the history of the values of E between 0 and t, i. e.

D(x, t) = F
(
x, t ;

{
E(x, τ), 0 ≤ τ ≤ t

})
. (3)

The above obeys a fundamental physical principle: the causality principle. Adding the time invariance
principle, i.e. that the material behaves the same way whatever the time one observes it, one infers that the
function F is also independent of time: F (x, t ; ·) = F (x ; ·).

To translate the above in more mathematical terms, it is useful to go to the frequency domain. Let us
remind the definition of the Fourier-Laplace transform and some of its properties.

Let u(t) be a (measurable) complex-valued, locally bounded and causal (u(t) = 0 for t < 0}) function of
time, which we suppose to be exponentially bounded for large t (for simplicity). More precisely, given
α ≥ 0 we introduce the class of functions which we shall denote in the following as u ∈ PBα(R+) with

PBα(R+) = {u(t) : R+ → C / ∃ (C, p) ∈ R+ × N such that u(t) ≤ C eαt (1 + tp)}. (4)

For α = 0, one recovers the class PB(R+) ≡ PB0(R+) of polynomially bounded functions. The
Fourier-Laplace transform û(ω) of u is the function defined in the complex half space (see e.g. [17])

C+
α = {ω ∈ C / Imω > α}, (where C+

0 will be denoted by C+ when α = 0) (5)

by the following integral formula (we use here the convention which is usual for physicists)

∀ ω ∈ C+, û(ω) =
1√
2π

∫ +∞

0

u(t) eiωt dt. (6)

Note that, with this convention, as soon as u and ∂t belong to PBα(R+), we have

∀ ω ∈ C+, ∂̂tu(ω) = −iω û(ω) + u(0), ∀ ω ∈ C+
α , (7)

which reduces to ∂̂tu(ω) = −iω û(ω) when u(0) = 0.

This transform is related to the usual Fourier transform u(t)→ Fu(ω) (where t and ω are here real) by

∀ η > α, ∀ ω ∈ R, û(ω + iη) = F
(
u e−ηt)(ω) (8)

which proves in particular that (this is Plancherel’s theorem)

∀ η > α, ω ∈ R 7→ û(ω + iη) ∈ L2(R) and
∫ +∞

−∞
|u(ω + iη)|2 dω =

∫ +∞

0

|u(t)|2 e−2ηt dt. (9)

On the other hand, one easily sees that

∀u ∈ PBα(R+), ω 7→ û(ω) is analytic in C+
α . (10)
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One can expect that û(ω) can be extended as an analytic function in a domain of the complex plane that
contains the half-space C+

α . We shall use the same notation û(ω) for the function defined by (6) and its
analytic extension. In the following ω will be referred to as the (possibly complex) frequency.

The half-plane C+ in invariant under the transformation ω → −ω, which corresponds to the symmetry
with respect to the imaginary axis. Laplace-Fourier transforms of real-valued functions have a particular
property with respect to this transformation:

u(t) ∈ R, ∀ t ≥ 0, ⇐⇒ ∀ ω ∈ C+, û(−ω) = û(ω) (11)

In the sequel, we shall assume that all the functions of time that are used in this article (for instance, one of
the components of the electric and magnetic field at a given point), belong to some PBα(R+).

Dispersive (isotropic) electromagnetic materials are most often defined as materials in which the propor-
tionality laws of the form (2) hold true in the frequency domain. Namely, they are satisfied by the
Laplace-Fourier transforms of the fields, rather than by the fields themselves. In this case there is no reason
to require that ε and µ are real and independent of the frequency. That is why a dispersive isotropic medium
will be defined as obeying constitutive laws of the form

D̂(x, ω) = ε(x, ω) Ê(x, ω), B̂(x, ω) = µ(x, ω) Ĥ(x, ω). (12)

where for each x, ω ∈ C+ 7→ ε(x, ω) (the permittivity) and ω ∈ C+ 7→ µ(x, ω) (the permeability) are
non-trivial functions of the frequency that describe the dispersivity of the medium. For non-dispersive
materials these functions are real positive and constant, i.e. (2) holds. Of course, these functions satisfy
some particular properties imposed by physical or mathematical reasons, as we show later.

Remark 2.1. Non-dispersive constitutive laws like (2) are commonly used in many applications, as pre-
sented in e.g. [40]. Even though they cannot be rigorously true for physical reasons, they can be considered
as a very good approximation as soon as ε, µ are real and constant over a broad range of frequencies and
one excites the medium with a temporal source whose frequency content, or spectrum, is "mainly con-
tained" in this range of frequencies. In such a case, the medium behaves as a non-dispersive one.

Causality principle. To ensure the causality of D(x, t) (or B(x, t)) provided that E(x, t) (or H(x, t)) is
causal, it is natural to impose

(CP) ω 7→ ε(x, ω) and ω 7→ µ(x, ω) are analytic in C+
α , for some α ≥ 0.

Reality principle. A second requirement is that if D(x, t) (or B(x, t)) is real then E(x, t) (or H(x, t)) is
real too. According to (12) and (11)

(RP) ∀ ω ∈ C+, ε(x,−ω) = ε(x, ω), µ(x,−ω) = µ(x, ω).

High frequency principle. A fundamental property from the physical point of view is that, at high fre-
quency, any material "behaves as the vacuum". Mathematically, this amounts to requiring that

(HF) ∀ η > 0, if Imω ≥ η > 0, lim
|ω|→+∞

ε(x, ω) = ε0, lim
|ω|→+∞

µ(x, ω) = µ0.

This means that the material is "less and less dispersive" at high frequencies. In fact, the only non-
dispersive medium is the vacuum (see however remark 2.1). This condition is not only a physical require-
ment: it also plays a role in the well-posedness of Maxwell’s equations in local media (see remark 3.15).

From the mathematical point of view, assuming that the causality principle (CP) is satisfied, (HF) implies
that fields related by one of the constitutive laws (12) have the same time regularity, more precisely,

t→ E(x, t) ∈ Hs
loc(R+), s ≥ 0 =⇒ t→ D(x, t) ∈ Hs

loc(R+).

Indeed, according to (8), for η > 0, the operator
(
t 7→ e−ηtE(x, t)

)
→
(
t 7→ e−ηtD(x, t)

)
corresponds

in the Fourier domain to the multiplication by ε(x, ω + iη), ω ∈ R. From the analyticity property (CP),
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we infer that ω ∈ R→ ε(x, ω + iη) is a continuous function which has, because of (HF), a finite limit at
infinity. Therefore this function is bounded and it is easy to conclude.

A particular example of a material satisfying (CP) (with α = 0), (RP) and (HF) is the case where there
exists, for any x ∈ R3, two causal real functions t 7→ χe(x, t) and t 7→ χm(x, t) in L1(R+) such that :

ε(x, ω) = ε0

(
1 + χ̂e(x, ω)

)
, µ(x, ω) = µ0

(
1 + χ̂m(x, ω)

)
, (13)

where, by Riemann-Lebesgue’s theorem, χ̂e(x, ω) and χ̂m(x, ω) extend to the closed half-space C+ to a
continuous function that tends to 0 when |ω| → +∞. In this case, using the properties of the Fourier-
Laplace transform with respect to convolution, the constitutive laws are expressed as follows:

D(x, t) = ε0

(
E(x, t) +

∫ t

0

χe(x, τ) E(x, t− τ) dτ
)
,

B(x, t) = µ0

(
H(x, t) +

∫ t

0

χm(x, τ) H(x, t− τ) dτ
)
.

(14)

2.2 Passive materials
In this section, the case α = 0 plays a particular role, since here we are interested in situations where the
electric and magnetic fields and corresponding inductions are polynomially bounded in time. In such a
medium, dispersive Maxwell’s equations are stable in the sense that there exists no mechanism of expo-
nential blow-up (think for instance of the Cauchy problem). Thus, according to (CP), ω 7→ ε(x, ω) and
ω 7→ µ(x, ω) are analytic in C+. A particular subclass of materials satisfying this property are passive
materials. Their mathematical definition requires the introduction of the notion of Herglotz function.

Definition 2.2. (Herglotz function) A Herglotz function is a complex-valued function f(ω) : C+ → C,
analytic in C+ and whose image is included in the closure of C+, i.e.

Imω > 0 =⇒ Imf(ω) ≥ 0 (15)

Let us formulate and prove some of their elementary properties that will be of use later.

Lemma 2.3. Let f be a non-constant Herglotz function. Then the following properties hold:

(i) Imω > 0 =⇒ Imf(ω) > 0,

(ii) g(ω) = − f(ω)−1 is a Herglotz function, too.

Moreover, assuming that f extends meromorphically to a neighborhood of ω0 ∈ R,

(iii) Any real zero ω0 of f(ω) is simple and f ′(ω0) is real and positive,

(iv) Any real pole of f(ω) is simple and the corresponding residueRes(f, ω0) is negative.

Proof. (i) Let ω0 ∈ C+ be such that f(ω0) ∈ R. Since f is analytic and non-constant, there exists n ∈ N∗
and a = r eiφ 6= 0 such that f(ω) − f(ω0) ∼ a (ω − ω0)n, when ω → ω0. Take ω = ω0 + ρ eiθ, with
θ ∈ [0, 2π] and 0 < ρ < Im ω0 so that ω ∈ C+. Then f(ω)−f(ω0) ∼ r ρn ei(nθ+φ) when ρ→ 0 implies

Imf(ω) = r ρn sin(nθ + φ) +O(ρn+1), ρ→ 0.

Since nθ + φ describes [φ, φ + 2nπ], Imf(ω) would take negative values for ρ small enough which
contradicts the fact that f is a Herglotz function.

(ii) By (i), g(ω) = −f(ω)−1 is well-defined and g(ω) = −f(ω) |f(ω)|−2 shows that g is Herglotz too.

(iii) If ω0 is a real zero of f of multiplicity n ≥ 1, then f(ω)− f(ω0) ∼ a (ω − ω0)n when ω → ω0 with
a = r eiθ 6= 0. Let ω = ω0 + ρ eiθ with ρ > 0 and θ ∈ ]0, π[, so that ω ∈ C+ again. We have

Imf(ω) = r ρn sin(nθ + φ) +O(ρ2).
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Since (nθ + φ) describes ]φ, φ + nπ[, if n ≥ 2, Imf(ω) would take negative values which contradicts
the Herglotz nature of f . For n = 1, θ + φ describes ]φ, φ + π[. If φ belonged to ]0, π[ the intersection
]φ, φ+π[∩ ]π, 2π[ would be non-empty and again, Imf(ω) would take negative values for ρ small enough.

(iv) If ω0 is a real pole of f , it is a zero of g = − f−1. To conclude, it suffices to combine (ii) and (iii) and
the fact that g′(ω0) = −Res(f, ω0)−1.

Then, passive materials are defined mathematically as follows.

Definition 2.4. (Passive material) A dispersive electromagnetic material as defined in section 2.1 is said
to be passive if and only if, for each x ∈ R3

ω 7→ ω ε(x, ω) and ω 7→ ω µ(x, ω) are Herglotz functions. (16)

From lemma 2.3 (i) and (ii), one sees that, for a passive material, the relationships
(
t 7→ E(x, t)

)
→
(
t 7→

D(x, t)
)

and
(
t 7→ H(x, t)

)
→
(
t 7→ B(x, t)

)
can be inverted. The mathematical definition of passivity

is related to a physical notion of passivity, which is linked to energy.

Definition 2.5. (Physical passivity) Defining the electromagnetic energy as in the vacuum, i.e.

E(t) :=
1

2

∫
R3

(
ε0 |E|2 + µ0 |H|2

)
(x, t) dx, t > 0, (17)

we shall say that a material is physically passive if, when E, H, D and B are causal fields solving (1) in
the absence of source terms (however, with non-vanishing initial conditions) for t ≥ 0 and are related by
(12), the corresponding electromagnetic energy does not increase between 0 and T for any T ≥ 0, namely,

E(T ) ≤ E(0). (18)

Remark 2.6. The property (18) does not imply that E(t) is a decreasing function of time. Indeed, since
(18) is supposed to hold only for causal fields, the "initial time" t = 0 cannot be replaced by any other
"initial time" t0. This will be made more precise in section 3.4.

For further investigation of (18), let us define the electric polarization P and the magnetization M:

D(x, t) = ε0 E(x, t) + P(x, t), B(x, t) = µ0 H(x, t) + M(x, t). (19)

Notice that, in physics, one defines the magnetization M by B = µ0 (H + M). Then, Maxwell’s equa-
tions can be rewritten as

ε0 ∂tE + rotH + ∂tP = 0, µ0 ∂tH− rotE + ∂tM = 0, x ∈ R3, t > 0. (20)

Defining, like in (13),

ε(x, ω) = ε0

(
1 + χ̂e(x, ω)

)
, ε(x, ω) = µ0

(
1 + χ̂m(x, ω)

)
, (21)

the constitutive laws (12) can be rewritten as follows:

P̂(x, ω) = ε0 χ̂e(x, ω) Ê(x, ω), M̂(x, ω) = µ0 χ̂m(x, ω) Ĥ(x, ω). (22)

One easily deduces from (20) that

d

dt
E(t) +

∫
R3

(
∂tP ·E + ∂tM ·H

)
(x, t) dx = 0. (23)

Thus, for any T > 0,

E(T )− E(0) +

∫
R3

[ ∫ T

0

(
∂tP ·E + ∂tM ·H

)
(x, t) dt

]
dx = 0. (24)
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Theorem 2.7. A passive material in the sense of definition (2.4) is physically passive.

Proof. Let ET (x, t) := 1T (t) E(x, t), where 1T (t) is the indicator function of the interval [0, T ], and
PT (x, t) the corresponding induction field via (22), i. e.

P̂T (x, ω) = ε0 χ̂e(x, ω) ÊT (x, ω). (25)

By causality, PT (x, t) = P(x, t) for any t ≤ T . Let η > 0. Then∫ T

0

∂tP ·E e−2ηt dt ≡
∫ +∞

0

∂tPT ·ET e−2ηt dt = −
∫ +∞+iη

−∞+iη

iω P̂T (ω) · ÊT (ω) dω

where we used (7) and Plancherel’s theorem. Thus, using (25) and ε0 χ̂e(x, ω) = ε(x, ω)− ε0, see 21,∫ T

0

∂tP ·E e−2ηt dt = −
∫ +∞+iη

−∞+iη

iω ε0 χ̂e(x, ω) |ÊT (ω)|2 dω,

= −
∫ +∞+iη

−∞+iη

iω ε(x, ω) |ÊT (ω)|2 dω +

∫ +∞+iη

−∞+iη

iω ε0 |ÊT (ω)|2 dω.

Since P and E are real, taking the real part of the above and using −Re (iz) = Imz, we get∫ T

0

∂tP ·E e−2ηt dt =

∫ +∞+iη

−∞+iη

Im
(
ω ε(x, ω)

)
|ÊT (ω)|2 dω − η ε0

∫ +∞+iη

−∞+iη

|ÊT (ω)|2 dω, (26)

or, equivalently,∫ T

0

∂tP ·E e−2ηt dt =

∫ +∞+iη

−∞+iη

Im
(
ω ε(x, ω)

)
|ÊT (ω)|2 dω − η ε0

∫ T

0

|E|2 e−2ηt dt. (27)

Since by passivity Im
(
ω ε(x, ω)

)
> 0 for Imω = η > 0, we have∫ T

0

∂tP ·E e−2ηt dt ≥ − η ε0

∫ T

0

|E|2 e−2ηt dt. (28)

Taking the limit of the above inequality when η tends to 0, we get∫ T

0

∂tP ·E dt ≥ 0. (29)

In the same way, we have
∫ T

0

∂tM ·H dt ≥ 0, and conclude with the help of (24).

2.3 On the equivalence between the different notions of passivity
It is natural to wonder whether the reciprocal of theorem 2.7, namely "any physically passive material
is passive in the sense of definition (2.4)", is true. Such a property seems to be commonly or implicitly
admitted in the literature. However, it is far from obvious, as this is mentioned in [14] for instance. Note
that, as a consequence of (24), the definition of physical passivity is equivalent to assuming that∫ T

0

∂tP ·E dt+

∫ T

0

∂tM ·H dt ≥ 0. (30)

for vector fields E, H, P and M related by (22) and also by Maxwell’s equations (20).

Let us introduce a third notion of passivity, clearly stronger than physical passivity:
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Definition 2.8. (Strong physical passivity) A material is strongly passive if and only if for any causal
fields E, H, P and M related by (22) (but not necessarily solving (20)), it holds

∀ T > 0,

∫ T

0

∂tP ·E dt ≥ 0 and
∫ T

0

∂tM ·H dt ≥ 0. (31)

The strong physical passivity property is the one that is most often used in the literature (see [14], [51]).
The proof of theorem 2.7 shows in fact that passivity implies strong physical passivity. The converse is
also true under additional assumptions. To demonstrate this, we will need a density lemma.

Lemma 2.9. Let L2(R+) denote the subspace of causal functions of L2(R) and L2
c(R+) the subspace of

L2(R+) functions with compact support. Any function of the form |f̂ |2 with f ∈ L2(R) (in other words
any non-negative integrable function) is the limit in L1(R) of some sequence |f̂n|2 with fn ∈ L2

c(R+).

