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Abstract

In this work, we present and study a flexible and accurate numerical solver in the context of
three-dimensional computational nanophotonics. More precisely, we focus on the propagation
of electromagnetic waves through metallic media described by a non-local dispersive model.
For this model, we propose a discretization based on a high-order Discontinuous Galerkin time-
domain method, along with a low-storage Runge-Kutta time scheme of order four. The semi-
discrete stability of the scheme is analyzed for classical numerical fluxes, i.e. centered and
upwind. Furthermore, the numerical treatment is enriched with an enhanced approximation of
the geometry based on isoparametric curvilinear meshes. We finally assess our approach on
several test cases, from academic to more physical ones.

Keywords: Nanoplasmonics, Maxwell’s equations, Spatial dispersion, Nonlocal Drude model,
Discontinuous Galerkin time-domain method, Isoparametric curvilinear elements

1. Motivations and objectives

1.1. Physical context

Nanophotonics [1] is where photonics merges with nanoscience and nanotechnology, and
where spatial confinement considerably modifies light propagation and light-matter interaction.
Nanophotonics has become a quickly evolving field, crossing the frontiers of fundamental re-
search to reach real-life applications. Indeed, high-tech nanoscale fabrication processes for di-
electric and metal structures, as well as for semi-conductors and composite materials, have paved
the way to tailored nano-devices. Potential applications now include a variety of possibilities,
such as light-guiding [2], tunable metasurfaces [3], single molecule sensing [4], or cancer treat-
ment processes [5].

As a matter of fact, the physics of light-metal interaction drastically changes at the nanoscale
level in comparison with the well known microwave regime. In nanophotonics, the main differ-
ence resides in the enormous difference of scale existing between the device and the free space
wavelength of the incident field, usually leading to a regime where the scatterer size is compa-
rable to the skin depth. In most cases, a deeply penetrating electromagnetic field will strongly
interact with the free electrons of the metal and excite so called plasmonic waves, or plasmons
[6], well known from plasma physics [7]. In other words, in these regimes, metals cannot be
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considered to be perfectly conducting, and the electron gas nature of the valence electrons in the
metal has to be taken into account, leading to space-time dispersive material laws.

In 1900, Drude proposed a fairly simple yet efficient oscillator model for free electrons in
metals [8], becoming a solid reference for theory [6] and experiments [9]. However, this model
fails to account for some electronic behaviors, such as transitions between the valence and the
conduction band in noble metals, for example. Hence, in order to properly fit experimental
permittivity measurements, more sophisticated descriptions emerged, among which the Drude-
Lorentz model [10], the infinite-oscillator models [11], or general Padé expansions [12].

Although they perform well in most cases, latter refinements remain local models. When the
size of a nanostructure decrease beyond approximately 10 nm, the effect of spatial dispersion
increases, and must be taken into account within the dispersion model. In such a case, the
complexity of the permittivity function significantly increases, leading to a partial differential
equation (PDE) in space and time, compared to a system of ordinary differential equations (ODE)
for local models. Such descriptions include mutual electron repulsion, hence making the electron
behavior dependent not only on the local field value, but also on the neighboring field distribution.
For this reason, this model is said to be nonlocal.

Since the impact of nonlocality scales with the effective wave vector [13, 14], gap structures
are of particular interest, since they are highly sensitive to spatial dispersion. It should be noted
that, when the gap size gets smaller than 1 nm, electron spill-out may occur, and the model
considered in this work would fail. Nevertheless, it has been shown that for gap sizes ranging
from about 1 nm to 5 nm, the electronic regime is sensitive to nonlocality while it does not require
a spill-out description [15].

1.2. Numerical challenges

The simulation of nanophotonic configurations often reveals to be multi-scale problems, be-
cause of the strongly different wavelengths occurring due to the plasmonic nature of the metals.
As a result, the initial Maxwell problem governing the light propagation, usually in a wavelength
regime of several hundreds of nano meters, now has to resolve geometrical details down to 1 nm
leading to an extreme sub-wavelength problem. Additionally, a proper resolution of the geometry
is of a crucial importance, thus requiring well adapted mesh sizes in the vicinity of geometric de-
tails. Finally, most studies require a wide bandwidth as well as an accurate frequency sampling,
in order to detect sharp resonances. In summary, a reliable numerical method for nanophoton-
ics should be geometry conforming, provide accurate results on large bandwidths, and properly
discretize small geometric details within large computational domains.

Considering these demands, we believe that a Finite Element Method (FEM) approach is well
appropriate due to its flexible mesh capability and high order nature [16]. Broad-band simula-
tions, however, would need a fairly high number of frequency-domain solver calls, guaranteeing
a sufficiently fine frequency sampling. For this reason, we have chosen to work in time-domain
where only one simulation run is required for an almost arbitrary frequency sampling. Work-
ing in time-domain also naturally paves the way to nonlinear dispersion models, which is more
difficult to achieve with frequency-domain approaches.

FEM for Maxwell’s equations in time-domain requires the inversion of the mass matrix when
a time stepping scheme is applied. If for example Nédélec elements are used [17], the matrix
structure will be sparse, but not block-diagonal, thus increasing the computational cost of a single
time step. Changing the ansatz space to local basis functions leads to a block-diagonal mass
matrix, which is efficiently invertible. Local basis functions relax the regularity of the numerical
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solution and leads to discontinuous fields at the cell interfaces. The discontinuity introduced
in the approximation induces an increasing amount of discrete unknowns, which is an obvious
drawback of the method. It can be overcomed with a parallel implementation strategy exploiting
the element-wise locality of the approach. This method is known as the Discontinuous Galerkin
Time-Domain (DGTD) method [18]. Busch et al. have intensively pushed the development
of DGTD methods purposely tailored for nanophotonics [19], and have also demonstrated the
advantages of DGTD in comparison to Finite Difference Time-Domain (FDTD) methods [20].

1.3. Context and outline of this work

The present work is a sequel of [21], where we studied the purely nonlocal dispersion model
for 2D configurations. Here, we extend the dispersion model by taking into account different
contributions for bound and free electrons: a generalized Padé expansion model is used for the
bound electrons, while we use a linearized hydrodynamic model for the description of the non-
local response of the free electrons (see section 2). Section 3 is concerned with the DGTD
formulation, which we extended to upwind fluxes for both Maxwell’s equations and the hydro-
dynamic fluid model. In this context, we provide a semi-discrete stability analysis in section 3.4.
Finally, we demonstrate the advantage of using curvilinear elements in non-local computations
by means of numerical experiments and computational performance assessments.

2. Notations and problem statement

2.1. Definitions and notations

For a given open bounded domain Ω ⊂ R3, we use standard notations:

• L2(Ω), the space of square integrable real-valued scalar functions with its canonical scalar
product 〈·, ·〉Ω and the associated norm ‖ · ‖Ω. L2(Ω) will be its vectorial analogue equipped
with the canonical vectorial scalar product (resp. norm) that will be still denoted by 〈·, ·〉Ω
‖ · ‖Ω (resp ‖ · ‖Ω);

• H1(Ω) the space of square integrable functions with square integrable gradient, with H1(Ω)
its vectorial analogue;

• H1
0(Ω) the space of square integrable functions with square integrable gradient and vanish-

ing trace on the boundary, with H1
0(Ω) its vectorial analogue;

• H(curl,Ω) the space of square integrable functions with square integrable curl;

• H0(curl,Ω) the space of square integrable functions with square integrable curl and van-
ishing tangential trace on the boundary;

• L2(∂Ω) with its canonical scalar product 〈·, ·〉∂Ω and the associated norm ‖ · ‖∂Ω.