Proof. Let L2
c(R) the dense subspace of L2(R) of compactly supported functions. By density, there exists

(fn)∞n=1 ⊂ L2
c(R) such that fn → f ∈ L2(R). Thus f̂n → f̂ ∈ L2(R). By construction, supp fn ⊂

[−Tn/2, Tn/2] so that f∗n(t) = fn(t−Tn/2) has support in [0, Tn] and thus belongs to L2
c(R+). Moreover,

f̂∗n(ω) = ei
ω Tn

2 f̂n(ω) so that |f̂∗n(ω)| = |f̂n(ω)|.

Let us prove that |f̂∗n|2 converges to |f̂ |2 in L1(R) which will conclude the proof. We write∫
R

∣∣ |f̂∗n|2 − |f̂ |2∣∣ dω ≤ ∥∥ |f̂n| − |f̂ | ‖L2(R)

∥∥ |f̂n|+ |f̂ | ‖L2(R) ≤ C
∥∥ |f̂n| − |f̂ | ‖L2(R).

We finish the proof using the second triangular inequality and Plancherel’s theorem:∫
R

∣∣ |f̂n|2 − |f̂ |2∣∣ dω ≤ C ∥∥f̂n − f̂‖L2(R) = C
∥∥fn − f‖L2(R).

Theorem 2.10. Assume that for each x ∈ R3, Im
(
ω ε(x, ω)

)
and Im

(
ω µ(x, ω)

)
are bounded functions

of ω. Let χ̂e(x, ω) and χ̂m(x, ω) be Fourier-Laplace functions of L1 causal functions t 7→ χe(x, t) and
t 7→ χm(x, t). Assume furthermore that

lim
|ω|→+∞

ω
(
ε(x, ω)− ε0

)
= 0, lim

|ω|→+∞
ω
(
µ(x, ω)− µ0

)
= 0, for ω ∈ C+. (32)

Then, the strong passivity assumption (31) implies passivity.

Proof. Notice that in (31), (E,P) and (H,M) are not connected by Maxwell’s equations. Hence, it
suffices to show that (31) for (E,P) implies Imω ε(x, ω) ≥ 0 in C+ (the proof is identical for µ instead
of ε). We start from identity (27). Since t 7→ χe(x, t) belongs to L1(R+), the function ω 7→ χ̂e(x, ω)
extends continuously to the real axis. Thus, this also holds for the function ω 7→ ε(x, ω), which is thus
continuous and bounded (thanks to (32)) along the real axis. Thanks to these properties, using Lebesgue’s
dominated convergence theorem, we can pass to the limit in (27) when η tends to 0 to obtain∫ T

0

∂tP ·E dt =

∫ +∞

−∞
Im
(
ω ε(x, ω)

)
|ÊT (ω)|2 dω ≥ 0.

This being true for any T and any E ∈ L2(R), using the density lemma 2.9, we get∫ +∞

−∞
Im
(
ω ε(x, ω)

)
g(ω) dω ≥ 0, ∀ g ∈ L1(R) such that g ≥ 0

from which we immediately infer that

∀ ω ∈ R, Im
(
ω ε(x, ω)

)
≥ 0.
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To extend this positivity result to the half-space C+, let us set, for any R > 0, ΩR = {ω ∈ C+/ |ω| < R},
that we identify to an open set of R2. Let

ux(x, y) = Im
(
(x+ iy) (ε(x, x+ iy)− ε0)

)
, (x, y) ∈ R2

+ := R× R+
∗ .

By analyticity of ε(x, ω) in C+, ux is harmonic in R2
+ so that, in ΩR, the minimum of u(x, y) is attained

on ∂ΩR := [−R,R] ∪ ΓR, ΓR =
{
Reiθ, θ ∈ (0, π)

}
. Since ux is non-negative on the real axis, we get

min
(x,y)∈ΩR

ux(x, y) ≥ min
(
0, min

(x,y)∈ΓR
ux(x, y)

)
.

On the other hand, due to (32), ‖ux‖L∞(ΓR) → 0 when R → +∞. Thus, for any δ > 0 (arbitrar-
ily small), there exists Rδ > 0, with Rδ → +∞ when δ → 0 such that sup(x,y)∈ΓRδ

|ux(x, y)| <
δ, thus min(x,y)∈ΩRδ

ux(x, y) ≥ − δ, and one easily concludes by making δ tend to 0 that ux(x, y) ≥ 0

for all (x, y) ∈ R× R+
∗ which implies that Im(ω ε(x, ω)) ≥ ε0 Imω > 0 for all ω ∈ C+.

Remark 2.11. The result of theorem 2.10 is likely to be valid under much weaker assumptions (removing
in particular the L1 assumption for χe or χm), as stated in the book [53] and used e.g. in [5], [51].

3 Local dispersive materials

3.1 Definition
We shall say that a dispersive material is local if and only if

(LM) ω 7→ ε(x, ω) and ω 7→ µ(x, ω) are (irreducible) rational fractions.

The term local can be misleading since it does not mean that the constitutive laws are local in time: memory
effects are present a priori. However, they are of particular form, as it will be explained in detail later.

Definition 3.1. (Admissible local materials) We will call local materials admissible if and only if they
are compatible with the conditions (CP), (RP) and (HF). The reader can easily verify that

(ALM)


ε(x, ω) = ε0

(
1 +

Pe(x,−iω)

Qe(x,−iω)

)
, µ(x, ω) = µ0

(
1 +

Pm(x,−iω)

Qm(x,−iω)

)
, where

Pe(x, ·), Qe(x, ·), Pm(x, ·), Qm(x, ·) are polynomials with real coefficients

that satisfy doPe(x, ·) < Me := doQe(x, ·), doPm(x, ·) < Mm := doQm(x, ·).

Remark 3.2. For simplicity, we consider only the case where Me and Mm do not depend on x.

In the above framework, the relationship (12) can be rewritten in terms of ordinary differential equations
(ODEs) in time, introducing the polarization P and magnetization M as in (19). More precisely, D(x, t) = ε0 E(x, t) + P(x, t), B(x, t) = µ0 H(x, t) + M(x, t), (a)

Qe(x, ∂t) P = ε0Pe(x, ∂t) E, Qm(x, ∂t) M = µ0Pm(x, ∂t) H, (b)
(33)

where (33(b)) is completed with properly chosen initial conditions compatible with (12). The above justi-
fies the term local, since differential operators are local in time (they ’see’ only the behaviour of a function
around a given time). Using the theory of linear ODEs, (33) can be expressed in the form (14), where
t 7→ χe(x, t) and t 7→ χm(x, t) are linear combinations of exponentials, possibly multiplied by polynomi-
als (the exponential rates are the poles of ε(x, ·), µ(x, ·) and the polynomial degrees are the multiplicities
of these poles). Notice that t 7→ χe(x, t) and t 7→ χm(x, t) do not necessarily belong to L1(R+) !

In the following, we shall pay a particular attention to so-called lossless media defined as follows.
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Definition 3.3. (Lossless local medium) An admissible local medium is said to be lossless if and only if
the functions ω 7→ ε(x, ω) and ω 7→ µ(x, ω) are real-valued along the real axis (outside poles of course).

Lossless local media are characterized by the following theorem.

Theorem 3.4. An admissible local material is lossless if and only if ε(x, ω) and µ(x, ω) are even in ω, i.e.
the polynomials Pe(x, ·), Qe(x, ·), Pm(x, ·) and Qm(x, ·), are even in ω.

Proof. Let us give the proof for ε. Let ω ∈ R be such that ω and −ω are not poles of ω 7→ ε(x, ω). Using
first the fact that ω ∈ R, the reality principle (RP) and finally the fact that ε(x, ω) is real, we deduce

ε(x,−ω) = ε(x,−ω) = ε(x, ω) = ε(x, ω).

Since ω 7→ ε(x, ω) is rational, the above implies that ω 7→ ε(x, ω) is even on its domain of definition.

Satisfying (ALM) does not however guarantee the well-posedness of the evolution problem corresponding
to (1, 33). To further investigate this question, as well as other problems such as wave dispersion, it is useful
to look at the case of homogeneous local dispersive media. This is the subject of the next sections.

Common examples of dispersive models.

• Conductive media. This is an example of dissipative (not lossless) medium. It corresponds to the
case where B = µ0H and ∂tD = ε0 ∂tE + σ(x)E, where σ(x) ≥ 0 is the conductivity, i.e.

ε(x, ω) = ε0 −
σ(x)

iω
, µ(x, ω) = µ0. (34)

• Lorentz and Drude media. For these media, the permittivity and permeability read

ε(x, ω) = ε0

(
1 +

Ωe(x)2

ωe(x)2 − ω2

)
, µ(x, ω) = µ0

(
1 +

Ωm(x)2

ωm(x)2 − ω2

)
, (35)

where (Ωe(x), ωe(x),Ωm(x), ωm(x)) are coefficients that characterize the medium. The reader will
easily check that this medium is admissible and lossless. We shall see in section 4 that a natural gen-
eralization of (35) leads to a quite general class of materials, representative of all passive materials.

In the case where the so-called resonance frequencies ωe(x) and ωm(x) vanish, one obtains the
Drude material, which is (in some sense) the simplest dispersive lossless material. For it,

ε(x, ω) = ε0

(
1− Ωe(x)2

ω2

)
, µ(x, ω) = µ0

(
1− Ωm(x)2

ω2

)
. (36)

Finally, a lossy version of Lorentz material corresponds to the following constitutive laws :
ε(x, ω) = ε0

(
1 +

Ωe(x)2

ωe(x)2 − i αe(x)ω − ω2

)
,

µ(x, ω) = µ0

(
1 +

Ωm(x)2

ωm(x)2 − i αm(x)ω − ω2

)
,

(37)

where the coefficients αe(x) ≥ 0 and αm(x) ≥ 0 play a role similar to the conductivity in (34). In
this case the poles of ε(x, .) and µ(x, .) belong to the lower half-space C \ C+.

3.2 Homogeneous media
Let us consider now homogeneous local dispersive media occupying the whole space R3. Since ε and µ do
not depend on x, the electromagnetic field is governed by the following system of evolution equations ε0 ∂tE + rotH + ε0 ∂tP = 0, µ0∂tH− rotE + µ0 ∂tM = 0, x ∈ R3, t > 0, (a)

Qe(∂t) P = ε0 Pe(∂t) E, Qm(∂t) M = µ0 Pm(∂t) H, x ∈ R3, t > 0, (b)
(38)
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where the polynomials Pe, Qe, Pm, Qm have the properties explained in (ALM). Our main purpose is to
study the Cauchy problem, when (38) is completed by initial conditions

E(x, 0) = E0(x), H(x, 0) = H0(x), (E0,H0) ∈ L2(R3)3 × L2(R3)3. (39)

We are interested in the L2-well-posedness, i.e. existence and uniqueness of a solution satisfying

(E,H) ∈ C0(R+;L2(R3)3)× C0(R+;L2(R3)3). (40)

For what follows, it will be useful to introduce the notion of equivalent models.

3.2.1 Equivalent and non-degenerate models

Definition 3.5. (Equivalent models) Two local dispersive models (ε, µ) and (ε∗, µ∗) are said to be equiv-
alent if and only if ε(ω)µ(ω) = ε∗(ω)µ∗(ω) (as rational fractions in ω).

The interest of this notion lies in the following result.

Theorem 3.6. If the Cauchy problem associated to (ε, µ) is well posed, the Cauchy problem associated to
any equivalent model (ε∗, µ∗) is well posed too. In other words, to prove the well-posedness of the Cauchy
problem for a given medium, it suffices to prove the well-posedness for any medium equivalent to it.

Proof. Let (ε∗, µ∗) be a local dispersive media equivalent to (ε, µ). Let ν be a rational fraction such that

ε∗ = ν ε, µ = ν−1 µ∗.

We assume that the Cauchy problem associated to (ε, µ) is well-posed, and wish to prove the well-
posedness of the model (ε∗, µ∗). By linearity, it suffices to study the well-posedness for the Cauchy
data of the form (E∗0, 0), or (0,H∗0). Let us consider the first case. We have, with obvious notations,

D̂∗ = ε∗Ê∗, B̂∗ = µ∗Ĥ∗.

In particular, the Maxwell system (1) in the medium (ε∗, µ∗) with the initial data (E∗0, 0) in the frequency
domain reads (apply Laplace-Fourier transform and use (7))

−iω D̂∗ −E∗0 − rot Ĥ∗ = 0, −iω B̂∗ + rot Ê∗ = 0,

which can be rewritten as follows, since ν is independent of the space variable,

−iω ε ν Ê∗ −E∗0 − rot Ĥ∗ = 0, −iωµ Ĥ∗ + rot (νÊ∗) = 0.

Defining Ê := ν Ê∗ and setting the initial data E0 := E∗0, we obtain the following system:

−iωεÊ−E0 − rot Ĥ∗ = 0, −iωµĤ∗ + rot Ê = 0.

In the time domain, the above is reduced to the Cauchy problem for the local dispersive media (ε, µ) with
respect to the unknowns Ê and Ĥ∗.

Thanks to the above property, we can restrict ourselves to the following non-degeneracy property.

Definition 3.7. (Non-degenerate local dispersive models) A local dispersive model (ε, µ) is called non-
degenerate if and only if ω2 ε(ω)µ(ω) is an irreducible rational fraction, or, equivalently, denoting by Pe
(resp. Pm) the set of poles of ε (resp. µ) and by Ze (resp. Zm) the set of zeros of ω ε (resp. ω µ),

Pe ∩ Zm = ∅, Pm ∩ Ze = ∅.

From now on, we study only non-degenerate models. This is not restrictive due to the following result.

Lemma 3.8. Any local dispersive media is equivalent (definition 3.5) to a non-degenerate model.
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3.2.2 Plane waves. Well-posedness and stability.

To study (38), let us concentrate on particular solutions (plane-wave solutions) of (38)(a,b) in the form
E(x, t) = E exp i(k · x− ω t), H(x, t) = H exp i(k · x− ω t)

P(x, t) = P exp i(k · x− ω t), M(x, t) = M exp i(k · x− ω t)

k ∈ R3, ω ∈ C,
(
E,H,P,M

)
∈ C3 × C3 × C3 × C3.

(41)

When ω = ωR + i ωI , we can rewrite the plane wave solution (41) as follows (for the electric field)

E(x, t) = E exp i(k · x− ωR t) eωIt. (42)

It corresponds to a wave propagating in the direction of the wave vector k at the phase velocity ωR/|k|
with an amplitude which varies in time proportionally to eωI t.

By definition, when ωI = 0, the wave is called purely propagative, when ωI < 0 the wave is evanescent
in time, and when ωI > 0, the wave in unstable.

In view of the time domain analysis of (38) as an evolution problem for (E,H,P,M) in the spaceL2(R3)4,
the correct point of view for looking at plane waves is to consider the wave vector k ∈ R3 as a given param-
eter and to look for the related (complex) frequencies ω and corresponding amplitude vectors

(
E,H,P,M

)
.

This approach is validated a posteriori by the use of the Fourier transform in space, the wave vector k being
the dual variable of the space variable x. Substituting (41) into (38)(a,b) leads to k×H = ω (ε0 E + P) , k× E = −ω (µ0 H + M)

Qe(−iω) P = ε0Pe(−iω) E, Qm(−iω) M = µ0Pm(−iω) H,

We can separate the solutions into two families:

Purely magnetic or electric static modes. These are solutions associated with ω ∈ Pe := {poles of ε ≡
zeros of Qe} or ω ∈ Pm := {poles of µ ≡ zeros of Qm}. We call these mode static because ω is indepen-
dent of k. In this case we have:

• for ω ∈ Pe, for each k, a three dimensional space of amplitude vectors corresponding to

(Magnetic modes) E = 0, P = ω−1 k×H, M = −µ0 H, H ∈ C3.

• for ω ∈ Pm, for each k, a three-dimensional space of amplitude vectors corresponding to

(Electric modes) H = 0, M = −ω−1 k× E, P = −ε0 E, E ∈ C3.

Maxwell modes. When ω /∈ Pe ∪ Pm, one can first eliminate P and M to obtain

P =
(
ε(ω)− ε0

)
E, M =

(
µ(ω)− µ0

)
H, k×H = ω ε(ω) E and k× E = − ω µ(ω)H. (43)

From (43), we obtain the eigenvalue problem − k× (k× E) = ω2 ε(ω)µ(ω)E which we can solve to get

(i) Either ω2ε(ω)µ(ω) = 0 (curl-free static modes) and we have three subcases:

1. if ωε(ω) = 0 and ωµ(ω) 6= 0, then k× E = 0 and H = 0 (1D space of solutions);

2. if ωε(ω) 6= 0 and ωµ(ω) = 0, then k×H = 0 and E = 0 (1D space of solutions);

3. if ωε(ω) = 0 and ωµ(ω) = 0, then k× E = 0 and k×H = 0 (2D space of solutions).
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(ii) Either ω2ε(ω)µ(ω) 6= 0, one gets from and (43) that k · E = 0 and and H = −(ωµ(ω))−1k × E
(eigenspace of dimension 2) for ω and k being linked by the dispersion relation

ω2 ε(ω)µ(ω) = |k|2. (44)

Remark 3.9. Two equivalent media, in the sense of definition 3.5, have the same dispersion relation.

Remark 3.10. The dispersion equation (44) can be seen as a polynomial equation in ω with degree N =
Me + Mm + 2 (where we recall that Me and Mm are the respective degrees of the polynomials Qe and
Qm, see definition 3.1) whose coefficients are affine functions in |k|2 and whose higher order term is
independent of |k|. As a consequence, this equation admits N branches of solutions

|k| → ωj
(
|k|
)
, 1 ≤ j ≤ N, (45)

where each function |k| → ωj
(
|k|
)

is continuous and piecewise analytic. Moreover, it is known [28] that
the loss of analyticity can occur only at a values of |k| for which ωj

(
|k|
)

is not a simple root of (44).

Let us study the L2−well-posedness of (38) , i.e. let us look for solutions of (38) such that

(E,H,P,M) ∈ C0(R+;L2(R3))4 (46)

for given initial fields E0 ≡ E(·, 0) ∈ L2(R3)3 and H0 ≡ H(·, 0) ∈ L2(R3)3.

Definition 3.11. (Well-posedness and stability) The problem (38) is well posed if there exists a unique
solution satisfying (46) and, for some C(t) ≥ 0,

‖E(·, t)‖L2 + ‖H(·, t)‖L2 + ‖P(·, t)‖L2 + ‖M(·, t)‖L2 ≤ C(t)
(
‖E0‖L2 + ‖H0‖L2

)
(47)

Otherwise, the problem is said strongly ill posed. If, in addition, C(t) = C (1 + tp) for some C > 0 and
p ∈ N, which prevents any exponential blow-up, then the problem is said to be stable.

Using Fourier analysis (in particular Plancherel’s theorem), see e. g. [30], it is not difficult to establish the

Lemma 3.12. The problem (38) is well posed if and only if there exists M ≤ 0 such that

∀ 1 ≤ j ≤ N, Imωj
(
|k|
)
≤M. (48)

The problem (38) is stable if and only if

Pe ∪ Pm ⊂ C \ C+ and ∀ 1 ≤ j ≤ N, Imωj
(
|k|
)
≤ 0. (49)

Remark 3.13. Looking at (44) when k→ 0 shows that, for stable media, Ze ∪ Zm ⊂ C \ C+ too.

Thus, strongly ill posed models admit unstable plane waves whose rate of exponential blow-up can be
arbitrarily large, while for unstable models this rate must be uniformly bounded.

Theorem 3.14. For any local admissible material, the problem (38) is well posed.

Proof. By continuity, Imωj
(
|k|
)

can blow up only when |k| → +∞. Inspecting (44), one sees that,

• Either ωj
(
|k|
)

= ± c0 |k|+O(1) (|k| → +∞), and thus Imωj
(
|k|
)

remain bounded,

• Either lim
|k|→+∞

ωj
(
|k|
)

exists and belongs to Pe ∪ Pm, so that Imωj
(
|k|
)

is bounded too.

This proves well-posedness.

Remark 3.15. One sees here the mathematical importance of condition (HF). Assume for instance that

ε(ω)µ(ω) ∼ C∞ ωq (|ω| → +∞), q ∈ N∗, C∞ = ρ∞ eiθ∞ , ρ∞ > 0, θ∞ ∈ [0, 2π[.

In this case , (44) would admit q + 1 solutions ω∞`
(
|k|
)

satisfying

ω∞`
(
|k|
)
∼ ρ∞ exp i

(θ∞ + ` π

q + 2

)
|k|

2
q+2 (|k| → +∞)

so that, at least for one of them, the imaginary part of ω∞`
(
|k|
)

would tend to +∞ !
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3.2.3 Non-dissipative media. Definition and first results.

Non-dissipative media are a particular sub-class of stable media.

Definition 3.16. (Non-dissipative media). We shall say that a local medium is non-dissipative if and only
if all plane waves in such a medium are purely propagative. In other words, a medium is non-dissipative if
and only if all solutions of the dispersion relation (44) are real.

Let us establish a connection with the notion of lossless medium (see definition 3.3). Let us set

F(ω) := ω2 ε(ω)µ(ω), (so that (44)⇐⇒ F(ω) = |k|2) (50)

Lemma 3.17. A rational function R(ω) with real poles and zeros, for which R(−ω) = R(ω), is even.

Proof. The property R(−ω) = R(ω) implies that if ω is a pole (resp. a zero) of R(ω), −ω is a pole (resp.
a zero) too. Since the poles (resp. the zeros) are in addition real, they are symmetrically distributed with
respect to the origin. In other words we can write (with obvious notation)

R(ω) = A
(ω2 − z2

1) · · · (ω2 − z2
Nz

)

(ω2 − p2
1) · · · (ω2 − p2

Np
)

(with A ∈ R).

This finishes the proof.

Lemma 3.18. If a non-degenerate local medium is non-dissipative, the poles and the zeros of F(ω) are all
real, and their multiplicity is less or equal to 2. In particular, ω = 0 is not a zero of µ(ω) or ε(ω).

Proof. Let ω∗ be a zero of ω2 ε µ of multiplicity m > 0. For some non-zero A∗, we can write

ω2 ε(ω)µ(ω) ∼ A∗ (ω − ω∗)m in the vicinity of ω∗.

Rewriting the dispersion equation (44) as A∗ (ω − ω∗)m
(
1 +O(ω − ω∗)

)
= |k|2, one deduces (using the

implicit function theorem) that for |k| → 0, (44) admits m branches of solutions ω`(|k|), 1 ≤ ` ≤ m:

ω`(|k|) = ω∗ +A∗ |k|
2
m exp i

(` π
m

) (
1 + o(1)

)
, 1 ≤ ` ≤ m

Then, writing that ω`(|k|) ∈ R shows that ω∗ ∈ R and m ≤ 2 (as well as A∗ ∈ R).

In the same way, let ω∗ be a pole of ω2 ε µ of multiplicity m > 0. For some non-zero A∗, we can write

ω2 ε(ω)µ(ω) ∼ A∗ (ω − ω∗)−m

Rewriting the dispersion equation (44) as A∗ (ω−ω∗)−m
(
1+O(ω−ω∗)

)
= |k|2, one deduces (using the

implicit function theorem) that for |k| → +∞, (44) admits m branches of solutions ω`(|k|), 1 ≤ ` ≤ m:

ω`(|k|) = ω∗ +A∗ |k|−
2
m exp i

(` π
m

) (
1 + o

(
1
))
, 1 ≤ ` ≤ m.

Again, writing that ω`(|k|) ∈ R shows that ω∗ ∈ R and m ≤ 2 (and A∗ ∈ R).

Corollary 3.19. If a non-degenerate local medium is non-dissipative, the functions ε(ω) and µ(ω) are even
and their poles are real and their zeros are real. Moreover,

• (i) The multiplicity of each zero or each non-zero pole is at most 2, and equals 1 if such a pole or
zero is shared by ε(ω) and µ(ω).

• (ii) The multiplicity of 0 as a pole of ε(ω) or µ(ω) is at most 4.
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As a consequence, ε and µ are necessarily of the form
ε(ω) = ε0

(
1 +

Ne∑
`=0

ae,`
ω2
e,` − ω2

+

Ne∑
`=0

be,`

(ω2
e,` − ω2

)2), (ae,`, be,`) ∈ R2, 0 ≤ ` ≤ Ne,

µ(ω) = µ0

(
1 +

Nm∑
`=1

am,`
ω2
e,` − ω2

+

Nm∑
`=1

bm,`(
ω2
m,` − ω2

)2), (ae,`, be,`) ∈ R2, 0 ≤ ` ≤ Nm.
(51)

with 0 ≤ ω0
p,e < · · · < ωNep,e, 0 ≤ ω0

p,m < · · · < ωNmp,m and be,` = bm,`′ = 0 if ωe,` = ωm,`′ .

In particular, the medium is lossless in the sense of definition 3.3.

Proof. Because of the non-degeneracy assumption, each zero of ε(ω) or µ(ω) is a zero of F(ω). The
same is true for the poles of ε(ω) or µ(ω) which are different from 0. Thus, by lemma 3.18, all poles and
zeros of ε(ω) and µ(ω) are real and lemma 3.17 ensures that ε(ω) and µ(ω) are even. If ω∗ is a zero of
multiplicity mε of ε(ω) and a zero of multiplicity mµ of µ(ω), first of all, by lemma 3.18, ω∗ 6= 0. Thus,
its multiplicity as a zero of F(ω) is mε+mµ, and lemma 3.18 yields mε+mµ ≤ 2, which shows property
(i) for the zeros. The same reasoning applies to non-zero poles, which completes the proof of property (i).
If 0 is a pole of multiplicity mε of ε(ω) and a pole of multiplicity mµ of µ(ω), its multiplicity as a pole of
F(ω) is mε +mµ − 2. Then (ii) follows from lemma 3.18 again. Taking into account (HF), formulas (51)
are obtained by the usual partial fraction expansion, the reality of the coefficients follow from the reality
principle (RP), and the last condition is obtained from (i), (ii).

3.2.4 Non-dissipative passive local materials.

The reciprocal of lemma 3.18, namely that any lossless material is non-dissipative, is not true. Consider

ε(ω) = ε0

(
1 +

Ω2
e

ω2

)
, µ(ω) = µ0.

The dispersion relation (44) reads ω2 = |k| −Ω2
e, and hence ω /∈ R for |k| < Ωe. However, the reciprocal

of Lemma 3.18 holds true for passive materials.

Lemma 3.20. Any lossless local passive material is non-dissipative.

Proof. Assume that (44) admits for some k 6= 0, a non-real root ω. Since−ω is a solution too (cf. Theorem
3.4), we can assume that Imω > 0. Taking the real and imaginary part of (44), we thus get

(a) Re
(
ω ε(ω)

)
Re
(
ω µ(ω)

)
= |k|2 + Im

(
ω ε(ω)

)
Im
(
ω µ(ω)

)
(b) Re

(
ω ε(ω)

)
Im
(
ω µ(ω)

)
+ Im

(
ω ε(ω)

)
Re
(
ω µ(ω)

)
= 0

Since ω ε(ω) and ω µ(ω) are Herglotz functions (passivity), we deduce from (a) that Re
(
ω ε(ω)

)
and

Re
(
ω µ(ω)

)
are of the same sign while (b) says that they are of opposite signs. This is a contradiction.

Theorem 3.21. [Representation of local lossless passive materials] The electric permittivity and magnetic
permeability

(
ε(ω), µ(ω)

)
associated to a lossless passive local material are necessarily of the form (we

speak of generalized Lorentz materials)

ε(ω) = ε0

(
1 +

Ne∑
`=1

Ω2
e,`

ω2
e,` − ω2

)
, µ(ω) = µ0

(
1 +

Nm∑
`=1

Ω2
m,`

ω2
m,` − ω2

)
. (52)

where the ωe,`’s and ωm,`’s are real, and the Ωe,`’s and Ωm,`’s are positive real numbers. Reciprocally, a
medium associated with (52) is necessarily passive and lossless.
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Proof. By lemma 3.20, we know that the medium is non-dissipative. Thus, by corollary 3.19,
(
ε(ω), µ(ω)

)
are of the form (51). Moreover, since ω ε(ω) and ω µ(ω) are Herglotz functions (cf. the definition 2.4 of
passive media), we know by lemma 2.3 that their real poles (i.e. their poles since all of them are real)
are simple: in other words, except maybe for ω = 0, the poles of ε(ω) and µ(ω) are simple. Thus, the
coefficients be,` and bm,` appearing in (51) vanish. Finally, using (51), one can compute explicitly the
residue of ωε(ω) and ωµ(ω) at each of their poles :

Res
(
ω ε(ω),±ωe,`

)
= ε0

ae,`
2
, Res

(
ω µ(ω),±ωm,`

)
= µ0

am,`
2
,

which shows, by lemma 2.3, that ae,` and am,` are positive numbers, i. e. ae,` = Ω2
e,` and am,` = Ω2

m,`.

Reciprocally, to prove the passivity of generalized Lorentz materials, we compute

ω ε(ω) = ε0

(
ω +

Ne∑
`=1

Ω2
e,`

ω

ω2
e,` − ω2

)
≡ ε0

(
ω +

Ne∑
`=0

Ω2
e,`

ω ω2
e,` − ω |ω|2

|ω2
e,` − ω2|2

)
so that

Im
(
ω ε(ω)) = ε0 (Imω)

(
1 +

Ne∑
`=0

Ω2
e,`

ω2
e,` + |ω|2

|ω2
e,` − ω2|2

)
,

which proves that ω ε(ω) is a Herglotz function. The same holds for ω µ(ω).

ω

ε(ω)

ω

ωε(ω)

Figure 1: Left: a typical graph of ε(ω) when 0 is not a pole. Right: illustration of the growing property

Remark 3.22. For any Lorentz material, if 0 is not a pole of ε (resp. µ), ε(0) ≥ ε0 (resp. µ(0) ≥ µ0).

One can wonder whether a non-dissipative local material is necessarily passive. This is not the case as
it can be guessed from the fact that the non-dissipativity is linked to a property of the product ε µ while
passivity relies on a property for each of the functions ε and µ. Let us consider the following example

ε(ω) = ε0

(
1− Ω2

e

ω2

)(
1− Ω2

m

ω2

)
, µ(ω) = µ0.

The corresponding medium is equivalent, in the sense of the definition 3.5, to the Drude medium

ε(ω) = ε0

(
1− Ω2

e

ω2

)
, µ(ω) = µ0

(
1− Ω2

m

ω2

)
.

and is thus non-dissipative (it has the same dispersion relation). However this medium is not passive since

ω ε(ω) ∼ Ω2
e Ω2

m

ω3
when ω → 0

so that for ω = ρ eiθ, θ ∈ ]0, π[ , ρ→ 0, ω ε(ω) ∼ ρ e−3iθ, which lies in C− when θ ∈ ]π/3, 2π/3[ .

Nevertheless we have the following result, a proof of which is given in Appendix.
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Theorem 3.23. A non-dissipative local material is necessarily equivalent to a passive material (thus to a
generalized Lorentz medium).

In a local passive non-dissipative material, Maxwell’s equations can be rewritten, modulo the introduction
of appropriate auxiliary unknowns, as the coupling of standard Maxwell’s equations in the vacuum with a
system of linear second order ODE’s (harmonic oscillators). The precise result is the following:

Theorem 3.24. A PDE-system associated to dispersive Maxwell’s equations in the media (52) reads :
ε0 ∂tE + rotH + ε0

Ne∑
`=1

Ω2
e,`∂tP` = 0, µ0 ∂tH− rotE + µ0

Nm∑
`=1

Ω2
m,`∂tM` = 0,

∂2
t P` + ω2

e,` P` = E, ∂2
tM` + ω2

m,`M` = H.

(53)

with P`(x, 0) = ∂tP`(x, 0) = 0, 0 ≤ ` ≤ Ne , and M`(x, 0) = ∂tM`(x, 0) = 0, 0 ≤ ` ≤ Nm .

Proof. With (52), we define the polarization P and the magnetization M (see (19)) as

P = ε0

Ne∑
`=0

Ω2
e,` P`, M = µ0

Nm∑
`=0

Ω2
m,`M`, (54)

where the Fourier-Laplace transforms of the P`’s and the M`’s satisfy(
ω2
e,` − ω2

)
P̂` = Ê,

(
ω2
m,` − ω2

)
M̂` = Ĥ,

It is then obvious to conclude.

We finish this section with a characteristic property of local passive materials: the growing property.

Theorem 3.25. Any passive local material satisfies the growing property :

∀ ω ∈ R \ Pe,
d

dω
(ω ε)(ω) > 0, ∀ ω ∈ R \ Pm,

d

dω
(ω µ)(ω) > 0. (55)

Reciprocally, if a (non-degenerate) non-dissipative local material satisfies (55), it is passive.

Proof. For the direct statement, we can use formula (52) and directly compute

d

dω

(
ω ε
)
(ω) = ε0

(
1 +

Ne∑
`=1

Ω2
e,`

d

dω

( ω

ω2
e,` − ω2

))
≡ ε0

(
1 +

Ne∑
`=1

Ω2
e,`

ω2
e,` + ω2(

ω2
e,` − ω2

)2)
For the reciprocal statement, assume now that (ωε(ω))′ > 0 for ω /∈ Pe. This immediately implies that
all zeros of ωε(ω) are simple and that ωε(ω) does not admit local minima or maxima. As a consequence,
between two consecutive zeros of ωε(ω) there is one pole of ωε(ω) and between two consecutive poles
there is one zero. Therefore, zeros and poles of ωε(ω) interlace along the real axis. Since ε(ω) → ε0 as
ω →∞, the number of poles (counted with multiplicities) of ωε(ω) is smaller than the number of zeros of
ωε(ω) by one. This, together with the fact that ωε(ω) has only simple zeros, implies that all the poles of
ωε(ω) are simple too. So are the poles of ε(ω), with a possible exception of ω = 0, which can be a double
pole (it cannot be a simple pole since ε(ω) is an even function). As ε(ω) is even, real on the real axis and
ε(ω)→ ε0 as ω →∞, it admits the following partial fraction expansion

ε(ω) = ε0

(
1 +

Ne∑
`=0

ae,`
ω2
` − ω2

)
, ω` ∈ R, ae,` ∈ R, ` = 0, . . . , Ne.