Classically, for a given vector field A of R3, ∇×A, and ∇ ·A respectively denote the curl and the
div operator applied to A.
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2.2. Maxwell’s Equations and constitutive laws
The complete set of macroscopic Maxwell’s equations that describe the spatio-temporal evo-

lution of electromagnetic waves on a domain Ω ⊂ R3 over a given time interval [0,T ] (T > 0)
given are given on Ω × [0,T ] by (see for example [22])

∇ × E = −∂tB, ∇ ×H = ∂tD + J,

∇ · D = ρ, ∇ · B = 0,
(2.1)

with E,D,H,B, J : Ω × [0,T ] → R3 and ρ : Ω × [0,T ] → R. Here, E and H represent the
electric and magnetic field, respectively. The magnetic flux density is denoted by B and the
electric displacement and current density respectively by D and J, and the charge density by ρ.
These equations are supplemented by constitutive laws linking D to E and B to H through the
introduction of

D = ε0E + P, B = µ0H + M. (2.2)

Here, ε0 and µ0 are the vacuum permittivity and permeability, P : Ω × [0,T ] → R3 the po-
larization and M : Ω × [0,T ] → R3 the magnetization. Throughout the following derivations,
non-magnetic materials will be assumed and M will thus be considered to be zero. Metals are
usually seen as a rigid, positive ion cores grid hosting both bound electrons (d-band) and valence
electrons (s-band). Hence, the electric polarization P can be split in two parts: the background
polarization of the bound electrons Pb [23, 13], governing the influence of the background elec-
trons, and Pf , which models the currents in the free electron gas. Exploiting this split, the com-
plete polarization can be written as

P = Pb + Pf . (2.3)

Multiple models for the modeling of the bound electrons Pb and free electrons Pf can be found in
literature [11]. In a linear medium, the polarization of the bounded electrons takes into account
for the history of the electric field, namely

Pb = εb ?t E, (2.4)

where ?t denotes the convolution in time. Regarding the polarization of the free electrons, one
has to take into account for both the history of the field and its variation over space via the relation

P f = ε f ?(x,t) E, (2.5)

where ?(x,t) denotes the convolution in both space and time. We use a generalized dispersion
model in order to fit arbitrary bound electron contributions and a quantum hydrodynamic electron
response for the free electrons.

2.3. Generalized dispersion model for bound electrons
In the frequency-domain (for a given frequency ω), equation (2.4) reduces to a multiplication

of the frequency dependent quantities associated to εb and E. Thus prescribing the expression of
a frequency dependent permittivity will determine the model equations (performing an inverse
Fourier transform to obtain the time-dependent equations).

In the case of bound electrons, interband transitions can be modeled by Lorentz oscillators
motivated by a simple semiquantum model of the form

εb(ω) =

k∑
i=1

fiω2
P

(ω2
i − ω

2) + iωΓi
. (2.6)
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Figure 1: Real and imaginary part of Au’s bound permittivity. Black: εr and εi respectively are the real and imaginary
part of the experimentally motivated BB model [11]. Colored: the fitted permittivity with our generalized dispersion
model [12]. The corresponding fitting coefficients can be found in Table 1.

Here, ωP is a physical parameter called the plasma frequency. The other parameters k (the num-
ber of poles), fi, ωi and Γi are degrees of freedom in the model. These will be fixed in order ti
fit experimental data of permittivity values. However, this model is limited in precision. As an
alternative model, we propose to use the Brendel-Bormann (BB) model applied to a wide range
optical frequency range as developed by Rakic et al. [11]. The advantage of this model is that it is
able to distinguish between free and bounded electron contributions in the permittivity and thus
allows for an accurate description of the latter ones. However, this model demands the evalua-
tion of relatively complex functions, namely the Kummer functions of the second kind (we refer
to [11] for details) and is hence complicated to be formulated in the time domain. It turns out
that the BB model’s permittivities can be nicely fitted by a generalized dispersion model which
consists of a Padé series of zero, first and second order poles (see [12])

εb(ω) = ε∞ −
σ

iω
−

∑
i∈L1

ai

iω − bi
−

∑
i∈L2

ci − iωdi

ω2 − ei + iω fi
, (2.7)

with {ε∞, σ, ai, bi, ci, di, ei, fi} ∈ R and L1,2 being the number of first and second order poles,
respectively. These constants are thus fixed in order to provide a good fit of the values given
by the BB model. Figure 1 shows an example fit of the bound electron permittivity εAu

b of
gold. This fit consists of six second order poles and a constant value ε∞. Table 1 provides
the corresponding parameters. Applying an inverse Fourier transform with the corresponding
expression (2.7) yields a system of time domain Ordinary Differential Equations (ODE) driving
the evolution of the polarization and polarization current which is then coupled to Maxwell’s
equations via (2.3). We refer to [24] for more details on this model and to section 2.5 for the
global set of equations.

2.4. Quantum hydrodynamic electron response
The free electrons of a metal leading to the polarization Pf can be considered as a free electron

gas that is modeled by a nonlinear fluid equation. Given the electron charge qe, its mass me and
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Table 1: Fit parameters of Au. Coefficients of the generalized dispersion model (2.7) with ε∞ = 1.0 fitted to the BB
permittivity of Au. Figure 1 depicts the original BB model and the fitted result.

i ci [Hz2] di [Hz] ei [Hz2] fi [Hz]

1 0.1244266E+32 0.5443769E+11 0.1710211E+24 0.9838512E+15
2 0.1856766E+32 0.2936716E+12 0.2125471E+32 0.1587780E+16
3 0.1668009E+31 0.3440195E+10 0.1643161E+31 0.9578440E+15
4 0.7350947E+24 0.2222866E+16 0.1296565E+32 0.1400973E+16
5 0.3468661E+32 0.4572497E+11 0.6008717E+32 0.1274194E+16
6 0.8574585E+32 0.8687290E+10 0.4155750E+32 0.2764158E+16

a damping constant γ, the nonlinear hydrodynamic electron model reads [25]

me(∂t + v · ∇)v = −qe(E + v × B) − meγv − ∇
(
δG[n]
δn

)
, (2.8)

together with the continuity equation

∂tn + ∇ · (nv) = 0, (2.9)

where v represents the fluid velocity, n its density and qe(E + v × B) is the Lorentz force. The

last term of (2.8), containing the quantum pressure
δG[n]
δn

eventually determines which quantum
mechanical effects of the electron gas is taken into account or left out by an explicit form for the
energy functional G[n]. Following the discussion by Ciraci [26], this term splits up into a sum of
kinetic (T), exchange correlation and potential energy (XC). An approximated functional can be
formulated as

G[n] ≈ Gη[n] = T TF[n] +
1
η

T W[n] + EXC, (2.10)

where the kinetic contribution consists of the Thomas-Fermi (TF) and the von Weizsäcker (W)
part.