It remains to show that ae,` > 0 ( i. e. ae,` = Ω2
e,` ) for all ` = 0, . . . , Ne. For this we compute explicitly

(ωε(ω))′ = ε0

(
1 +

Ne∑
`=0

ae,`(ω
2 + ω2

` )

(ω2
` − ω2)2

)
.

In the vicinity of ω = ω` the above expression is of the same sign as ae,` (this remains true for ω` = 0),
therefore ae,` > 0 for all ` = 0, . . . , n.
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3.3 Dispersion analysis of non-dissipative materials
3.3.1 Introduction

In this section we will study the solutions of the dispersion relation (44), seen again as an equation for ω, k
being a parameter. According to theorem 3.23 and remark 3.9, we can restrict ourselves to passive media,
or, with theorem 3.21, to generalized Lorentz materials associated with (52). In this case, for fixed k, (44)
is an equation of degree 2Ne + 2Nm + 2 in ω (more precisely of degree N := Ne +Nm + 1 in ω2).

For the simplicity of the exposition and to avoid the treatment of multiple cases, we shall limit our dis-
cussion to the particular case where 0 is not a pole of ε nor µ (this is not restrictive, see remark 3.32):

0 /∈ P := Pe ∪ Pm. (56)

Let us introduce a function which will play a privileged role in the forthcoming analysis, namely

D(ω) := F ′(ω) = (ω ε)′(ω)
(
ω µ(ω)

)
+ (ω µ)′(ω)

(
ω ε(ω)

)
, ω /∈ P. (57)

In what follows, we shall refer repeatedly to the following technical lemma:

Lemma 3.26. At any point ω ∈ R \ P where F(ω) > 0, D(ω) 6= 0 and has the same sign as ω ε(ω) > 0
(or ω µ(ω) > 0). Let I be an interval which does not intersect P . If F is positive in I , F(ω) is strictly
monotonous in I: strictly increasing if ω ε(ω) > 0 in I , strictly decreasing if ω ε(ω) < 0 in I . As a
consequence, if F admits a (strict) local extremum at ω = ωext, F(ωext) ≤ 0 and the number of points
inside I at which F changes its sign is at most equal to 2.

Proof. If F(ω) > 0 , ω µ(ω) and ω ε(ω) are non-zero real numbers with the same sign. Due to (55) and
(57), D(ω) = F ′(ω) has the same sign that ω µ(ω) and ω ε(ω).

If F attained a local extremum at a point ωext where F(ωext) > 0, there would exist a neighborhood
of ωext in which F would be positive and non-monotonous, which would contradict the first part of the
lemma. If F had three changes of sign inside I , it would attain a local maximum at a point where it is
positive (see figure 2), which would contradict the previous result.

Figure 2: Impossibility of three sign changes: the ’bad’ maxima are indicated by the red points

Remark 3.27. If I is an interval which does not intersect P then by lemma 113, F can admit at most two
zeros (counted with their multiplicity) inside I .

3.3.2 General results. Spectral bands and gaps.

Lemma 3.28. Assume (56). All solutions ω of (44) for k 6= 0 are simple and non-zero.

Proof. The fact that ω 6= 0 follows from (56) which implies F = 0. The fact that it is a simple root, i. e.
that D(ω) 6= 0, is a consequence of lemma 3.26 since F(ω) = |k|2 implies F(ω) > 0 .
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Corollary 3.29. The set Ω
(
k) of the solutions of the dispersion relation can be labeled as follows

Ω
(
k) = {± ω`

(
|k|
)
, 0 ≤ ` ≤ N + 1}, 0 < ω0

(
|k|
)
< ω1

(
|k|
)
< · · · < ωN+1

(
|k|
)
. (58)

Moreover, each function |k| 7→ ω`
(
|k|
)

is analytic and strictly monotonous.

Proof. (58) immediately follows from lemma 3.28 together with the evenness of ε and µ. The analytic
smoothness then follows from the simplicity of the solutions ω`

(
|k|
)

at any |k| > 0 (use for instance the
implicit function theorem). To prove the strict monotonicity of it suffices to notice that

F
(
ω`
(
|k|
) )

= |k|2 =⇒ D
(
ω`
(
|k|
) )
ω′`
(
|k|
)

= 2 |k|

which implies in particular that ω′`
(
|k|
)
6= 0 (as well as D

(
ω`
(
|k|
) )
6= 0) for any |k| 6= 0.

In what follows we shall define the spectrum of the medium as the closure of the set of propagative
frequencies, i.e. as the closure of the set of frequencies at which there exists a propagative plane wave, in
other words,

S = closure {ω ∈ R \ P / F(ω) ≥ 0} (59)

that can be rewritten as a finite union of closed intervals, called spectral bands:

S =

N+1⋃
`=0

± B`, B` := closure
{
ω`
(
|k|
)
, |k| ∈ [0,+∞[

}
. (60)

The term spectrum is justified: in section 4.3 S appears as a spectrum of a certain self-adjoint operator.

Lemma 3.30. Two distinct spectral bands cannot overlap: the intersection of two bands is either empty
or reduced to one of their extremities. Furthermore, the function ωN+1

(
|k|
)

is strictly increasing and the
corresponding band BN+1 is of the form [z∗,+∞[ where z∗ is the largest positive zero of F(ω).

Proof. First assume that there existsm 6= ` such that B` and Bm overlap. Then, there would exist non-zero
k and k′ such that ω`

(
|k|
)

= ωm
(
|k′|
)
≡ ω ∈ R+. Since F

(
ω`
(
|k|
) )

= |k|2 and F
(
ωm
(
|k′|
) )

= |k′|2,
we deduce |k| = |k′|, which is impossible since ` 6= m (cf. (58)).

The fact that F(ω) ∼ c20 ω
2 when ω tends to +∞ shows that the image of the function ωN+1

(
|k|
)

is
an interval of the form [z∗,+∞[. By a contradiction argument, this shows that ωN+1

(
|k|
)

is strictly
increasing. Therefore, z∗ = ωN+1(0) which implies F(z∗) = 0 and F(ω) > 0 for ω > z∗.

The set G of non-propagative frequencies is the open subset of R defined as:

G = R \ S. (61)

From lemma 3.30, we deduce that G is a finite union of open bounded intervals, called spectral gaps.

3.3.3 Description of dispersion curves

To go further in the description of the spectral bands and dispersion curves |k| → ω`
(
|k|
)
, it is useful to

rename the positive poles of F as follows (double poles are not repeated)

P+ := P ∩ R∗+ = {0 < p1 < p2 < · · · < pNd},

and to introduce the disjoint intervals

I0 = [0, p1), I1 = (p1, p2), . . . , Iq = (pq, pq+1), · · · , INd = (pNd ,+∞)

then we will look for the solutions ω belonging to every Iq, q = 0, · · · , Nd. We provide below a detailed
explanation of our statements and in figures 6 - 7, the illustrations to the explanations.
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Resolution of (44) in I0.

Let us remind that I0 = [0, p1). Note that F(ω) ∼ ε(0)µ(0)ω2 with ε(0)µ(0) > 0 (see remark 3.22).
Therefore, F(ω) is increasing for small ω. Since it cannot have a positive local maximum inside I0 (cf
lemma 3.26), F(ω) is increasing in I1 (see figure 3). Thus the whole interval [0, p1] coincides with the first
spectral band B0, the function ω0

(
|k|
)

is strictly increasing and satisfies

ω0

(
0
)

= 0, lim
|k|→+∞

ω0

(
|k|
)

= p1.

Resolution of (44) in Iq when q ∈ {1, · · · , Nd − 1}.

Figure 3: Left: possible graph for ω → F(ω) inside I1 (a full spectral band, in green). Right: impossible
scenario.

Let us write {1, · · · , Nd − 1} = Q− ∪Q0 ∪Q+ where the disjoints sets Q−, Q0, Q+ are defined by

q ∈ Q− ⇐⇒ lim
ω→p+q

F(ω) = lim
ω→p−q+1

F(ω) = −∞

q ∈ Q+ ⇐⇒ lim
ω→p+q

F(ω) = lim
ω→p−q+1

F(ω) = +∞

q ∈ Q0 ⇐⇒ lim
ω→p+q

F(ω) = ±∞ and lim
ω→p−q+1

F(ω) = ∓∞

Let us then distinguish three different cases:

(i) q ∈ Q−. In that case, we claim that (44) has no solution for k 6= 0, in other words, that Iq ⊂ G or
that Iq ∩S is a singleton. Indeed, by lemma 3.26, the maximum value of F inside Iq is non-positive
(figure 4 (b)). Moreover, if it is zero, it corresponds to a double zero of F , see remark 3.27.

(ii) q ∈ Q0. The number of sign changes of F inside Iq is necessarily odd, hence equals to 1 by lemma
3.26. Thus, there exists a single (simple) zero zq ∈ Iq of F such that one of the following holds:

(ii.1) Either F is negative in ]pq, zq[ and positive in ]zq, pq+1[. This means that ]pq, zq[⊂ G and,
using lemma 3.26, that F is a strictly increasing bijection from [zq, pq+1) onto [0,+∞) (figure 4
(c)). Thus, inside Iq , equation (44) admits a unique branch of solutions ω = ω`q

(
|k|
)
, defined from

the inverse of the above bijection. This solution satisfies:

|k| −→ ω`q
(
|k|
)

is strictly increasing, ω`q
(
0
)

= zq, lim
|k|→+∞

ω`q
(
|k|
)

= pq+1.

(ii.2) Either F is positive in ]pq, zq[ and negative in ]zq, pq+1[ (see figure 2 (c)). This means that
]zq, pq+1[⊂ G and, using lemma 3.26, that F is a strictly decreasing bijection from (pq, zq] onto
[0,+∞) (figure 4(d)). Hence, inside Iq , (44) admits a unique branch of solutions ω = ω`q , such that:

|k| −→ ω`q
(
|k|
)

is strictly decreasing, ω`q
(
0
)

= zq, lim
|k|→+∞

ω`q
(
|k|
)

= pq.

In each of the above cases, the interval Iq contains only one spectral band B`q ≡ [pq, zq] or [zq, pq+1].
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(iii) q ∈ Q+. By lemma 3.26, the minimum value F∗(q) of F inside Iq is non-positive (see figure 5(a)).

Assume that F∗(q) < 0. By lemma 3.26 again, F changes sign twice inside Iq (figure 4(a)): there
exist two (simple) zeros {z−q , z+

q } of F such that pq < z−q < z+
q < pq+1 such that F is negative in

(z−q , z
+
q ) (in other words (z−q , z

+
q ) is a particular band gap), F is a strictly decreasing bijection from

(pq, z
−
q ] onto [0,+∞) and F is a strictly increasing bijection from [z+

q , pq+1) onto [0,+∞). Thus,
inside Iq , (44) admits two branches of solutions, ω = ω`q and ω = ω`q+1 such that

|k| −→ ω`q
(
|k|
)

is strictly decreasing, ω`q
(
0
)

= z−q , lim
|k|→+∞

ω`q
(
|k|
)

= pq,

|k| −→ ω`q+1

(
|k|
)

is strictly increasing, ω`q
(
0
)

= z+
q , lim

|k|→+∞
ω`q
(
|k|
)

= pq+1,

If F∗(q) = 0, we are in a limit situation when z−q = z+
q ≡ zq is a double zero of F . The situation

is similar to the previous case, but there is no spectral gap inside Iq . In this interval, (44) still admits
two branches of solution ω`q (decreasing) ω = ω`q+1 (increasing). Moreover, B`q ∩ B`q+1 = {zq}.

Figure 4: Possible graphs for ω → F(ω) inside I`, 1 ≤ ` ≤ Nd. Red segments are band gaps, green
segments are spectral bands.

Figure 5: Some impossible graphs for ω → F(ω) inside I`, 1 ≤ ` ≤ Nd.

Resolution of (44) in INd .

This case was partially treated by lemma 3.30. The only scenarios for F(ω) are the following:

(i) Either lim
ω→p+Nd

F(ω) = −∞. In this case, F(ω) changes sign exactly once inside INd (figure 6(a)).

Thus, there exists a single zero zNd > pNd such that F(ω) is negative in (pNd , zNd) (this interval
is a spectral gap) and positive in (zNd ,+∞). Hence, F(ω) is a strictly increasing bijection from
(zNd ,+∞) onto [0,+∞). The corresponding branch of solutions of (44), ωN+1

(
|k|
)
, satisfies

|k| −→ ωN+1

(
|k|
)

is strictly increasing, ωN+1

(
0
)

= zNd , ωN+1

(
|k|
)
∼ c0 |k|, (|k| → +∞).
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(ii) Either lim
ω→p+Nd

F(ω) = +∞. We are then in a situation similar to the case q ∈ Q+ (figure 6(b)). Let

us denote F∗(Nd) ≤ 0 the minimum value of F in INd .

If F∗(Nd) < 0, there exists two (simple) zeros {z−Nd , z
+
Nd
} of F with pNd < z−Nd < z+

Nd
such that

F is negative in (z−Nd , z
+
Nd

) (i.e. (z−q , z
+
q ) is a band gap), F is a strictly decreasing bijection from

(pNd , z
−
Nd

] onto [0,+∞) and a strictly increasing bijection from [z+
Nd
,+∞) onto [0,+∞). Hence,

inside INd , (44) admits two branches of solutions (the last two ones), ωN and ωN+1 such that

|k| −→ ωN
(
|k|
)

is strictly decreasing, ωN
(
0
)

= z−Nd , lim
|k|→+∞

ωN
(
|k|
)

= pNd ,

|k| −→ ωN+1

(
|k|
)

is strictly increasing, ωN+1

(
0
)

= zNd , ωN+1

(
|k|
)
∼ c0 |k| at∞,

IfF∗(Nd) = 0, we are in a limit situation where z−Nd , z
+
Nd
≡ zNd is a double zero ofF . The situation

is similar to the previous case, but there is no spectral gap inside Iq: BN ∩ BN+1 = {zNd}.

Figure 6: Possible graphs for ω → F(ω) inside INd . Red segments are band gaps, green segments are
spectral bands.

Figure 7: Some impossible graphs for ω → F(ω) inside INd .

Remark 3.31. There is a clear similarity between the spectral analysis of dispersive local materials and
the spectral analysis of periodic media [29], especially in the 1D case [19]. The main difference is that,
in the latter case, there is a countable infinity of spectral bands (and in most cases, a countable infinity of
spectral bands) and that these bands systematically alternate as positive / negative / positive / · · ·

Remark 3.32. If (56) is not satisfied, it is easy to verify that most of the above results remain true. The
only change concerns the first spectral band: the lower bound of B0 can be positive (when only one of the
functions ε or µ admits 0 as a pole) and the first mode ω0 does not need to be increasing (cf. Drude media).
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3.3.4 Forward and backward modes. Negative index.

According to the previous section, the modes ±ω`(k) of a non-dissipative local material can be split into
two categories:

• the forward (or direct) modes for which ω′`
(
|k|
)
ω`
(
|k|
)
> 0 for any |k| > 0, i. e. for which the

phase velocity and the group velocity have the same sign,

• the backward (or inverse) modes for which ω′`
(
|k|
)
ω`
(
|k|
)
< 0 for any |k| > 0, i. e. for which the

phase velocity and the group velocity have opposite signs.

Remark 3.33. For 3D linear wave propagation, the phase and group velocities associated with a family
of (propagative) plane waves obeying a dispersion relation ω = ω(k) (where ω(·) is a smooth real-valued
function in R3), the phase and group velocities are defined as vector fields, namely, ω(k)k/|k|2 and
∇kω(k). For isotropic media (studied in this work), ω(·) is a function of |k|, and the phase and group
velocities are thus proportional to k. Thus phase and group velocity can be viewed as a scalar quantities.

Example. Let us consider the following Lorentz model

ε(ω) =
ω2 − 16

ω2 − 1
, µ(ω) =

ω2 − 25

ω2 − 4
, (62)

In figure 8 we show the corresponding modes (computed numerically). There are 3 modes, corresponding
to 3 spectral bands and 2 band gaps. The 1st and 3rd modes are forward, the 2nd one is backward.

|k|

ω

Figure 8: Dispersion curves for the model (62). Band gaps are in grey.

In the following we shall denote by If the set of indices (always non-empty) ` ∈ {0, · · · , N + 1} corre-
sponding to forward modes±ω` and by If the set of indices ` ∈ {0, · · · , N+1} corresponding to forward
modes. We can split accordingly the spectrum S of the material as

S = Sf ∪ Sb, Sf =
⋃
j∈If

B`, Sb =
⋃
`∈Ib

B`,

where Sn is by definition the set of forward frequencies and Sb is by definition the set of backward
frequencies. The following result gives a simple characterization of the two sets.

Theorem 3.34. For a non-dissipative local material one has the characterization

Sf = closure{ω ∈ R \ P / ωD(ω) > 0}, Sb = closure{ω ∈ R \ P / ωD(ω) < 0}. (63)

If, moreover, the material is passive (which is always true up to equivalence), then Sf = closure{ω ∈ R \ P / ε(ω) > 0 and µ(ω) > 0},

Sb = closure{ω ∈ R \ P / ε(ω) < 0 and µ(ω) < 0}.
(64)
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Proof. The first characterization follows from the following formula for the group velocity associated with
the mode ω`

(
|k|
)

(see the proof of corollary 3.29 ):[
ω`
(
|k|
)
D
(
ω`
(
|k|
) )] [

ω`
(
|k|
)
ω′`
(
|k|
)]

= 2 |k|ω`
(
|k|
)2
. (65)

The second part of the theorem follows from the observation (already done in the proof of lemma 3.26) that,
because of the growing property for passive materials, ωD(ω) appears as a linear combination of ω2 ε(ω)
and ω2 µ(ω) with positive coefficients (see (57)). Since inside S, ω ε(ω) and ω µ(ω) have the same sign,
the sign of ωD(ω) corresponds to the common sign of ε(ω) and µ(ω).

Remark 3.35. The second characterization is the one that is often used in the literature for defining back-
ward frequencies or backward modes. However, rigorously speaking, it is valid only for passive materials.

Whereas forward modes always exist (the last band is always forward, see lemma 3.30), backward modes
may or may not exist (see for instance figure 16). This justifies the following definition.

Definition 3.36. (Negative index material) A negative index material is a non-dissipative local material
in which there exist backward modes, i.e. for which the set Ib (or, equivalently, the set Sb) is non-empty.

ω ω

Figure 9: Graphs of ε(ω) (blue) and µ(ω) (magenta) for two different generalized Lorentz models with
Ne = Nm = 2. On the horizontal axis, grey segments represent band gaps, red segments backward bands
and forward segments positive bands. For the left picture, all modes (there are 6 of them) are forward. For
the right picture, all modes, except the last one, are backward.

3.4 Energy analysis of local passive materials.
The well-posedness and stability of (53) can be recovered with the help of energy techniques (which
presents the advantage to be generalizable to variable coefficients).

Theorem 3.37. Any sufficiently smooth solution of (53) satisfies the energy identity
d

dt
Etot(t) = 0, where

Etot(t) := E(t) +

Ne∑
`=0

Ee,`(t) +

Nm∑
`=0

Em,`(t), E(t) :=
1

2

∫
R3

(
ε0 |E|2 + µ0 |H|2

)
dx,

Ee,`(t) :=
ε0

2

Ne∑
`=0

∫
R3

Ω2
e,`

(
|∂tP`|2 + ω2

e,` |P`|2
)
dx,

Em,`(t) :=
µ0

2

Nm∑
`=0

∫
R3

Ω2
m,`

(
|∂tM`|2 + ω2

m,` |M`|2
)
dx.

(66)

Proof. Using (53) (second line, first equation), we compute that∫
R3

∂tP ·E dx = ε0

Ne∑
`=0

∫
R3

Ω2
e,` ∂tP` ·E dx =

ε0

2

Ne∑
`=0

d

dt

∫
R3

Ω2
e,`

(
|∂tP`|2 + ω2

e,` |P`|2
)
dx.
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In the same way, we have
∫
R3 ∂tM ·H dx = d

dt

∑Nm
`=0 Em,`(t). To conclude it suffices to substitute the

above two equalities in (23).

Remark 3.38. The above theorem also permits us to recover the physical passivity of Lorentz media since

E(t) ≤ E(t) +

Ne∑
`=0

Ee,`(t) +

Nm∑
`=0

Em,`(t) = E(0) +

Ne∑
`=0

Ee,`(0) +

Nm∑
`=0

Em,`(0) = E(0),

the last equality resulting from the zero-initial conditions for the P`’s and M`’s.

As announced in remark 2.6, E(t) is not a decreasing function of time in general. Let us consider the
case of a Drude model (36) with ξm = 0, i. e. µ = µ0. Assume for simplicity that H0 = 0 and that
E0 ∈ L2(R3) with divE0 = 0, so that at each time t ≥ 0, divE(·, t) = 0. Then one easily checks that the
electric field satisfies the (vectorial) Klein-Gordon equation

∂ttE− c20 ∆E + ξ2
e E = 0, E(·, 0) = E0, ∂tE(·, 0) = 0.

Using the Fourier transform in space ( E(x, t)→ Ê(k, t) and H(x, t)→ Ĥ(k, t) ), we obtain

Ê(k, t) = Ê0(k) cos ξe(k)t, Ĥ(k, t) = i µ−1
0

(
k× Ê0(k)

) sin ξe(k)t

ξe(k)
, ξe(k) :=

(
ξ2
e + c20 |k|2

) 1
2 .

Using Plancherel’s theorem, µ−1
0 = ε0 c

2
0 and |k × Ê0(k)| = |k| |Ê0(k)| (since k · Ê0(k) = 0), we get

after some manipulations

E(t) = E(0)− ε0 ξ
2
e

2

∫
R
|Ê0(k)|2 (sin ξe(k)t)2

ξe(k)2
dk.

Thus, as soon as ξe > 0, one has the strict inequality E(t) < E(0) for any t > 0. Moreover,

E ′(t) = −ε0 ξ
2
e

2

∫
R
|Ê0(k)|2 sin 2 ξe(k)t

ξe(k)
dk.

Next, we play with the initial field replacing Ê0(k) by Êδ0(k) := Ê0(k/δ) where δ is devoted to be small :
this corresponds to concentrating the Fourier transform of the initial data near k = 0. Denoting Eδ(t) the
electromagnetic energy of the corresponding solution (Eδ,Hδ), we thus have

E ′δ(t) = −ε0 ξ
2
e

2

∫
R
|Ê0(k/δ)|2 sin 2 ξe(k)t

ξe(k)
dk

that is to say (using the change of variable k = δξ),

E ′δ(t) = −ε0 ξ
2
e δ

3

2
t

∫
R
|Ê0(ξ)|2 Φ

(
ξe(δξ)t

)
dξ where Φ(x) :=

sin 2x

x
. (67)

Writing Φ
(
ξe(δξ)t

)
= Φ

(
ξet) +

[
Φ
(
ξe(δξ)t

)
− Φ

(
ξet)

]
, this can be rewritten as

E ′δ(t) = −ε0 ξ
2
e δ

3

2

(
sin 2 ξet

ξe

)
‖E0‖2L2 +

ε0 ξ
2
e δ

3

2
t Rδ(t) (68)

where we have set Rδ(t) :=

∫
R
|Ê0(ξ)|2

[
Φ(ξe t)− Φ

(
ξe(δξ)t

)]
dξ.

Let C be the Lipschitz constant of Φ in R. If E0 ∈ H1(R3)3, since
∣∣ξe(δξ)− ξe

∣∣ ≤ δ2 |ξ|2/2ξe, we have

|Rδ(t)| ≤ Ct
∫
R
|Ê0(ξ)|2

[
ξe(δξ)− ξe

]
dξ ≤ Ct δ

2

2ξe

∫
R
|ξ|2|Ê0(ξ)|2 dξ ≡ Ct δ

2

2ξe
|E0|2H1 . (69)
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Now, we prove that E ′δ(t) can be non negative. Indeed, we first deduce from (68) that

E ′δ(Tn) =
ε0 ξ

2
e δ

3

2

(‖E0‖2L2

ξe
+ Tn Rδ(Tn)

)
, Tn =

(2n+ 1)π

4ξe
, n ∈ N∗, (sin 2 ξeTn = −1).

Thus, thanks to (69), E ′δ(Tn) ≥ ε0 ξe δ
3

2

(
‖E0‖2L2 − C δ2T 2

n |E0|2H1

)
. Thus, for any N ∈ N∗

as soon as C δ2T 2
N |E0|2H1 < ‖E0‖2L2 , E ′δ(Tn) > 0, n = 1, · · ·N.

4 Maxwell’s equations in general passive media

4.1 A representation of electric permittivity and magnetic permeability in passive
media

The representation of lossless passive local media as generalized Lorentz media (cf. theorem 3.21) is, as
we shall see, representative of general passive (even lossy) media. This is a consequence of a following
well-known representation theorem for Herglotz functions, known as the Nevanlinna’s representation
theorem. In this section, we assume the familiarity of the reader with basics of measure theory on R [36].

Lemma 4.1. [ Nevanlinna’s theorem] A necessary and sufficient condition for f to be a Herglotz function
is given by the following representation:

f(ω) = αω + β +

∫
R

(
1

ξ − ω
− ξ

1 + ξ2

)
dν(ξ), for ω ∈ C+, (70)

where α ∈ R+, β ∈ R and ν is a positive regular Borel measure for which∫
R

dν(ξ)/(1 + ξ2) < +∞. (71)

Moreover, α, β and ν are related to f via the following formulas

α = lim
y→+∞

f(i y)

i y
, β = Re f(i), (72)

and the measure ν is given by
(i) ∀ a ∈ R, ν({a}) = lim

η→0+
η Imf(a+ iη),

(ii) ∀ a ≤ b,
ν
(
[a, b]

)
+ ν
(
(a, b)

)
2

= lim
η→0+

1

π

∫ b

a

Imf(x+ i η) dx.
(73)

Remark 4.2. The reader will easily check that the integrand in the right hand side of (70) is in O(ξ−2) for
large ξ so that (71) ensures the existence of the integral. If, in addition,∫

R
|ξ|dν(ξ)/(1 + ξ2) < +∞, (74)

we get f(ω) = αω + γ +

∫
R

dν(ξ)

ξ − ω
with γ ∈ R.

Remark 4.3. The formula (73) provides the measure ν of any interval [a, b), (a, b], (a, b) or [a, b]. Thus it
defines completely ν as a Borel measure [36].

Remark 4.4. Let supp(ν) be the support [36] of ν in (70). As the support of a measure is closed, I =
R\supp(ν) is open. Using (70), the Herglotz function f can be continuously extended on I . This extension
is real-valued. Moreover, f has an analytic extension fe on R\supp(ν) by the Schwarz reflection principle:
fe(z) = f(z) on C+ ∪ I and fe(z) = f(z) on C−. Along I , the zeros of f are simple (lemma 2.3) and f
satisfies the growing property f ′(ω) > a (simply differentiate (70)).
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The proof of lemma 4.1 can be found in appendix B. An important corollary of lemma 4.1 is

Theorem 4.5. Let ε and µ be the electric permittivity and magnetic permeability of a homogeneous pas-
sive medium. There exists two positive regular Borel measures νe and νm on R, that are symmetric (i.e.
νe(−B) = νe(B) and νm(−B) = νm(B) for any Borel set B) and satisfy (71), such that

ε(ω) = ε0

(
1−

∫
R

dνe(ξ)

ω2 − ξ2

)
, µ(ω) = µ0

(
1−

∫
R

dνe(ξ)

ω2 − ξ2

)
for ω ∈ C+. (75)

Proof. We give the proof for ε. It is obviously the same for µ. By passivity, f(ω) = ω ε(ω)/ε0 is a
Herglotz function. Thus, using lemma 4.1 and the high frequency condition (HF), we can write

ω ε(ω) = ε0

(
ω + βe +

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dνe(ξ)

)
, for ω ∈ C+.

By the reality principle (RP), f(i) is purely imaginary, and thus βe = ε−1
0 Re f(i) = 0. Hence

ε(ω) = ε0

(
1 + ω−1

∫
R

(
1

ξ − ω
− ξ

1 + ξ2

)
dνe(ξ) for ω ∈ C+. (76)

By the reality principle (RP) again, one has ε(ω) =
1

2

(
ε(ω) + ε(−ω)

)
. Thus, using (76), we compute:

ε(ω) = ε0

(
1 +

1

2ω

∫
R

( 1

ξ − ω
− 1

ξ + ω

)
dνe(ξ)

)
= ε0

(
1 +

∫
R

dνe(ξ)

ξ2 − ω2

)
. (77)

The symmetry of νe follows from (73) since, by (RP), Imf(−ω) = Imf(ω).

One recovers generalized Lorentz materials (52) with finite sums of Dirac measures (in symmetric form) :

νe =
1

2

Ne∑
`=1

Ω2
e,`

(
δωe,` + δ−ωe,`

)
, νm =

1

2

Nm∑
`=1

Ω2
m,`

(
δωm,` + δ−ωm,`

)
. (78)

Other similar passive materials are obtained with non-compactly supported discrete measures such as

νe =
1

2

+∞∑
`=1

Ω2
e,`

(
δωe,` + δ−ωe,`

)
, νm =

1

2

+∞∑
`=1

Ω2
m,`

(
δωm,` + δ−ωm,`

)
. (79)

where ωe,` and ωm,` are two sequences of positive real numbers satisfying

+∞∑
`=1

Ω2
e,`

1 + ω2
e,`

< +∞,
+∞∑
`=1

Ω2
m,`

1 + ω2
m,`

< +∞, (⇐⇒ (71)). (80)

The functions ε(ω) and µ(ω) are not rational, but meromorphic functions with poles ±ωe,` and ±ωm,`,
1 ≤ ` ≤ +∞, defined by the following series, whose convergence (outside poles) is ensured by (80) :

ε(ω) = ε0

(
1 +

+∞∑
`=1

Ω2
e,`

ω2
e,` − ω2

)
, µ(ω) = µ0

(
1 +

+∞∑
`=1

Ω2
m,`

ω2
m,` − ω2

)
. (81)

In the particular case where ωe,` = ωm,` =
2`− 1

2
π, Ω2

e,` = 2ae and Ω2
m,` = 2am, we get

ε(ω) = ε0(1 + ae ω
−1 tan(ω)), µ(ω) = µ0(1 + am ω

−1 tan(ω)), am, ae > 0.

Such functions appear naturally in the mathematical theory of metamaterials via high contrast homoge-
nization [6], [7], [54] (see remark 4.6 for a concrete and relatively simple example).

Measures with an absolutely continuous part (related to losses, see section 4.4) will be considered later.
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Remark 4.6. Example of high contrast homogenization. Let us consider the case of a 2D transverse
magnetic medium (the magnetic field is a 2D scalar function) and heterogeneous non-dispersive Maxwell’s
equations (see (2)). Let us study a family of problems depending on a small parameter δ > 0, given by

µ(x) = µ0, ε(x) = εδ(x).

The scalar magnetic field Hδ is solution of the time harmonic model at a given frequency ω:

rot
( 1

εδ
rotHδ

)
− µ0 ω

2Hδ = f, in D bounded ⊂ R2

completed for instance with absorbing boundary conditions (omitted here) on ∂D. The function εδ(x) :
R2 → R∗+ is δ-periodic and piecewise constant, with high contrast. More precisely,

R2 =
⋃
j∈Z2

δ
[
j + C0

]
, C = (0, 1)× (0, 1)

where the reference cell is made of two parts C = Cint ∪ Cext, Cint ⊂ C, Cint ∩ Cext = ∅, so that

∀ x̂ ∈ C, ∀ j ∈ Z2, εδ
(
δ
[
j + x̂

])
= εδref (x̂), εδref (x̂) = ε0 in Cext, εδref (x̂) = δ−2 ε0 in Cint .

Then it can be shown that Hδ → Hhom, weakly in L2(D), where Hhom satisfies the homogenized model

rot
( 1

ε0
rotHδ

)
− µeff (ω)ω2Hδ = f, in D

where the function µeff (ω) = µ0

(
1 + ω2

+∞∑
n=1

∣∣〈ϕn〉∣∣2
ω2
n − ω2

)
, 〈ϕn〉 =

∫
Cint

ϕn , with

−∆ϕn = ω2
n ϕn, in Cint, ϕn|∂Cint = 0,

∫
Cint

|ϕn|2 = 1, n ≥ 1.

can be shown to be of the form (78).

Figure 10: A high contrast periodic medium (right). The periodicity cell (left).

4.2 An augmented self-adjoint PDE model for Maxwell’s equations in passive me-
dia

We state below the generalization of theorem 3.24 for passive non-Lorentz materials. The idea of aug-
mented models, with an auxiliary unknown depending on a (a priori) continuum of auxiliary variables was
developed in [49], [24], [20], [21], [22]. The pioneering idea goes back to Lamb ([31]) in 1900.
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Theorem 4.7. A PDE-like model for dispersive Maxwell’s equations with permittivity and permeability
given by (70) is (we consider here the Cauchy problem):

Find

 E(x, t) : R3 × R+ → R3, H(x, t) : R3 × R+ → R3,

P(x, t; ξ) : R3 × R+ × R→ R3, M(x, t; ξ) : R3 × R+ × R→ R3,
s. t.

ε0 ∂tE + rotH + ε0

∫
R
∂tP(·; ξ) dνe(ξ) = 0, (x, t) ∈ R3 × R+

µ0 ∂tH− rotE + µ0

∫
R
∂tM(·; ξ) dνm(ξ) = 0, (x, t) ∈ R3 × R+

∂2
t P(·; ξ) + ξ2 P(·; ξ) = E, (x, t; ξ) ∈ R3 × R+ × R,

∂2
tM(·; ξ) + ξ2 M(·; ξ) = H, (x, t; ξ) ∈ R3 × R+ × R

E(x, 0) = E0(x), H(x, 0) = H0(x), P(x, 0; ξ) = 0, M(x, 0; ξ) = 0.