A fully nonlinear problem as stated in (2.8) is a serious challenge and a reasonably vast
range of problems can already be properly modeled by a linearized version of (2.8) [27]. Of
course, such a model does not account for nonlinear effects like Second Harmonic Generation
(SHG) [28], but already includes spatial dispersion [25, 13, 29, 30]. As a first attempt to study
such models, we assume a pure Thomas-Fermi theory and drop the von Weizsäcker contribution
as well as the exchange correlation in (2.10) in this work. Further we assume an equilibrium
state with zero background velocity, no static electric and magnetic field, and a constant electron
density denoted by n0. We consider the same expression for the quantum pressure as in [31],
which leads to a linear Thomas-Fermi theory [6, 30, 13]. The first order linearized term of the
quantum pressure thus expresses as

β2 1
n0
∇n. (2.11)

The quantum related parameter β has to be chosen according to the physics of the problem. Its
choice is a crucial point in this model and it depends on the Fermi velocity vF and the spatial
dimensionality of the problem. Boardman [25] comprehensively discusses the choice of this
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parameter and proposes

β =

√
3D

D(D + 2)
vF, (2.12)

for high frequencies where surface plasmons can be excited [25]. In (2.12), D = {1,2,3} is the
dimensionality of the Fermi gas. A three dimensional Thomas Fermi gas, as we consider it

throughout this work, yields β2 =
3
5

vF. Expanding all the fields around an equilibrium state, i.e.
u(r, t) ≈ u0 + u1(r, t), u ∈ {n, v,E,B}, keeping the linear terms only, and omitting the index (·)1
leads to a first order system

me∂tv = −qeE − meγβ
2 1

n0
∇n,

∂tn = −n0∇ · v.
(2.13)

Here, we assumed ∂tn0 = v0 = E0 = B0 = 0 (non-moving fluid, absent static electric or magnetic
fields, and a constant electron density) and a constant (in both space and time) background elec-
tron density n0. Differentiating the first equation in (2.13) with respect to the time t, exploiting
the second equation in (2.13), and using Jf = n0qev, the current density of the unbound electrons
in the fluid formally yields

∂ttJf + γ∂tJf − β
2∇(∇ · Jf) − ω2

Pε0∂tE = 0, (2.14)

with ωP =

√
n0q2

e

ε0me
being the plasma frequency. Equation (2.14) is a second order PDE in space

and time. A direct discretization of (2.14) as is would lead to a so-called variational crime in the
DG framework [32], leading us to recast it under a first order system, as follows

∂tJf + γJf − β
2∇Q − ω2

Pε0E = 0,

∂tQ − ∇ · Jf = 0.
(2.15)

System (2.15) can be written as a first order system of hyperbolic PDEs (see next section).

2.5. Full dispersive Maxwell system

The split of the bound and free polarization in (2.3) was necessary in order to apply the
quantum hydrodynamic electron response model to the free electrons and to allow a flexible
model for the bound electrons at the same time. Coupling both to Maxwell’s equations at the
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same time leads to the complete system

∇ × E + µ0∂tH = 0,

∇ ×H − ε0ε∞∂tE − Jf − Jb = 0,

∂tJf + γJf − β
2∇Q − ω2

Pε0E = 0,

∂tQ − ∇ · Jf = 0,

−Jb +J 0 +
∑
i∈L1

J i +
∑
i∈L2

J i = 0,

−J 0 +

σ +
∑
i∈L2

J i

 E = 0,

−J i + aiE − biPi = 0, ∀i ∈ L1,

−∂tPi +J i = 0, ∀i ∈ L1,

−∂tJ i + (ci − di fi)E − fiJ i − eiPi = 0, ∀i ∈ L2,

−∂tPi + diE +J i = 0, ∀i ∈ L2.

(2.16)

2.5.1. Boundary conditions
The set of equations (2.16) is supplemented with initial and boundary conditions. Let us focus

on the latter. Regarding the set of pure Maxwell equations, we have to fix boundary conditions
for E and H. We choose not to detail them here since we will use classical boundary conditions
that are applied on a perfect electric conducting wall and an absorbing boundary. We do not
prescribe any boundary conditions to the set of unknowns issued from the bound electrons, since
their evolution is described by a set of ODE’s. Let us focus on the set of unknowns issued
from the free electrons model, i.e. Jf and Q. We omit the subscript of the free electrons in the
following and presume J := Jf . System (2.15) can be written as a first order hyperbolic equation
as expressed in the third and fourth equation of (2.16). We refer to [21] for the comprehensive
discussion and derivation of this system of hyperbolic PDEs; we simply recall the main results for
(2.15), in the following. Considering the propagation problem (2.15) on a domain Ω we claim
continuity for the normal component of the polarization current at any sub domain interface
between two disjoint domains Ω1 and Ω2, Ω1 ∩Ω2 = ∂Ω1,2 and Ω1,2 ⊂ Ω, i.e.

n · (J2 − J1)|∂Ω1,2 = 0. (2.17)

In the case of β , 0 on Ω1 and β ≡ 0 on Ω2, ∂Ω1,2 becomes a boundary of the nonlocal do-
main. Supposing a vanishing polarization current outside the nonlocal domain Ω1, the resulting
boundary condition reads

n · J1|∂Ω1,2 = 0. (2.18)

In the special case of Ω1 = Ω, (2.18) formulates the boundary condition for the entire boundary
∂Ω of the nonlocal domain Ω.

2.5.2. Study of the hyperbolicity
If we focus on the Maxwell-hydrodynamical part of (2.16) (i.e. the first four equations, ne-

glecting the ODE’s contributions), one can study its hyperbolicity. We here recall the associated
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eigenvalues and again refer to [21] for details. For ξ = {ξ1, ξ2, ξ3}
T ∈ R3, the eigenvalues of the

Maxwell-hydrodynamic system are given by

λ(||ξ||) =
{
0 0 0 0 −cr ||ξ|| −cr ||ξ|| cr ||ξ|| cr ||ξ|| −β||ξ|| β||ξ||

}
. (2.19)

These will be of importance when discussing the numerical fluxes in the numerical sections that
follow.

2.5.3. Energy
The considered system (2.16) benefits from an energy principle. Indeed, we can formulate

the total energy as a sum of the local and nonlocal contribution as

E = Egen + ENL, (2.20)

with

Egen(t) =
1
2

µ0||H(t)||2Ω + ε∞ε0||E(t)||2Ω +
∑
l∈L1

bl

al
||J l(t)||2Ω +

∑
l∈L2

el

cl + dl fl
||Pl(t)||2Ω +

∑
l∈L2

1
cl + dl fl

||J l(t)||2Ω


(2.21)

and
ENL(t) :=

1
2

(
µ0ω

2
Pε0||H(t)||2Ω + ε∞ε

2
0ω

2
P||E(t)||2Ω + ||J(t)||2Ω + β2||Q(t)||2Ω

)
, (2.22)

Assuming the boundary condition (2.18) for the hydrodynamic part and perfectly electric con-
ducting (PEC) for Maxwell’s equations, leads to a bounded energy which is either strictly pre-
served or monotonically decreasing if damping is taken into account. Combining arguments from
[24] (for the generalized model) and [21] (for the linearized hydrodynamic model), we deduce
that

∂tE(t) = ∂tEgen(t) + ∂tENL(t) ≤ max
l∈L2

dl

√
el

ε∞ε0(cl + dl fl)
E(t), (2.23)

that, using a Grönwall type Lemma, implies the boundedness of the energy. Let us point out that
if the coefficients dl or el vanish, then the energy is decreasing.