(82)

Proof. The same as for theorem 3.24, the index ` being replaced by the variable ξ and sums over ` ∈
{0, · · ·Ne} (resp. {0, · · ·Nm}) by integrals over R with respect to dνe(ξ) (resp. dνm(ξ) ), in particular,
the polarization P and the magnetization M (see (19)) are given by (also compare to (54))

P = ε0

∫
R
P(·; ξ) dνe(ξ), M = µ0

∫
R
M(·; ξ) dνm(ξ).

Like for (53), an energy conservation result holds for (82) and implies physical passivity (cf. remark 3.38).

Theorem 4.8. Any smooth enough solution of (53) satisfies the energy identity
d

dt
Etot(t) = 0 where

Etot(t) := E(t) + Ee(t) + Em(t), E(t) :=
1

2

∫
R3

(
ε0 |E|2 + µ0 |H|2

)
dx,

Ee(t) :=
1

2
ε0

∫
R

∫
R3

(
|∂tP(x, t; ξ)|2 + ξ2 |P(x, t; ξ)|2

)
dx dνe(ξ),

Em(t) :=
1

2
µ0

∫
Λm

∫
R3

(
|∂tM(x, t; ξ)|2 + ξ2 |M(x, t; ξ)|2

)
dx dνm(λ),

(83)

Behind the above energy conservation result is hidden the fact that (82) can be rewritten as an abstract
Schrödinger equation involving some self-adjoint operator on an appropriate Hilbert space, see section 4.3.

Proof. It is almost the same as for theorem 3.37.

All these mathematical models give rise to finite propagation velocity, bounded by the speed of light c0.

Theorem 4.9. Assume that the Cauchy data for (53), namely E0 and H0 have compact support included
in the ball B(0, R) of center 0 and radius R > 0. Then, at each time t > 0, the solution of (53) satisfies

supp E(·, t) ∪ supp H(·, t) ⊂ B(0, R+ c0 t) (i.e. E(x, t) = H(x, t) = 0 for |x| > R+ c0 t). (84)

Proof. Let ee(x, t; ξ) = |∂tP(x, t; ξ)|2 + ξ2 |P(x, t; ξ)|2, em(x, t; ξ) = |∂tM(x, t; ξ)|2 + ξ2 |M(x, t; ξ)|2.
We use the method of energy in moving domains. Let us consider ΩR,t = {x ∈ R3/|x| > R + c0 t} (a
moving domain). The idea is to prove that the positive-valued function

t 7→ ER,tot(t) :=
1

2

∫
ΩR,t

(
ε0 |E(x, t)|2 + µ0 |H(x, t)|2

)
dx

+
1

2

∫
R

∫
ΩR,t

ε0 ee(x, t; ξ) dx dνe(ξ) +
1

2

∫
R

∫
ΩR,t

ε0 em(x, t; ξ)dx dνm(ξ),
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i.e. the total energy contained in ΩR,t at time t, is a decreasing function of time. Since it vanishes at t = 0
(property of the Cauchy data), it is identically 0 from which the conclusion follows. The main difference
with the proofs of theorems 4.8 and 3.37 is that boundary terms have to be handled in the integration by
parts as well as the fact that the domain ΩR,t is moving. Doing so (details are left to the reader), one obtains

dER,tot
dt

(t) = −1

2

∫
ΓR,t

(
ε0 c0 |E(x, t)|2 + µ0 c0 |H(x, t)|2 − n×E(x, t) ·H(x, t)

)
dx

− c0
2

∫
ΓR,t

∫
ΩR,t

ε0 ee(x, t; ξ) dx dνe(ξ)−
c0
2

∫
R

∫
ΓR,t

µ0 em(x, t; ξ)dx dνm(ξ)

with ΓR,t := ∂ΩR,t with unit normal vector n. This is easily proven to be negative since ε0µ0 c
2
0 = 1.

4.3 Reinterpretation as a Schrödinger equation and related spectral theory
4.3.1 A Schrödinger evolution equation

In this section, for technical reasons, we use the following assumption (valid for many applications):∫
R

dνe(ξ) < +∞,
∫
R

dνm(ξ) < +∞. (85)

It holds e.g. for Drude dissipative models. Modulo the introduction of the additional unknowns P̃ := ∂tP
and M̃ := ∂tM, (53) can be rewritten as a Schrödinger equation of the form

dU

d t
+ iAU = F, U =

(
E,H,P, P̃,M, M̃

)
(86)

where the Hamiltonian A is an unbounded operator on the Hilbert space:

H = L2(R3)3 × L2(R3)3 × Ve ×He × Vm ×Hm.

with the Hilbert spaces (equipped with their natural inner product)

Hs = L2
(
R, L2(R3)3; dνs

)
, Vs = L2

(
R, L2(R3)3; ξ2 dνs

)
for s = e or m,

so that the space H-inner product is given by

(U,U∗)H =

∫
R3

(
ε0 E ·E∗ + µ0 H ·H∗

)
dx + ε0

∫
R

∫
R3

(
ξ2 P · P∗ + P̃ · P̃∗

)
dx dνe(ξ)

+µ0

∫
R

∫
R3

(
ξ2 M ·M∗ + M̃ · M̃∗

)
dx dνm(ξ).

(87)

Setting Ds = {P ∈ Vs | ξ2 P ∈Hs} and D̃s = Hs ∩ Vs, s = e or m, the domain of A is

D(A) = H(rot,R3)×H(rot,R3)×De × D̃e ×Dm × D̃m,

and the operator A is defined in block form by

A := i



0 ε−1
0 rot 0 −Se 0 0

−µ−1
0 rot 0 0 0 0 −Sm

0 0 0 Ie 0 0

Ie 0 − ξ2Ie 0 0 0

0 0 0 0 0 Im

0 Im 0 0 − ξ2Im 0


, (88)
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where we have set



Se : He → L2(R3)3, (SeP̃)(x) :=
∫
R P̃(x, ξ) dνe(ξ),

Ie : L2(R3)3 →He, (IeE)(x, ξ) := E(x),

Ie : D̃e ⊂He → Ve, (IeP̃)(x, ξ) := P̃(x, ξ),

ξ2Ie: De ⊂ Ve →He, (ξ2Ie)P(x, ξ) := ξ2P(x, ξ),

(89)

and where the operators Sm, Im, Im and ξ2Im are defined similarly, replacing e by m, E by H and P
by M. Notice that condition (85) is needed for the definition of the operators Ie and Im. Moreover,
Se ∈ L(He, L

2(R3)3) is the adjoint of Ie ∈ L(L2(R3)3,He) and Sm ∈ L(Hm, L
2(R3)3) is the adjoint

of Im ∈ L(L2(R3)3,Hm), ξ2Ie is the adjoint of Ie and ξ2Im is the adjoint of Im. Using in particular
these properties (for the symmetry of A) and the fact that the domain of the adjoint of A coincides with
D(A) (the details are left to the reader), one shows that

Theorem 4.10. The operator A : D(A) ⊂ H 7−→ H is self-adjoint.

From the semi-group theory (or Hille-Yosida’s theorem [42]), it follows that A is the generator of a unitary
semi-group. From this we obtain the following corollary.

Corollary 4.11. Given any initial data U0 ∈ D(A), the evolution problem (86) admits a unique solution

U(t) ∈ C1(R+;H) ∩ C0(R+;D(A)) ( often denoted U(t) = e−iAtU0)

which satisfies ‖U(t)‖H = ‖U0‖H.

Remark 4.12. By definition of the norm ‖·‖H, the conservation of ‖U(t)‖H is nothing but the conservation
of energy (cf. theorem 4.8).

4.3.2 The reduced Hamiltonian

Our goal is to compute the spectrum σ(A) of A. As the medium is homogeneous, the spectral theory of
the operator A defined in (88) reduces, using space Fourier transform F, see (90), to the one of a family
of self-adjoint operators (Ak)k∈R3 , reduced Hamiltonians, defined on functions which depend only on the
variable ξ. The knowledge of the spectra σ(Ak) will lead to an expression of σ(A).

Fu(k) :=
1

(2π)
3
2

∫
R3

u(x) e−ik·x dx ∀u ∈ L1(R3) ∩ L2(R3). (90)

For functions of both variables x and ξ, we still denote by F the partial Fourier transform in the x variable.
In particular, the partial Fourier transform of an element U ∈H is such that

FU(k, ·) ∈ H := C3 × C3 × Ve ×He × Vm ×Hm for a.e. k ∈ R3, (91)

where Hs = L2(C3,dνs) and Vs = L2(C3, ξ2dνs), for s = e or m. The Hilbert space H is endowed
with the inner product (· , ·)H defined as (87) for (· , ·)H but without the integration in x. Applying F to
the Schrödinger equation (86) leads us to introduce a family of operators (Ak)k∈R3 inH related to A by

F(AU)(·,k) = Ak FU(· ,k) for a. e. k ∈ R3. (92)

The domain of Ak is D(Ak) := C3 × C3 ×De × D̃e ×Dm × D̃m and

Ak := i



0 ε−1
0 ik× 0 −Se 0 0

−µ−1
0 ik× 0 0 0 0 −Sm

0 0 0 Ie 0 0

Ie 0 −ξ2Ie 0 0 0

0 0 0 0 0 Im

0 Im 0 0 −ξ2Im 0


. (93)

The operators Ss, Is, Is and ξ2 Is for s = e or m, and their corresponding domains, are defined as their
bold version in (89) but for functions of the variable ξ only. It is easy to prove the

Theorem 4.13. Ak : D(Ak) ⊂ H → H is self-adjoint for all k ∈ R3.
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4.3.3 Resolvent of the reduced Hamiltonian

In this paragraph, we compute the resolvent Rk(ω) := (Ak−ω)−1, ω /∈ R in order to obtain the spectrum
of Ak. Given G = (e, h, p, p̃,m, m̃)> ∈ H, and setting U = (E,H,P, P̃,M, M̃)>, we have

U = Rk(ω)G ⇐⇒ (Ak − ω)U = G. (94)

Solving the linear system (94) is straightforward (details are left to the reader) and leads to an explicit
expression of Rk(ω) (proposition 4.14). Denoting u · v the inner product in C3, we set

∀ k 6= 0 in R3, k̂ = k/|k|, ∀ u ∈ C3, u‖(k) := (k̂ · u) k̂ and u⊥(k) = u− u‖(k). (95)

Then, from G, we first define the vector fields of the variable ξ (note that these depend linearly on G)

G̃p =
ω p̃− i ξ2p

ξ2 − ω2
, G̃m =

ω m̃− i ξ2m

ξ2 − ω2
and Gh = −µ0

iSmG̃m + h

ωµ(ω)
,

and introduce the operators, where F(ω) = ω2ε(ω)µ(ω) has been defined in (50):

Sω,kG := −ε0

[ iSeG̃p,‖(k) + e‖(k)

ωε(ω)
+ ωµ(ω)

iSeG̃p,⊥(k) + e⊥(k)

F(ω)− |k|2
]
− µ0 k×

iSmG̃m(k) + h

F(ω)− |k|2
,

Vω,kE :=
(
E,

k×E

ωµ(ω)
,

E

ξ2 − ω2
,− i ωE

ξ2 − ω2
,

1

ξ2 − ω2

k×E

ωµ(ω)
, − iω

ξ2 − ω2

k×E

ωµ(ω)

)t
,

Tω,kG :=
(

0, Gh,
ωp + i p̃

ξ2 − ω2
, G̃p,

Gh

ξ2 − ω2
+
ωm + i m̃

ξ2 − ω2
,− iωGh

ξ2 − ω2
+ G̃m

)t
.

The operator Sω,k is continuous fromH into C3, Vω,k is continuous from C3 toH and Tω,k is continuous
from H to H. We point out that ωε(·) and ωµ(·), as non-zero Herglotz functions, can not vanish in the
upper-half plane C+ (see lemma 2.3). Also, F(ω) = |k|2 has no solution ω in C+ by the same argument as
in lemma 3.20. Thus, the operators Sω,k, Vω,k and Tω,k are well-defined. The main result of this section
is

Proposition 4.14. Let k ∈ R3 \ {0}. The resolvent of the self-adjoint operator Ak can be expressed as

Rk(ω) = Tω,k + Vω,k Sω,k, ∀ ω ∈ C \ R. (96)

4.3.4 Spectrum of the reduced Hamiltonian

We shall use the following characterizations of σ(Ak) and the point spectrum σ(Ak) (see [23]). First, as
‖Rk(ω)‖ = d(ω, σ(Ak))−1 where d(·, σ(Ak)) denotes the distance function to σ(Ak), ω0 ∈ R belongs to
σ(Ak) if and only if ‖Rk(ω0 + iη)‖ blows up when η ↘ 0. Second, ω0 belongs to σp(Ak) if and only if
there exists G ∈ H such that limη↘0 η Im(Rk(ω0 + iη)G,G)H > 0.

Case 1: ω0 ∈ J = supp(νe) ∪ supp(νm)

Assume that ω0 ∈ supp(νe) (a similar proof applies for ω0 ∈ supp(νm)) and let us show that ω0 ∈ σ(Ak).
Since σ(Ak) is a closed set, it is not restrictive to assume that ω0 6= 0, except if ω0 = 0 is an isolated
punctual mass ( this case is considered at the end of this paragraph). Let p(ξ) ∈ L2(R; dνe) be a scalar odd
function (to be fixed later). Consider the particular choice

G = (0, 0, p(ξ) k̂, 0, 0, 0) ∈ H.

Thanks to (96) and using again the expression of the operators, one computes that

Rk(ω)G =
(

0, 0,
ω p(ξ)k̂

ξ2 − ω2
,− iξ

2p(ξ)k̂

ξ2 − ω2
, 0, 0

)t
. (97)

32



In particular
∥∥∥ (ω0 + iη) p(ξ)k̂

ξ2 − (ω0 + iη)2

∥∥∥2

Ve
≤ ‖Rk(ω0 + iη)G‖2H i. e., using the definition of the norm in Ve,

|ω0 + iη|2
∫
R

ξ2|p(ξ)|2dνe(ξ)

|ξ2 − (ω0 + iη)2|2
≤ ‖Rk(ω0 + iη)G‖2H. (98)

As ω0 ∈ supp(νe), by definition of the support [36], for any δ > 0, the Borel set Aδ = {ξ ∈ R |
|ξ2 − ω2

0 | ≤ δ2} satisfies νe(Aδ) > 0. Let us choose in (98) p = pδ odd such that p2
δ = 1Aδ (this always

possible as soon as 0 /∈ Aδ which is the case for δ small enough since ω0 6= 0). For such δ > 0

∀ η ∈ (0, η0), |ω0 + iη|2
∫
Aδ

ξ2 dνe(ξ)

|ξ2 − (ω0 + iη)2|2
≤ ‖Rk(ω0 + iη)G‖2H. (99)

By definition of Aδ , for ξ ∈ Aδ, ξ2 + ω2
0 ≤ δ2 + 2ω2

0 so that

|ξ2 − (ω0 + iη)2|2 = (ξ2 − ω2
0)2 + η4 + 2(ξ2 + ω2

0)η2 ≤ δ4 + η4 + 2(δ2 + 2ω2
0)η2.

Thus (99) yields
|ω0 + iη|2

δ4 + η4 + 2(δ2 + 2ω2
0)η2

∫
Aδ

ξ2dνe(ξ) ≤ ‖Rk(ω0 + iη)G‖2H for δ small enough.

Since ‖G‖2H =

∫
Aδ

ξ2dνe(ξ) > 0, making δ ↘ 0 leads to
|ω0 + iη|2

η4 + 4ω2
0η

2
≤ ‖Rk(ω0 + iη)‖2.

Thus (since ω0 6= 0), we obtain that ‖Rk(ω0 + iη)‖ blows up when η ↘ 0, which concludes the proof.

Finally, let us pay a particular attention to the sets

Pe = {ω ∈ R / such that νe
(
{ω}

)
> 0}, Pm = {ω ∈ R / such that νm

(
{ω}

)
> 0}. (100)

Note that in the case of local media, Pe and Pm are nothing but the sets of poles of ε(ω) and µ(ω). Let
ω0 ∈ Pe (a similar proof works for Pm). As νe is symmetric, one deduces that νe({−ω0}) 6= 0. If one
chooses G = (0, 0, p k̂, 0, 0, 0) ∈ H with p = 1{ω0} − 1{−ω0}, one obtains:

lim
η↘0

η Im(Rk(ω0 + iη)G,G)H = lim
η↘0

Im

(
2η (ω0 + i η)ω2

0

−2iη ω0 + η2 ω2
0

)
= ω2

0 > 0,

which implies ω0 ∈ σp(Ak). When ω0 = 0 ∈ Pe, one let the reader to show that if one takes G =

(0, 0, 0,1({0}) k̂,0,0,0) ∈ H, one has limη↘0 η Im(Rk(ω0 + iη)G,G)H = 1 and thus 0 ∈ σp(Ak).

Case 2: ω0 ∈ I = R \ J,

First note that the presence of ξ2− (ω0 + iη)2 in denominators of the expression of Tω0+iη,k and Vω0+iη,k

does not matter since ω0 is outside the supports of the measures νe and νm (and also −ω0 6∈ J , since J is
symmetric with respect to the origin). Next, using remark 4.4, we know that the Herglotz functions ωε(·)
and ωµ(·) have a continuous extension from the upper-half plane to the open set I . These extensions are
real-valued and analytic on I . Thus, it is readily seen from (96) and the expression of Tω,k, Vω,k and Sω,k
(details are left to the reader) that the resolvent Rk(ω0 + i η) blows up when η → 0 if and only if ω0 is a
zero of the functions ωε(ω), ωµ(ω) or F(ω) − |k|2. According to the notation used for local media (see
definition 3.7 and corollary 3.29), we set

Ze = {ω ∈ I | ωε(ω) = 0}, Zm = {ω ∈ I | ωµ(ω) = 0} and Ω(k) = {ω ∈ I | F(ω) = |k|2}. (101)

By evenness and analyticity of ε(ω) and µ(ω) along I , the sets Ze, Zm and Ω(k) are symmetric with
respect to the origin and made of isolated points in I . The main difference with the case of local media
is that one cannot exclude the fact that these sets be infinite (but always countable)! Ze and Zm contains
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only simple zeros by lemma 2.3. For k 6= 0, the zeros of F(·) − |k|2 are simple too. The argument is the
same as for local media (lemma 3.28). Thanks to these properties, it is clear that ‖Rk(ω0 + iη)‖ remains
bounded for any η > 0 when ω0 /∈ Ze∪Zm∪Ω(k) while one can show that for any ω0 ∈ Ze∪Zm∪Ω(k),
‖Rk(ω0 + iη)‖ ≥ C0 η

−1, C0 > 0 (again details are left to the reader). Thus ω0 ∈ σ(Ak) and is thus an
eigenvalue since it is an isolated point in σ(Ak) [28].

Let us summarize what we have obtained in the following

Theorem 4.15. Let k ∈ R3 \ {0}, J = supp(νe) ∪ supp(νm) and I = R \ J . Let Ze , Zm, Pe , Pm and
Ω(k) defined by (101) and (100). Then

σ(Ak) = J ∪ Ω(k) ∪ Ze ∪ Zm, σp(Ak) ∩ I = Ze ∪ Zm ∪ Ω(k), Pe ∪ Pm ⊂ σp(Ak). (102)

4.3.5 Spectrum of the Hamiltonian

Theorem 4.16. Let J = supp(νe)∪ supp(νm), I = R \ J and Ze , Zm, Pe and Pm defined by (101) and
(100). Let F(ω) := ω2 ε(ω)µ(ω) : I → R. Then the spectrum σ(A) and the point spectrum σp(A) of the
operator A satisfy:

(i) σ(A) = J ∪ F−1(R+), (ii) Pe ∪ Pm ∪ Ze ∪ Zm ⊂ σp(A) (iii) σp(A) ∩ I = Ze ∪ Zm. (103)

Proof. The relation (92) means that the self-adjoint operator A⊕ = F−1AF is decomposable on the family
of self-adjoint operators (Ak)k∈R3 with respect to the Lebesgue measure ν on R3 [44]. As the Fourier
transform F is unitary, A and A⊕ have the same spectrum and punctual spectrum. Thus, using theorem
XIII.85 of [44] which relates the spectrum of A⊕ and the spectra of the operators Ak, one deduces that:

σ(A) = {ω ∈ R | ∀ε > 0 | ν({k ∈ R3 | (ω − ε, ω + ε) ∩ σ(Ak) 6= ∅}) > 0}, (104)

σp(A) = {ω ∈ R | ν({k ∈ R3 | ω ∈ σp(Ak)}) > 0}. (105)

Step 1: σ(A) ⊂ J ∪ F−1(R+). As F : I → R is continuous, G = F−1(R−∗ ) is an open subset of I
which, by proposition 4.15, does not intersect σ(Ak) for all k 6= 0. Thus, one deduces from (104) that G
does not intersect σ(A), in other words that σ(A) ⊂ R \ G = J ∪ F−1(R+).

Step 2 : J ⊂ σ(A) and Pe ∪ Pm ∪ Ze ∪ Zm ⊂ σp(A) (i. e. (103)(ii)). Indeed, by proposition 4.15
again, J ⊂ σ(Ak) for any k, i.e. for any ω ∈ J and ε > 0, ω ∈ (ω − ε, ω + ε) ∩ σ(Ak). Hence
{k ∈ R3 | (ω − ε, ω + ε) ∩ σ(Ak) 6= ∅} = R3 and thus, by (104), J ⊂ σ(A). Similarly, proposition 4.15
says that Ze ∪ Zm ∪ Pe ∪ Pm ⊂ σp(Ak) for any k ∈ R3. With (105) this implies the inclusion (103)(ii).

As F−1(R+) = F−1(R+
∗ ) ∪ F−1(0) ≡ F−1(R+

∗ ) ∪ Ze ∪ Zm, if we prove that F−1(R+
∗ ) ⊂ σ(A),

since Ze ∪ Zm ⊂ σ(A), we shall have proven that F−1(R+) ⊂ σ(A), that is to say (103)(i) with step 2.
Finally, if we prove that F−1(R+

∗ ) does not contain any eigenvalue, we shall have proven (103)(iii). These
observations lead us to the last step of our proof.

Step 3 : F−1(R+
∗ ) ⊂ σ(A) but contains no eigenvalue. Let ω ∈ F−1(R+

∗ ), then F(ω) = R for R > 0.
Since SR = {k ∈ R3 /|k|2 = R} has zero Lebesgue measure, one deduces from proposition 4.15 and
(105), that ω is not an eigenvalue . As F is C∞ on I and F ′(ω) 6= 0 (same proof as for lemma 3.26), there
exists two open sets Uω ⊂ I and VR ⊂ R+

∗ such that ω ∈ Uω and R ∈ VR and F : Uω → VR admits a
C∞ inverse. Thus for all ε > 0 such that (ω − ε, ω + ε) ⊂ Uω , F

(
(ω − ε, ω + ε)

)
is an open set which

contains (R − η,R + η) ⊂ VR for η small enough. Let us set CR,η = {k ∈ R3, R − η ≤ |k|2 ≤ R + η}.
For any k ∈ CR,η , |k|2 ∈ F

(
(ω − ε, ω + ε)

)
, i. e. F(ωk) = |k|2 for some ωk ∈ (ω − ε, ω + ε), that is

to say, see (101), that ωk ∈ Ω(k), thus ωk ∈ σ(Ak) by proposition 4.15. Thus, (ω − ε, ω + ε) ∩ σ(Ak)
contains ωk for any k ∈ CR,η which means that CR,η ⊂ {k ∈ R3 | (ω − ε, ω + ε) ∩ σ(Ak) 6= ∅}. Since
ν(CR,η) > 0, one concludes with (104) that ω ∈ σ(A).

Remark 4.17. The complementary of the support I is an open set. Thus it can be decomposed as a
countable union of disjoint open intervals: I = ∪Nn=0(an, bn) (where N can be finite or infinite). All these
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intervals are symmetric with respect to 0. On each interval (an, bn), F is a real-valued analytic function.
By adapting 3.26, we prove that it is strictly monotonous wherever it is positive, and by adapting lemma
A.1, it vanishes at most at two points. One has

• (an, bn) ∩ σ(A) = {λ ∈ (an, bn) | F(ω) ≥ 0} and (an, bn) ∩ G = {λ ∈ (an, bn) | F(ω) < 0},

• There is at most two different eigenvalues of Ze ∪ Zm in each interval.

Using all these properties, it is possible to sketch the different possible graphs for F in each (an, bn) as
in section 3.3 for local media. Indeed, the graphs are similar up to the difference that F can admit also a
finite limit at the border (an, bn) when it is positive and no limit when it is negative.

Remark 4.18. For local Lorentz materials (52), one has (see (78))

supp (νe) = Pe, supp (νm) = Pm, σ(A) = F−1(R+)∪Pe ∪Pm, σp(A) = Pe ∪Pm ∪Ne ∪Nm.

One can make a link with the Fourier / plane wave analysis of local media, performed in section 3.2. In
particular, one sees that coincides with the set S defined by (61). Moreover, it is worthwhile mentioning
that, in the point spectrum, Pe ∪ Pm corresponds to the static electric and magnetic modes and Ze ∪ Zm
to the curl-free static modes, as they have been defined in section 3.2.2.

4.4 The case of lossy passive media: an example
As seen previously, we can find a conservative augmented formulation for any passive systems, in particular
dissipative ones. However, dissipation can be obtained only if measures νe or νm has a continuous part.
This is the case for a dissipative Drude model (106) with ωe = ωm = 0 and αe, αm, Ωe, Ωm > 0:

ε(ω) = ε0

(
1− Ω2

e

i αe ω + ω2

)
, µ(ω) = µ0

(
1− Ω2

m

i αm ω + ω2

)
. (106)

4.4.1 Dissipative and conservative formulations

The dissipative formulation is obtained by introducing the polarization P and the magnetization M: ε0 ∂tE + ε0Ω2
e∂tP− rotH = 0, µ0 ∂tH + µ0Ω2

m∂tM + rotE = 0,

∂2
t P + αe ∂tP = E, ∂2

tM + αm ∂tM = H,
(107)

To this system, we naturally associate the following energy

Eloc(t) := E(t) +
ε0Ω2

e

2

∫
R3

|∂tP|2dx+
µ0Ω2

m

2

∫
R3

|∂tM|2dx (108)

where E(t) :=
1

2

∫
R3

(
ε0 |E|2 +µ0 |H|2

)
dx, the standard electromagnetic energy. One easily checks that

d

dt
Eloc(t) + αeε0Ω2

e

∫
R3

|∂tP|2dx + αmµ0Ω2
m

∫
R3

|∂tM|2dx = 0, (109)

which proves the decay in time of the energy Eloc(t). The conservative augmented formulation corresponds
to absolutely continuous measures (with respect to Lebesgue’s measure) νe and νm defined by

dνe(ξ) =
αe Ω2

e

π

dξ

ξ2 + α2
e

, dνm(ξ) =
αm Ω2

m

π

dξ

ξ2 + α2
m

. (110)

This can be deduced from (73) but also from the following Nevalinna representation (left to the reader)

1− Ω2

i α ω + ω2
= 1 +

αΩ2

π

+∞∫
−∞

dξ

(ξ2 − ω2)(ξ2 + α2)
. (111)

Note that the measures νe and µe have finite masses, respectively Ω2
e and Ω2

m, and their support is all R so
that the spectrum of the corresponding Hamiltonian A is the whole real line (see theorem 4.16).
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4.4.2 Numerical simulations

We have performed 2D simulations in the (x, y)-plane, considering the 2D Maxwell system for the elec-
tromagnetic field (Ex, Ey, Hz). We use the scaling ε0 = µ0 = 1 and consider Ωe = Ωm = 1 and two sets
of values for the absorption parameters: αe = αm = 0.1 and αe = αm = 1. The domain of computation
is the square [−0.5, 0.5]× [−0.5, 0.5]. On the boundary of the domain, a perfectly conducting boundary
condition E × n = 0 is used. The system is initialized with Ex(x, 0) = Ey(x, 0) = e−300(x2+y2) and
Hz(x, 0) = e−200(x2+y2), while for the rest of the unknowns zero initial conditions are used. We com-
pared results obtained separately with the two systems (107) (’exact solution’) and (82), with measures
(110) (’approximate solution’). The equations were discretized as follows:

• For the solution of (107) we use the Yee scheme (see for instance [48]), where dispersive terms are
discretized with the help of the trapezoid rule. We take the mesh size ∆x = ∆y and ∆t = ∆x

2 .

• The discretization of (82) requires an additional step consisting in the approximation of the ξ-
integrals. In order to do so, we first perform the change of variables ξ = α tan τ in (111)

1− Ω2

i α ω + ω2
= 1 +

Ω2

π

π
2∫

−π2

dτ

α2 tan2 τ − ω2
= 1− 2

αΩ2

π

π
2∫

−π2

dτ

α2 tan2 τ − ω2
.

and discretize the above integral, using the Gauss-Legendre quadrature rule [47, pp. 177-178] on the
interval

(
0, π2

)
, with quadrature weights {w`, 1 ≤ ` ≤ Nq} and quadrature nodes {τ`, 1 ≤ ` ≤ Nq}:

1− Ω2

i α ω + ω2
≈ 1 + 2

Ω2

π

Nq∑
`=1

w`
α2 tan2 τ` − ω2

.

The model (82) is thus approximated by a local Lorentz system (53) with Ne = Nm = Nq and

ωe,` = αe tan τ`, ωm,` = αm tan τ`, Ω2
e,` = 2w`

Ω2
e

π
, Ω2

m,` = 2w`
Ω2
m

π
.

We first tested the approximation of (107) with the discrete augmented system. In figures 11 and 12, we
represent the evolution of Hz at the origin as a function of time in the time window [8, 10], for different
values of Nq . In both cases we observe the convergence of the approximate solution (red curves) towards
the exact solution (blue curve) when Nq increases. In the case of small absorption, figure 11, the conver-
gence is attained quite quickly, but for large absorption, figure 12, fairly accurate solution is obtained only
with 40 quadrature points (which is not surprising since the augmented models are non-dissipative). In
both cases, the approximation of the exact dissipative model with the discrete non-dissipative model does
not provide an efficient numerical method. However, our exact dissipative model is already itself local,
which is not always the case. In figure 13, we plot the variations of the energy Eloc(t) (108) as a function
of time for the two cases. The curves confirm the theoretical decay of this energy, which, as expected, is
much stronger decay in the case αe = αm = 1. In figure 14, we study the variations of the energy E(t) for
the exact solution (red curve), compared with the variations of the energy E(t) for the approximate solution
for different values of Nq (blue curve). We see that, contrary to Eloc(t), E(t) is not a decreasing function
of time, even though it tends to 0 when t→ +∞, as it will be proven in the next section.

4.4.3 Energy analysis of the dissipativity

Lemma 4.19. Let (E,H,P,M) solve (107) with initial conditions

(E0, H0) ∈ (Hrot(R3))2, satisfying (rotE0, rotH0) ∈ (Hrot(R3))2.

Then the electromagnetic energy E(t) satisfies lim
t→+∞

E(t) = 0.
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Figure 11: Graphs of t→ Hz(0, t) for αe = αm = 0.1 and Nq = 5, 10, 40 (Left to right)
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Figure 12: Graphs of t→ Hz(0, t) for αe = αm = 1 and Nq = 10, 20, 80 (Left to right)
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37



0 2 4 6 8 10
6

7

8

9

·10−3

0 2 4 6 8 10
6

7

8

9

·10−3

0 2 4 6 8 10
6

7

8

9

·10−3

Nq = 5 Nq = 10 Nq = 40

0 2 4 6 8 10

6

8

·10−3

0 2 4 6 8 10

6

8

·10−3

0 2 4 6 8 10

6

8

·10−3

Nq = 10 Nq = 40 Nq = 80

Figure 14: Evolution of the electromagnetic energy E(t) for αe = αm = 0.1 (top) and αe = αm = 1
(bottom).

Proof. Let us demonstrate that ‖E(·, t)‖L2 → 0 as t → +∞. The proof for ‖H(·, t)‖L2 → 0 is similar.
From (109), we infer that the energy Eloc(t) decays in time towards a limit E∞loc ≥ 0 and that

αeε0Ω2
e

∫ ∞
0

‖∂tP(·, t)‖2L2 dt+ αmε0Ω2
m

∫ ∞
0

‖∂tM(·, t)‖2L2 dt ≤
1

2
‖E0‖2L2 +

1

2
‖H0‖2L2 < +∞.

(112)
Applying the same reasoning to (∂tE, ∂tH, ∂tP, ∂tM), which also solves (107) (with different initial con-
ditions), we obtain

αeε0Ω2
e

∫ ∞
0

‖∂2
t P(·, t)‖L2 dt+ αmµ0Ω2

m

∫ ∞
0

‖∂2
tM(·, t)‖L2 dt ≤ 1

2
‖rotE0‖2L2 +

1

2
‖rotH0‖2L2 ,

which is finite. Writing ‖∂tP(·, T )‖2L2 = 2
∫ T

0

(
∂2
t P(·, t), ∂tP(·, t)

)
L2dt shows, thanks to (112) and the

above identity that ‖∂tP(·, t)‖2L2 has a limit when → +∞. This limit is necessarily 0 because of (112).
Repeating the above arguments for the second time derivatives of the fields allows us (using the additional
second order space regularity of (E0,H0)) to show the same result for ‖∂2

t P(·, t)‖2L2 . Therefore, we have
proven that

lim
t→+∞

‖∂2
t P(·, t)‖L2 = lim

t→+∞
‖∂tP(·, t)‖L2 = 0.