3. Numerical scheme

In the previous section, we set up the physical framework and detailed the considered phys-
ical model (2.16). This section describes the spatial discretization of the latter based on a DG
formulation. For the sake of simplicity, we focus within this section on the PDE character of
system (2.16) avoiding to explicitly write up the generalized dispersion contribution as well. We
ask the reader to always keep the missing ODEs from (2.16) in mind.

The DG method is based on a local weak formulation, that will require numerical fluxes in
order to treat the arising discontinuities. In this work, we extend our previous work [21] by
several means. First, the scheme used extend the possible numerical traces by including upwind
fluxes instead of centered fluxes and we demonstrate its semi-discrete stability. Furthermore,
the explicit time integration of the obtained semi-discrete scheme is now performed by a Low
Storage Runge-Kutta (LSRK) scheme. Finally, we extend the use of curvilinear elements from
a previous work [33] in order to guarantee the high order nature of our scheme even if complex
geometries are of concern.
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3.1. The Discontinuous Galerkin method

We now want to apply the DG method to system (2.15), which is done in the following steps:
(i) defining a weak formulation, (ii) choosing an appropriate finite element space for the basis
functions, and eventually (iii) evaluating the resulting integrals from the discrete weak Galerkin
formalism and semi-discrete scheme. Here, semi-discrete means discrete in space and continuous
in time.

3.2. Weak formulation

The starting point of the DG formulation is a local weak formulation of system (2.15). Spatial
discretization with the DG method requires a special choice of finite element spaces and thus of
polynomial basis functions on a given mesh. This choice clearly distinguishes DG methods from
continuous FEM. While Nédélec based FEM use basis function from conforming discretization
spaces, DG relies on element-wise local basis functions. The use of local basis functions implies
that the continuity of the fields is not enforced and discontinuities at the cell interfaces may arise.
The treatment of those discontinuities provides an additional design parameter for the final al-
gorithm. As we will see later, the discontinuities at the mesh element interfaces will be handled
by a numerical flux. Further, the choice of this flux is not unique and will strongly influence nu-
merical properties such as the numerical dissipation and the existence of spurious solutions [19].
Different polynomial basis expansions are possible, but in this work, we concentrate on nodal
Lagrange based basis functions on a tetrahedral mesh. Let us suppose that the computational
domain Ω can be discretized as a conformal, quasi-uniform tetrahedral mesh as Ω =

⋃
∀i∈NΩ

Ωi,

with NΩ being the set of indices of mesh elements and Ωi the tetrahedra with a characteristic
size parameter h > 0. Furthermore, ∀i ∈ NΩ, NΩi denotes the set of indices of the neighboring
elements of Ωi (having a face in common) and siq = Ωi ∩Ωq, ∀q ∈ NΩi , the set of internal faces.
We define the approximation space

V
p
h (Ω) :=

{
v ∈ L2(Ω), v|Ωi ∈ Pp(Ωi),∀ i ∈ NΩ

}
, (3.1)

where Pp(Ωi) is the space of polynomials of maximum degree p ∈ N on Ωi. V
p
h (Ω) is a finite

dimensional subspace of L2(Ω). We choose a polynomial basis ofVp
h (Ω) formed by polynomial

functions (φi j)NΩ×[1,Pi], with Pi the number of Degrees of Freedom (DoF) for the i-th element.
For any A ∈ (Vp

h (Ω))3, we denote by Ai the restriction of A to Ωi (analogous definition holds for
a scalar field ofVp

h (Ω)).
We now turn to the formulation of the DG method. We express the discrete weak formulation

locally on each element of the mesh and perform an integration by part and derive a local Galerkin
formulation as follows: Find (E,H,Q, J) ∈ (Vp

h (Ω))10, such that for all i ∈ NΩ, k ∈ J0, PiK:

µ0∂t < Hi,φik >Ωi = − < Ei,∇ × φik >Ωi − < E∗i × φik,n >∂Ωi ,

ε0ε∞∂t < Ei,φik >Ωi = < Hi,∇ × φik >Ωi + < H∗i × φik,n >∂Ωi − < Ji,φik >Ωi ,

∂t < Ji,φik >Ωi = −β2 < Qi,∇ · φik >Ωi +β2 < Q∗i φik,n >∂Ωi

−γ < Ji,φik >Ωi +ω2
Pε0 < Ei,φik >Ωi ,

∂t < Qi, φik >Ωi = − < Ji,∇φik >Ωi + < J∗i φik,n >∂Ωi ,

(3.2)

10



with φu
i j := φi jeu, where u ∈ {1, 2, 3} refers to the spatial variable / coordinate axis. Since the field

values at a cell interface are not unequivocal (the unknowns can refer to the value on either side
of the interface), we introduce the star notation (·)∗ that makes reference to the numerical flux on
the cell boundary ∂Ωi. This flux is used to recover a proper definition of the surface integrals,
and shall be detailed in the next section. Using the decomposition of each field on the basis, one
can rewrite (3.2) in a matrix form. We refer to [21] for a detailed derivation of the corresponding
mass and flux matrices.

3.3. Numerical fluxes

As previously mentioned, each cell has strictly local basis functions, no continuity of the
fields is ensured between two neighboring cells, and the definition of the surface integrals present
in (3.2) is ambiguous. In order to overcome this dilemma, a numerical flux is used which weakly
reinforce the tangential continuity of the solution. Finding the appropriate numerical flux is
subject to solving a Riemann problem at each cell interface. Since this is very classical, we
skip the details of the derivation of the numerical flux for Maxwell’s equations and refer to the
literature [18, 19, 12] for details. For our purposes let us recall the general upwind flux for E and
H fields

E−∗ =
1

Y− + Y+

(
{YE}−+ − α(n−+ × JHK−+)

)
,

H−∗ =
1

Z− + Z+

(
{ZH}−+ + α(n−+ × JEK−+)

)
,

(3.3)

as well as
E−∗ |∂ΩPEC = 0, (3.4)

for the Perfectly Electrical Conducting (PEC) boundary faces and

E−∗ |∂ΩABC =
1
2

(E− − Z−(n−+ ×H−)) ,

H−∗ |∂ΩABC =
1
2

(H− + Y−(n−+ × E−)) ,
(3.5)

for the Absorbing Boundary Condition (ABC). Here, Z =
√
µ/ε and Y =

√
ε/µ respectively

are the impedance and admittance of the left or right cell of the interface denoted by ‘ − +′ with
n−+ = −n+− and α ∈ [0, 1] weights the upwinding. The case α = 0 is called centered flux and in
the case α = 1 the scheme is fully upwind. Means and jumps at the cell interface are defined by