Finally, using the first equation in the second line of (107), we show that lim
t→+∞

‖E(·, t)‖L2 = 0.
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A Characterization of non-dissipative local materials: the proof of
theorem 3.23

Let ε(ω) and µ(ω) be associated to a local non-dissipative material and F(ω) := ω2 ε(ω)µ(ω), with set of
poles P and set of zeros Z . Saying that (44) has only real solutions implies that

∀ω ∈ C+ \ P, F(ω) ∈ C \ R+. (113)

Let a < b de two real numbers that do not belong to P ∪ Z . Let us denote nP (a, b) (resp. nZ(a, b)) the
numbers of zeros of F(ω) in the interval (a, b), counting multiplicity.

nP (a, b) := ] P ∩ (a, b), nZ(a, b) := ] Z ∩ (a, b)

Lemma A.1. For any a < b that do not belong to P ∪ Z , one has the inequality

|nP (a, b)− nZ(a, b)| ≤ 2. (114)

Proof. Thanks to the well-known argument principle [26] and the analyticity properties of F(ω) we have

∀ δ > 0, nZ(a, b)− nP (a, b) =
1

2iπ

∫
γδ

F ′(ω)

F(ω)
dω, γδ = ∂Rδ, Rδ = [a, b]× [−δ, δ].

Since γδ = [a, b]× {−δ, δ} ∪ γ0
δ , γ0

δ = {a, b} × [−δ, δ], oriented counterclockwise (figure 15), we have

nZ(a, b)− nP (a, b) = Iδ +
1

2iπ

∫ b

a

F ′(x+ iδ)

F(x+ iδ)
dx− 1

2iπ

∫ b

a

F ′(x− iδ)
F(x− iδ)

dx
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where Iδ :=
1

2iπ

∫
γδ0

F ′(ω)

F(ω)
dω satisfies |Iδ| ≤ C δ by continuity of F along γ0

δ .

Thanks to the property F(ω) = F(ω), which yields F ′(ω) = F ′(ω), we obtain

nZ(a, b)− nP (a, b) = Iδ +
1

2π
Im

∫ b

a

F ′(x+ iδ)

F(x+ iδ)
dx

Thanks to (113), we can define in C+ \ P ∪ Z an analytic function logF(ω) = |F(ω)| + iArgF(ω),
where ArgF(ω) ∈ (0, 2π) (the usual determination of the logarithm with branch cut along R+). Thus

Im
∫ b

a

F ′(x+ iδ)

F(x+ iδ)
dx = Im

∫ b

a

d

dx
logF(x+ iδ) dx = ArgF(b+ iδ)− ArgF(a+ iδ).

Therefore, since ArgF(ω) ∈ (0, 2π) we have |nP (a, b)−nz(a, b)| ≤ 2+C δ, and one gets the announced
result by making δ → 0.

(a,−δ)

(b, δ)

Reω

γ

Figure 15: The integration contour γδ

Now, let {pk}nk=1 and {zk}nk=1 be the non-negative poles and zeros of the product ε(ω)µ(ω), ranked by
increasing values. The non-zero poles or zeros are repeated with their multiplicity (1 or 2, see corollary
3.19). However, if 0 is a pole of multiplicity 2m, it is only counted m times:

0 ≤ p1 ≤ p2 ≤ . . . ≤ pn, 0 ≤ z1 ≤ z2 ≤ . . . ≤ zn.

Lemma A.2. The numbers {pk}nk=1 and {zk}nk=1 satisfy

0 ≤ p1 < z1 < p3 < z3 < . . . , 0 ≤ p2 < z2 < p4 < z4 < . . . . (115)

Proof. Proving (115) amounts to showing that pm < zm < pm+2. We shall prove the first inequality only,
by contradiction arguments. The proof of the second one is similar. Let us consider the following cases:

1. ω = 0 is a zero of F(ω), with multiplicity 2 according to lemma 3.18. Let us now assume that
zm < pm for some m ≥ 1. Then, for η > 0 small enough, the interval (−η − zm, zm + η) contains
exactly 2m+ 2 zeros (the ±p`, 1 ≤ ` ≤ m plus 0 counted two times) and m− 2 poles of F , so that
|nP (−η − zm, zm + η)− nZ(−η − zm, zm + η)| = 4 which contradicts (114).

zmpm−1. . .p2z10−zm −pm−1 . . . −p2 −z1 pm−pm

Reω

Figure 16: The poles and zeros of F

2. ω = 0 is neither a pole nor a zero of F(ω). In this case ε(ω)µ(ω) has a pole of multiplicity 2 in
ω = 0 so that 0 = p1 < z1, and p2 6= 0. Assume again that, for some m ≥ 1, zm < pm. For for
η > 0 small enough,the interval (−zm − η, zm + η) contains exactly 2m zeros and 2m− 4 poles of
F , since ±p1 must not be counted in the poles of F(ω). This means that |nP (−η − zm, zm + η)−
nZ(−η − zm, zm + η)| = 4 which contradicts (114).
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3. ω = 0 is a pole of F(ω), with multiplicity 2 according to . Thus, ε µ has a pole of multiplicity 4 in
ω = 0 that is to say p1 = p2 = 0. Assume again that, for some m ≥ 1, zm < pm. For for η > 0
small enough,the interval (−zm − η, zm + η) contains exactly 2m zeros and 2m− 4 poles of F , 0
and {±p3, · · · ,± pm}. One concludes as in the previous cases.

Proof of theorem 3.23. Without loss of generality let us assume that the degree of the numerator of
ε(ω)µ(ω) is 2(2m+ 1). Let us define

ε∗(ω) :=
(ω2 − z2

2)(ω2 − z2
4) . . . (ω2 − z2

2m)

(ω2 − p2
2)(ω2 − p2

4) . . . (ω2 − p2
2m)

,

µ∗(ω) :=
(ω2 − z2

1)(ω2 − z2
3) . . . (ω2 − z2

2m+1)

(ω2 − p2
1)(ω2 − p2

3) . . . (ω2 − p2
2m+1)

.

which satisfies ε∗(ω)µ∗(ω) = ε(ω)µ(ω). Since p2` is a simple pole (lemma A.2)

(Res ε∗, p2`) =
A`B`
2 p2`

, A` := (−1)m
m∏
k=1

(z2
2k − p2

2`), B` := (−1)m−1
∏
k 6=`

(p2
2k − p2

2`)
−1
.

The sign of B` is (−1)`−1(−1)m. According to (115), z2
2k − p2

2` > 0 for k < ` and z2
2k − p2

2` > 0 for
k ≥ `: thus, the sign of B` is (−1)`(−1)m−1. Thus (Resf, p2`+1) < 0 and we can write

ε∗(ω) = 1 +

m∑
`=0

a`
ω2
` − ω2

, with a` < 0.

As a similar reasoning applies to µ, one concludes easily.

B The Nevanlinna representation theorem for Herglotz functions
Here we prove lemma 4.1, based on a similar representation result for functions analytic inside the open
unit disk D and the use of the Möbius transform, a conformal mapping which maps the unit disk D onto
the complex half-space C+. The proof of lemma 4.1 relies on the Poisson’s formula:

Lemma B.1. (Poisson representation) Let the function f be analytic in the unit disk D. Then, for any
R < 1, f admits the following representation:

∀ z ∈ D(0, R) := {z / |z| < R}, f(z) = i Imf(0) +
1

2π

∫ 2π

0

Reiθ + z

R eiθ − z
Ref(Reiθ) dθ.

Proof. As f is analytic in D, we can write f(z) =

∞∑
n=0

anz
n for |z| < 1. In particular,

Ref(Reiθ) =
1

2

∞∑
=0

{an einθ + an e
−inθ} Rn = Re a0 +

1

2

+∞∑
n=1

an R
n einθ +

1

2

+∞∑
n=1

an R
n e−inθ.

Since the family {einθ, n ∈ Z} is orthogonal in L2(0, 2π), we deduce, setting fR(θ) := Ref(Reiθ)

Re a0 =
1

2π

∫ 2π

0

fR(θ) dθ and an =
1

π

∫ 2π

0

fR(θ)
e−inθ

Rn
dθ, for n ≥ 1.

In particular, since a0 = f(0), we get: (i) a0 = Re a0 + i Ima0 =
1

2π

∫ 2π

0

fR(θ) dθ + i Imf(0).
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On the other hand,
∞∑
n=1

anz
n =

∞∑
n=1

1

π

∫ 2π

0

fR(θ)
( z
R
e−iθ

)n
dθ. Moreover, for |z| < R, we have

∞∑
n=1

( z
R
e−iθ

)n
=
(

1− z

R
e−iθ

)−1

− 1 =
z

R eiθ − z
.

Thus, after permutation series-integral, one gets: (ii)
∞∑
n=1

anz
n =

1

π

∫ 2π

0

fR(θ)
z

R eiθ − z
dθ.

The final result is obtained by summing (i) and (ii), since 1 + 2
z

R eiθ − z
=
Reiθ + z

R eiθ − z
.

Lemma B.2. A function f is analytic in the open unit disk and has a positive real part if and only if it
admits the following representation:

∀ z ∈ D, f(z) = iβ +

∫ 2π

0

eiθ + z

eiθ − z
dσ(θ), (116)

with β = Imf(0) ∈ R and σ a positive finite regular Borel measure of the interval [0, 2π] with finite mass.

Proof. It is a clear that functions of the form (116) are analytic inD and have a positive real part. Moreover,
one checks easily that β = Imf(0).

Reciprocally, suppose now that f is analytic in the open unit disk D. Then by the Poisson representation
of f (see lemma B.1), for all 0 < R < 1, one has

for |z| < R, f(z) = i Imf(0) +

∫ 2π

0

ψz,R dσR(θ), ψz,R(θ) =
Reiθ + z

R eiθ − z
. (117)

where σR is the absolutely continuous measure on [0, 2π] (with respect to Lebesgue’s measure) defined by

dσR(θ) =
1

2π
fR(θ) dθ, fR(θ) := Re f(Reiθ).

Note that, due to the assumption that f has a positive real part inside D, σR is a positive measure. The
reader will observe that the formula (117) of very close to (116): we only would like to push R to 1.

To do so, the first step consists in identifying the limit, if any, of the measure σR. To do so, we identify σR
to a continuous linear form σ∗R ∈ E′ on the Banach space C0[0, 2π] equipped with the sup-norm ‖ · ‖∞ :

〈σ∗R, ϕ〉 :=

∫ 2π

0

ϕ(θ) dσR(θ) ≡ 1

2π

∫ 2π

0

ϕ(θ) fR(θ) dθ. (118)

We first observe that σ∗R is bounded in E′ since

‖σ∗R‖E′ ≤
1

2π
‖fR‖L1(0,2π) =

1

2π

∫ 2π

0

fR(θ) dθ (positivity of fR)

Modulo identification C ≡ R2, by analyticity of f , Rf(x, y) := Re f(x + iy) is harmonic in D and we
observe that fR = Rf |∂D(0,R). Then, by the mean value theorem for harmonic functions, we have

1

2π

∫ 2π

0

fR(θ) dθ = Ref(0) which proves that ‖σ∗R‖E′ ≤ Ref(0). (119)

Therefore, by Banach-Alaoglu’s theorem, we can find an increasing sequence Rn → 1 such that σRn
converges to some σ∗ ∈ E′ for the weak-* topology of E, i.e.

∀ ϕ ∈ C0[0, 2π], lim
n→+∞

〈σ∗Rn , ϕ〉 = 〈σ∗, ϕ〉
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Since 〈σ∗R, ϕ+〉 ≥ 0,∀ ϕ ∈ E+ := {ϕ+ ∈ C0[0, 2π] / ϕ+ ≥ 0}, we also have 〈σ∗, ϕ+〉 ≥ 0,∀ ϕ ∈ E+.
Then, by Riesz-Markov theorem, there exist a positive regular Borel measure σ on [0, 2π] such that

〈σ∗, ϕ〉 =

∫ 2π

0

ϕ(θ) dσ(θ).

Finally, the inequality ‖σ∗R‖E′ ≤ Ref(0) proves that ‖σ∗‖E′ ≤ Ref(0). For |z| < 1 and n large enough,
z ∈ D(0, Rn). Thus by (117) and (118), we can write

f(z) = i Imf(0) + 〈σ∗Rn , ψz,Rn〉 = i Imf(0) + 〈σ∗Rn , ψz,1〉+ 〈σ∗Rn , ψz,Rn − ψz,1〉 (120)

Noticing that, thanks to (119),
∣∣ 〈σ∗Rn , ψz,Rn−ψz,1〉∣∣ ≤ Ref(0) ‖ψz,Rn−ψz,1‖∞, by uniform convergence

of ψz,Rn to ψz,1, we can pass to the limit in (120) to obtain the announced result.

The proof of lemma 4.1. It is clear that all functions of the form (70) are Herglotz functions. For the
reciprocal statement, we introduce the Möbius transform M(z) as the function defined on C \ {1} by

M(z) = i
1 + z

1− z
(121)

which is a bijection from C \ {1} on to C \ {i}

ω = M(z), z ∈ C \ {1} ⇐⇒ z = M−1(ω) :=
1− iω
1 + iω

, ω ∈ C \ {i} (122)

Moreover, the important property of M for our purpose is that it realizes a bijection from the unit disk D
onto the complex half-space C+ (and from ∂D \ {−1} on to R = ∂C+)

z ∈ D =⇒ ω = M(z) ∈ C+, and ω ∈ C+ =⇒ z = M−1(ω) ∈ D.

As a consequence given f : C+ → C, one can construct f̃ : D → C as

f̃(z) := −i f
(
M(z)

)
⇐⇒ f(ω) = i f̃

(
M−1(ω)

)
. (123)

Indeed, f is analytic in C+ if and only if f̃ is analytic in D. Furthermore, if f is Herglotz, f̃ satisfies
the assumptions of lemma and can thus be written in the form (116). As a consequence, substituting z =

M−1(ω) in (116), using the fact that f(ω) = i f̃
(
M−1(ω)

)
and the relation −Imf̃(0) = Ref

(
M(0)

)
=

Ref(i), we deduce that

f(ω) = Ref(i) + i

∫
[0,2π]

eiθ +M−1(ω)

eiθ −M−1(ω)
dσ(θ), ω ∈ C+.

or equivalently, setting a = σ({2π}) + σ({0}) ≥ 0 and using i
eiθ +M−1(ω)

eiθ −M−1(ω)
= ω for θ = 0 or 2π,

f(ω) = Ref(i) + aω + i

∫
]0,2π[

eiθ +M−1(ω)

eiθ −M−1(ω)
dσ(θ), ω ∈ C+.

To obtain the final result, the idea is to use the change of variable ξ = ψ(θ) := − cotan(θ/2) in the last
integral, using the fact that ψ is a bijection from ]0, 2π[ onto R. This leads to introduce the positive regular
Borel measure ρ on R defined as the pushward measure of σ through the continuous bijection ψ, namely

ρ(B) = σ
(
ψ−1(B)

)
, ∀B ∈ B(R) := { Borel subsets of R}.

Therefore, f(ω) = Ref(0)+aω+ i

∫
R

eiψ
−1(ξ) +M−1(ω)

eiψ−1(ξ) −M−1(ω)
dρ(ξ).Moreover tedious computations give

eiψ
−1(ξ) +M−1(ω)

eiψ−1(ξ) −M−1(ω)
=
(1 + ξ ω

ξ − ω

)
≡
(
1 + ξ2

) ( 1

ξ − ω
− ξ

1 + ξ2

)
.
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Then, one obtains the expression (70) by introducing the positive regular Borel measure ν defined by
dν(ξ) = (1 + ξ2) dρ(ξ). Note that the condition (71) follows from the fact that ρ has a finite mass.

Obtaining the value of β in (72) is immediate while the formula for α is a straightforward application of
the Lebesgue’s theorem. It remains to prove (73). By the Herglotz representation formula (70), one has:

η Imf(a+ iη) = αη2 +

∫
R

dν(ξ)

η−2(a− ξ)2 + 1
.

As η → 0, the integrand tends to 1a, the indicator function of the set {a}. Moreover this function is
bounded by ψ(ξ) = 1/

[
(a− ξ)2 + 1

]
for 0 < η ≤ 1 which is ν-integrable. Thus, applying the Lebesgue’s

theorem leads to (73)(i). Next we prove (73)(ii). For simplicity, we restrict ourselves to the case where
(74) holds, the general case being treated by an approximation process (see [18]). By (70) again, we have∫ b

a

Imf(x+ iη) dx =

∫ b

a

∫
R

η

(x− ξ)2 + η2
dν(ξ)dx. (124)

As the integrand in (124) is positive, we can use Fubini’s theorem to obtain∫ b

a

Imf(x+ iη) dx =

∫
R
χηa,b(ξ) dν(ξ), χηa,b(ξ) := arctan

(
b− ξ
η

)
− arctan

(
a− ξ
η

)
.

When η → 0, χηa,b(ξ) −→ χa,b(ξ) := 0 if ξ ∈ (a, b), π
2 if ξ ∈ {a, b}, π otherwise. On the other hand

0 ≤ χηa,b(ξ) ≤ π and η 7→ χηa,b(ξ) is increasing if ξ ∈ [a, b], decreasing if not,

so that 0 ≤ χηa,b(ξ) ≤ 0 with χ+
a,b(ξ) := π if ξ ∈ [a, b] and χ+

a,b(ξ) := χ1
a,b(ξ) if not.

Since one easily check that χ1
a,b(ξ) ∼ |ξ|−1 when ξ → ±∞, it results from (74) that χ+

a,b is ν-integrable.
Thus, by Lebesgue’s theorem, we can pass to the limit in (124) when η → 0 to obtain (73)(ii).
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