{A}−+ := A− + A+, JAK−+ := A− − A+. (3.6)

Regarding the hydrodynamic part J and Q, centered fluxes have already been considered in [21],
and we now propose to derive the formulation of the upwind fluxes. Let us ignore the coupling
to Maxwell’s equations, neglect the damping term in (2.15), and focus on the hydrodynamic
equation

1
β2 ∂tJ = ∇Q,

∂tQ = ∇ · J.
(3.7)

11



Proposition 3.1. The upwind flux for (3.7) is given by

Q−? =
1

β− + β+

(
{βQ}−+ − α

(
n · JJK−+

))
,

n · J−? =
β−β+

β− + β+

(
n ·

{
J
β

}
−+

− αJQK−+

)
,

(3.8)

and on the boundary of the nonlocal dispersion domain

Q−?|∂ΩNL = Q−,

n · J−?|∂ΩNL = 0.
(3.9)

Proof. Casting (3.7) into a conservative form leads to

Q∂tW + ∇ · F (W) = 0, (3.10)

with

W =


Jx

Jy

Jz

Q

 , Q = diag
{
β−2, β−2, β−2, 1

}
,

Fx =


−Q
0
0
−Jx

 , Fy =


0
−Q
0
−Jy

 , Fz =


0
0
−Q
−Jz

 .
(3.11)

Following the notations used in [12], the Rankine-Hugoniot jump conditions read

β−Q−
(
W−

? −W
−
)

+ n−+ ·
(
F −? − F

−
)

= 0,

n−+ ·
(
F −? − F

+
?

)
= 0,

−β+Q+
(
W+

? −W
+
)

+ n−+ ·
(
F +
? − F

+
)

= 0.

(3.12)

Here, we have used the eigenvalues that correspond to the hydrodynamic part in (2.15) as detailed
in [21]. For the sake of simplicity, we omit the direction of n−+ and fix the normal vector to point
from “-” to “+”, i.e. n := n−+. Summing up the second and third equation of (3.12) gives

β−Q−
(
W−

? −W
−
)

+ n ·
(
F −? − F

−
)

= 0,

−β+Q+
(
W+

? −W
+
)

+ n ·
(
F −? − F

+
)

= 0. (3.13)

Then, respectively multiplying with β+Q+ and β−Q− (that are commuting), and summing yields

β−β+Q−Q+
(
W−

? −W
− −W+

? +W+
)

+ (β−Q− + β+Q+) n · F −?

− β−Q−n · F + − β+Q+n · F − = 0.

(3.14)

12



The normal flux is given by

n · F =

[
−nQ
−n · J

]
. (3.15)

Inserting this flux in (3.14) gives for the J part

β−β+ 1
(β+)2

1
(β−)2

(
J−? − J− − J+

? + J+
)

+

(
1
β+

+
1
β−

)
n
(
−Q−?

)
+

1
β+

n (Q−) +
1
β−

n (Q+) = 0.

(3.16)

Performing the cross product with n and together with (3.12) yields

n ×
(
J−? − J+

?

)
= n × (J− − J+) ,

n ·
(
J−? − J+

?

)
= 0.

(3.17)

The vector identity A = (n · A)n − n × (n × A) applied to A = J−? − J+
? reads

J−? − J+
? = (n · (J−? − J+

?))︸           ︷︷           ︸
=0

n − n × (n × (J−? − J+
?)),

J−? − J+
? = −n × (n × (J−? − J+

?)),
(3.18)

and similarly for A = J− − J+

J− − J+ = (n · (J− − J+))n − n × (n × (J− − J+)),

J−? − J+
? = J− − J+ − (n · (J− − J+))n.

(3.19)

Plugging (3.19) into (3.16) leads to

nQ−? =
1

β− + β+
(n (Q−β− + Q+β+) − n (n · (J− − J+))) ,

nQ−? =
1

β− + β+

(
n{βQ}−+ − n

(
n · JJK−+

))
.

(3.20)

Similar steps for the Q part lead to

β−β+
(
Q−? − Q− − Q+

? + Q+
)

− (β− + β+) n · J−?

+β−n · J+ + β+n · J− = 0.

(3.21)

that with (3.12) simplifies to

−n · J+
? = −

1
β− + β+

(n · (β+J− + β−J+) − β−β+ (Q− − Q+)) ,

n · J+
? =

β−β+

β− + β+

(
n ·

{
J
β

}
−+

− JQK−+

)
.

(3.22)
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If we now allow the contribution of the jump value J·K to be tunable by a real tuning parameter
α ∈ [0, 1] we obtain (3.8).

For α = 0 we retain the centered flux as it has been used in [21] and α = 1 yields a fully
upwind scheme. The eventual choice of α heavily influences the numerical properties of the
final discretized version of (2.15). Properties like numerical dissipation and the occurrence of
spurious solutions are particularly sensitive to the fluxes as we will see later in section 4 on Mie
scattering and the spherical dimer system.

3.4. Semi-discrete stability
We define the semi-discrete energy through element-wise semi-discrete energies that mimic

(2.20) a replacement of the continuous fields by their semi-discrete ones

Eh(t) = Eh,NL(t) + Eh,gen(t), (3.23)

where Eh,NL(t) =
∑
i∈NΩ

(Eh,NL)i(t) and Eh,gen(t) =
∑
i∈NΩ

(Eh,gen)i(t). The element-wise (Eh,NL)i and

(Eh,gen)i are obtained by replacing Ω with Ωi and every continuous field with its semi-discrete
counterpart in the continuous expressions defined previously. We here extend the stability results
to more general boundary conditions and fluxes in comparison to both [24] and [21].

Proposition 3.2. Let us suppose that β is constant on Ω and that the semi-discrete fields are C1

in time. The semi-discrete energy is bounded on [0,T ]. The semi-discrete scheme is thus stable.

Proof. We first focus on the nonlocal model’s energy contribution. In order to keep the question
of boundary conditions as general as possible, we will consider that the faces of the mesh that
intersect the boundary of the domain could be either subject to PEC boundary conditions or ABC
(via a Silver Müller approximation). Performing the time derivative and using the semi-discrete
equations lead to the element-wise change of the semi-discrete energy

∂t(Eh,NL)i(t) =
1
2

(ε0ω
2
PAi + β2Bi − γ||Ji||

2
Ωi

),

Ai := − < Ei,∇ ×Hi >Ωi − < E∗ ×Hi,n >∂Ωi

+ < Hi,∇ × Ei >Ωi + < H∗ × Ei,n >∂Ωi ,

Bi := − < Qi,∇ · Ji >Ωi + < Q∗Ji,n >∂Ωi

− < Ji,∇Qi >Ωi + < J∗Qi,n >∂Ωi .

(3.24)

For the sake of easier readability we will drop the subscript ()h for semi-discrete quantities and
we assume Z = Y = β = 1 without loss of generality in the scope of this proof. Integration by
parts leads to a purely surfacic expression for Ai

Ai =
1
2

∑
q

∫
siq

(Hq × Ei) · niq − (Eq ×Hi) · niq −

α

2

∑
q

∫
siq

((niq × Eq) × Ei) · niq + ((niq ×Hq) ×Hi) · niq +

α

2

∑
q

∫
siq

((niq × Ei) × Ei) · niq + ((niq ×Hi) ×Hi) · niq + a
boundary
i .

(3.25)
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Here aboundary
i contains the contributions of the faces of the mesh elements that belong to the

boundary (either PEC or ABC). In the case of the cell i being an inner cell, the contribution of
a

boundary
i is obviously vanishing. We denote by F int the set of all internal faces, F PEC the set of

all PEC faces, F ABC the set of all ABC faces. Performing the sum over all faces yields

A = α
∑

siq∈F
int

∫
siq

−((niq × Eq) × Ei) · niq − ((niq ×Hq) ×Hi) · niq +

1
2

[
((niq × Ei) × Ei) · niq + ((niq ×Hi) ×Hi) · niq+

((niq × Eq) × Eq) · niq + ((niq ×Hq) ×Hq) · niq

]
+

∑
si∈F

PEC

a
boundary
i +

∑
si∈F

ABC

a
boundary
i .

(3.26)

If we denote cPEC :=
∑

si∈F
PEC

a
boundary
i and cABC :=

∑
si∈F

ABC

a
boundary
i , equation (3.26) can be cast into

a simpler form

A = −
α

2

(∣∣∣∣∣∣n × JEhK
∣∣∣∣∣∣2
F int +

∣∣∣∣∣∣n × JHhK
∣∣∣∣∣∣2
F int

)
+ aPEC + aABC. (3.27)

Using similar arguments as for the internal faces and using the fluxes on the boundary faces
yields

a
PEC = −α||n × Eh||

2
F ext = 0. (3.28)

Regarding the first order Silver-Müller absorbing boundary condition, i.e. ABC, which is im-
posed by a modified numerical flux as mentioned in the section describing fluxes, one obtains

aABC =
1
2

∑
siq∈F

ABC

∫
siq

(Ei ×Hi) · niq − (Hi × Ei) · niq +

Ei · (niq × (Hi + n × Ei)) −Hi · (niq × (Ei − n ×Hi))

= −
1
2

(
||n × Eh||

2
F ABC + ||n ×Hh||

2
F ABC

)
.

(3.29)

Using similar arguments for the hydrodynamic part Bi (splitting, summing over faces, denoting
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bext the contribution of all boundary faces F ext), we arrive at

B =
∑
i∈NΩ

Bi

=
1
2

∑
siq∈F

int

∫
siq

Ji · niqQq + Jq · niqQi − Jq · niqQi − Ji · niqQq −

α

2

∑
siq∈F

int

∫
siq

(
Ji · niq(niq · (Ji − Jq)) − Jq · niq(niq · (Jq − Ji))

)
+

(Qi(Qi − Qq) + Qq(Qq − Qi))

+ bext

= −
α

2

∑
siq∈F

int

∫
siq

((Ji − Jq) · niq)2 + (Qi − Qq)2 + bext

= −
α

2

(∣∣∣∣∣∣n · JJhK
∣∣∣∣∣∣2
F int +

∣∣∣∣∣∣JQhK
∣∣∣∣∣∣2
F int

)
+ bext,

(3.30)

and

bext =
1
2

∑
siq∈F

ext

∫
si

Ji · nQi − Ji · nQi −
α

2

∑
si∈F

ext

∫
si

1
β

((Ji · n)2 + (Ji · n)2)

= −α||n · Jh||
2
F ext = 0,

(3.31)

for the external faces contribution with the appropriate boundary conditions (2.18). The previous
results yield

∂tEh,NL(t) ≤ 0, (3.32)

guaranteeing the semi-discrete stability of the nonlocal part. The stability for the generalized
model follows readily [24] and is not further detailed here. Consequently, the conclusion follows
via classical arguments.

3.5. Time discretization with a Low Storage Runge Kutta (LSRK) method

We make use of an explicit LSRK scheme for the time integration. LSRK schemes, compared
to standard RK schemes, present the major advantage of requiring only two memory registers per
variable, while standard RK algorithms usually require more (more precisely, four registers are
necessary for the fourth order standard RK schemes). The LSRK scheme used here is fourth-
order accurate, and was specially optimized for an efficient discretization of Maxwell’s equations
in the DG framework [34]. Since it is not a central point here, the reader is referred to [12]
(and references therein) for a more comprehensive introduction to such schemes. Semi-discrete
system (3.2) is a system of ODEs in time and can hence be expressed as

∂tψ(t) = f (t,ψ(t)). (3.33)

The LSRK scheme, see Algorithm 1, is then applied to (3.33) which yields a fully discrete
system in space and time. In [34], Niegemann et al. have proposed schemes with optimized
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Algorithm 1 : 4th order LSRK. Here, ψ is the vector of unknowns, k the iteration step, N the
number of iterations, a the LSRK coefficients, and ∆t the times step.

1: ψ1 ← ψn

2: for k = 1 . . .N do

3: ψ2 ← a1
k + ∆t f (tn + a2

k∆t,ψ1)

4: ψ1 ← ψ1 + a3
kψ

2

5: ψn+1 ← ψ1

stability regions for the DG-Maxwell operator without dispersion models. However, since the
Fermi velocity which enters the linearized fluid model via the β parameter is around two orders
of magnitude lower than the speed of light, we have never experienced any numerical stability
issues with the coupled system (3.2).

3.6. Curvilinear elements

Most classical finite element methods rely on tessellations composed of straight-edged ele-
ments, regardless of the geometry of the problem. Although this approach presents the advantage
of proposing simple transformations of the FE matrices from the reference element to the phys-
ical element, in the case of high-order methods as depicted in Figure 2, it represents a serious
hindrance, since it limits the accuracy of the spatial discretization to second order. In [33], we
proposed an implementation of curvilinear (isoparametric) elements in the DGTD framework for
Maxwell’s equations, along with local dispersion models for metals. In this case, no additional
work was required for local dispersion models, since they only consist of additional ODEs to the
Maxwell PDE system. Here, we wish to extend this formulation to non-local dispersion model,
in which an additional PDE appears. For the sake of brevity, some basic considerations about the
use of curvilinear elements in the DG framework are skipped, and the reader is referred to the
aforementioned paper.

The implementation of curvilinear elements in the DG framework requires the numerical
integration and storage of the FE matrices on the curvilinear cells only (the method for linear
cells remaining the same). As presented in [33], the fully-discrete scheme can be written in

terms of (i) the mass matrix (Mi) jk =

∫
Ωi

φi jφik, (ii) the surface matrix (Sil) jk =
1
2

∫
∂Ωi

φi jφlk, and

(iii) the stiffness matrices
(
Kd

i

)
jk

=

∫
Ωi

φi j
∂φik

∂d
for d ∈ {x, y, z}. From the numerical integration

of such terms, one can easily compute the discrete curl operator on a curvilinear cell, but also
the discrete divergence and gradient operators, as they appear in the hydrodynamic equations of
formulation (3.2). Hence, no additional numerical integration is required for the computation of
volumic matrices when extending the curvilinear DG scheme from the Maxwell equations to the
hydrodynamic model. Regarding surfacic terms, it is now necessary to integrate surface integrals

of the form
∫
∂Ωi

(U∗i φik) · n (with its analoguous scalar counterpart) in addition to those appearing
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Figure 2: High-order mapping. Second order mapping from the reference element T̂ to the physical element Ti.

in Maxwell’s equations
∫
∂Ωi

(U∗i × φik) · n. As a reminder, it is necessary to develop the integrands

of surface integrals including normals terms (since those are not constant over a given curvilinear
face), and to compute each integral separately. This work must be done for each curvilinear face,
leading to 9 integrals per face for the Maxwell terms, and to 4 additional integrals per face for
the hydrodynamic terms. The remaining of the method is identical to what is described in [33],
and will not be detailed here.

4. Numerical results

This section is concerned with numerical results obtained with our 3D implementation of the
proposed DGTD method. We start with two different validation test cases that on the one hand
illustrate the numerical convergence rates and on the other hand emphasize the importance of
boundary conforming curvilinear elements for scattering problems in nanophotonics. A spherical
dimer system eventually concludes our numerical results.

4.1. Implementation

System (3.2) has been implemented in the DIOGENeS software suite [35]. Key numerical
features, which have not been detailed in this work but that have been used for the following
results are

• Total Field/Scattered Field (TFSF) interfaces [36];

• Complex Frequency Shifted Perfectly Matched Layers (CFS-PML) [37];

• Extinction Cross-Section evaluation [19];

• Ohmic loss spectrum evaluation [12];

• Distributed memory (MPI) parallelization.

Moreover, we have used either GMSH [38] or Distene’s MeshGems suite [39] for the creation of
unstructured tetrahedral affine and curvilinear meshes.
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4.2. Convergence rates

In order to validate our implementation of the previously presented DGTD solver we first
perform a numerical convergence study by considering a test problem for which we can obtain an
analytical time-domain solution. This will be done for (2.16) when neglecting the ODE part. We
propose to use the method of manufactured solutions, i.e. we artificially construct a solution that
will satisfy (2.15) and hence allows us to determine the convergence rates. Inspired by [40, 21]
we exploit the analytical eigenmode solutions of the homogeneous Maxwell’s and hydrodynamic
equations on a rectangular cavity domain Ω� := {r ∈ [0, ai]3}, where ai > 0 with i = {x, y, z}
respectively denote the edge lengths in the three cartesian axis. We use PEC boundaries

nΩ�
× E|∂Ω = 0, on ∂Ω� × R+, (4.1)

for the electromagnetic field and the boundary condition (2.18)

nΩ�
· J|∂Ω = 0, on ∂Ω� × R+, (4.2)

for the hydrodynamic equations, where nΩ�
the outward normal to Ω�. We denote the eigen-

mode solutions for Maxwell’s equations and the hydrodynamic part by Hart,Eart and Jart,Qart,
respectively (see [21] for details). We artificially fill this cavity with vacuum for Maxwell’s
equations and with a dispersive medium characterized by specific values of ωP and β for the
hydrodynamic Drude model while we neglect damping, i.e. γ ≡ 0. The resulting formulation of
the coupled problem including the manufactured solution hence reads

∇ × E + µ0∂tH = 0,

∇ ×H − ε0∂tE = J − Jart,

β2∇Q − ∂tJ = −ω2
Pε0(E − Eart),

∇ · J − ∂Q = 0.

(4.3)

Let us define a time dependent error norm ||u − ua||2L2(Ω) with u ∈ {H,E, J,Q} and (·)a being the
analytical solution, on the domain Ω by

err = ||u − ua||2L2(Ω) :=
∑
i∈NΩ

||ui − ua||2L2(Ωi)
. (4.4)

The convergence rates are computed by comparing the evolution of the error while progressively
refining the mesh. Starting with a coarse mesh M1 and successively refining by two (i.e. h
becomes h

2 at each refinement step) leads to a sixteen times finer mesh M5 (table 2 shows the
total number of tetrahedra). Simulations are run for 100 oscillation periods on each mesh, and
for each polynomial order. Table 3 summarizes the convergence rates for the DGTD-LSRK
scheme with centered fluxes. The results are in line with [34] for the pure Maxwell operator and
theoretical results of the DGTD method [41, 18, 24]. We obtain suboptimal convergence rates
for the centered scheme, i.e. nth order for DGTD − Pn with n the polynomial order of the DG
ansatz space. Equally, we obtain optimal convergence rates, i.e. (n + 1)th order, for DGTD − Pn

if upwind fluxes are used.
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Table 2: Number of tetrahedrons for cubic cavity Mesh M1 is the coarsest and M5 is a systematically refined version
of M1.

M1 M2 M3 M4 M5

# Tets 48 384 3072 24576 196608

Table 3: Hydrodynamic convergence rates. Numerically obtained convergence rates for the hydrodynamic test cavity
solved by the DGTD method with centered fluxes (upper, P0 to P4) and upwind fluxes (lower, P0 to P4) and a LSRK
time integration scheme. Mesh M1 is the most coarsest mesh and M5 the most refined one.

M1→M2 M2→M3 M3→M4 M4→M5

P0 -0.44 0.36 0.31 0.09
P1 -1.50 0.63 1.31 2.04
P2 4.43 4.08 2.15 2.47
P3 3.83 3.81 3.65 3.01
P4 5.13 3.66 4.89 4.11

P0 0.03 0.08 0.11 0.13
P1 0.12 0.77 2.29 2.86
P2 2.59 4.48 3.69 3.06
P3 5.68 4.19 3.96 4.01
P4 4.68 4.24 4.08 4.07
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4.3. Mie scattering of a single sphere
The scattering of a single sphere in vacuum is a classic nanophotonic benchmark example.

Beyond applications where the relatively simple result of an isolated sphere in vacuum already
explains several physical effects, the scattering of a single sphere problem also comes with an
analytical solution. This, of course, permits us to compare the performance of our method with
so called Mie solutions. Gustav Mie has published his work on the scattering of spheres in
vacuum in the early 20th century [42] and his initial works have been extended to more complex
material configurations [43], different coordinate systems [44] and even nonlocal dispersion laws
[45, 30, 46].

From a more methodological point of view, the Mie sphere appears to be significantly more
complex in comparison to the test problem of a cubic cavity that we have used for the conver-
gence study in the previous section. Among others, the sphere involves the additional boundary
condition (2.17) at the interface between the metallic sphere itself and the surrounding vacuum.
Furthermore, it demands a free space approximation of the infinite vacuum. Regarding the free
space approximations, we have used CSF-PMLs [47, 37] in order to minimize spurious reflec-
tions from the artificial domain truncation. Since such a setup forbids a direct imposition of the
incident field, i.e. a pulsed plane wave in our case, via for example first-order Silver-Müller
radiation conditions [16], we employ a TF/SF approach [36].

We now investigate the surface approximation of a single sphere and its influence on the
resulting extinction Cross-Section (CS) spectra. Here, we compare different polynomial orders
of the DG basis functions as well as the accuracy, and hence performance and gain if curvilinear
tetrahedra are used. Figure 3 shows the computational meshes we have used for this study. There
are two topologically different meshes M1 and M2, shown in Figure 3 (a) and (c), respectively.
Both meshes represent the same physical sphere and the geometrical misrepresentation of M1
(a) is quite obvious as the sphere hardly resembles a sphere at all - it rather represents a faceted
particle. Performing an h−refinement leads to M2 (c) which visibly better approximates a sphere.
Activating curvilinear elements gives curved versions of M1 and M2 as depicted in Figure 3 (b)
and (d).

The incident pulsed plane wave that is injected by the TF/SF interface follows a Gaussian
modulated harmonic time signal of the temporal form

{Einc,Hinc} ∝ sin(ωc(t − τ))
(
−

( t − τ
σ

)2
)
. (4.5)

Here, Einc,Hinc, ωc, τ and σ respectively are the incident electric and magnetic field strength,
the centered angular frequency, a time shift and the broadening of the pulse (depending on the
considered frequency range). The spatial profile is equivalent to a monochromatic plane wave
[22] and depends on the incident direction, i.e. the polarization of the wave. In the sphere case,
the polarization direction does not matter due to the radial symmetry.

We have chosen the extinction CS as the measured Quantity of Interest (QoI) defined by

Cext := Cabs + Csca, (4.6)

and refer to [19, 12] for further details of the definitions of the absorption and scattering CS. The
CS is evaluated on the same TF/SF interface on which the incident field is injected.

Having set up the simulation framework including the source, the boundary condition and
the QoI, we can discuss the obtained results as outlined in Figures 4 and 5 for the two meshes,
respectively. Obviously, mesh M1 with affine tetrahedra leads to a very poor result, similarly

21



for first order P1 and fourth order P4 polynomials as shown in Figure 4. The P1 solution only
reproduces the first resonance at about 0.675ωP although it is supposed to be at 0.7ωP. Addi-
tionally, the second and third resonance of the Mie spectrum at about 0.825ωP and 0.875ωP are
completely inobservable. Increasing the polynomial order to P4 slightly improves the situation
and the second resonance seems to build up. However, both resonances positions are far off and
the absolute as well as the relative amplitudes completely fail with respect to the Mie solution.
If we now switch to the curvilinear version of M1, the situation drastically changes. The P1
solution suddenly shifts the first resonance almost to the correct angular frequency, the second
resonance now appears in the spectrum and even relatively close to the correct resonance angular
frequency. A third resonance seems to build up at 0.95ωP which would be quite far from the cor-
rect position if we relate it to the actual third resonance in the Mie spectrum. Again, increasing
the polynomial order to P4 the numerical solution significantly approaches the analytical Mie
solution down to an error of 2.38%. Table 4 summarizes the errors of all runs.

Spatial h−refinement refinement of the sphere, i.e. the mesh M2, improves the situation of
the linear solutions. Figure 5 depicts the P1 spectrum now showing the first resonance at the
correct frequency and the second resonance that now builds up at 0.815ωP instead 0.825ωP.
Although the positions of the resonances are relatively close to the exact solution, the amplitudes
still differ heavily. The third resonance remains invisible for first order polynomials. If fourth
order polynomialsP4 on linear elements are used, the numerical solution already gets fairly close
to the exact solution with an error of 5.45%. Activating curvilinear elements for P1 and P4, the
numerical solutions with respect to the linear runs increase equally to M1 and the obtained error
for P4 only is 0.96%.

Curvilinear simulations are intrinsically more costly than linear ones due to increased mem-
ory consumption, a reduced CFL condition and additional DoFs, see section 3.6 for details, in
comparison to the same run on a linear mesh. In order to present a fair comparison of a curvilinear
solution on the coarse mesh M1 and the solution on an h−refined mesh M2 with linear elements,
we choose the two runs with a similar error level, namely M1 −P3 − curv and M2 −P4 − linear.
Figure 6 depicts the obtained spectra and Table 5 lists the statistics of both simulations and se-
quential as well as parallel.

Both meshes almost have the same amount of cells since the largest part of the domain con-
sists of vacuum. While the sphere is discretized by 46 curved tetrahedra for M1, the h−refined
mesh M2 needs 292 elements. This local refinement explains the little relative difference in the
total amount of mesh cells and is at the same time close to a real world nanophotonic. Of course,
the finer mesh M2 suffers from more mesh cells and even more severely from a reduced CFL
condition due to a smaller characteristic mesh length h and an increased polynomial degree [18],
which increases the needed number of iterations in the time stepping scheme from 7060 for M1
to 90933 for M2. An average runtime for 100 time stepping iterations of 374 s and 703 s for
M1 and M2, respectively leads to a total simulation time of 7 h 20 mn and 177 h 34 mn which
means a performance speed-up of 24.2. In terms of memory, the M1−P3 − curv solution comes
with more DoFs in comparison with a linear M1 run but still better performs in comparison to a
M2 − P4 − lin run by 75%.

If MPI parallelization is used (only within a single multicore node in this example) we obtain
reasonably good scaling results. As depicted in Table 5 the scaling slightly breaks down at 12
subdomains for M1 and already at 8 subdomains for M2. This is due to the quite inhomoge-
neous load balancing of the computational cost of each cell type. The performed simulations
contain different types of equations to be solved on a cell: purely Maxwell’s equations in vac-
uum, Maxwell plus the hydrodynamic equation in the sphere, CFS-PML cells, and boundary
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(a) Mesh M1 without high-order
cells.

(b) Mesh M1 with high-order cells.

(c) Mesh M2 without high-order
cells.

(d) Mesh M2 with high-order cells.

Figure 3: Four different discretizations for a scattered sphere in vacuum. Figure (a) and (b) have the same number
of elements and differ by the geometric representation order from linear to quadratic. Figure (c) is a refined version of
(a) and (d) the high-order version.

cells. Additionally, the TF/SF incident field and on-the-fly Fourier transform of the extinction
CS will add to an even stronger imbalance. The systematic optimization of the load balancing
will be part of a future work.

4.4. Impact of nonlocal dispersion on spherical dimers
Spherical dimer systems consist of two spheres being very close to each other, hence form-

ing a gap system, see Figure 7a. Such dimer gap systems are well known to show high field
enhancements due to the hybridized modes of the individual spheres that build up a so called gap
plasmon. These field enhancements are of interest for e.g. Surface Enhanced Raman Scattering
(SERS) [48].

Beyond the applicative aspects, the spherical dimer system is significantly more complicated
for analytical solutions due to a lower symmetry level than single spheres. Breaking the sym-
metry of a single sphere by introducing a second sphere brings a second tuning parameter of the
system - the gap size. For sufficiently small gaps, nonlocal effects are expected to occur, as has
been recently theoretically shown for a fully retarded three dimensional dimer case [49].

For extinction CS simulations, in contrast to scattering CS, the absorption CS comes into
play and the near field thus gains importance. A precise evaluation of the absorption CS, in turn,
requires a well resolved near field which strongly depends on the surface approximation of the
nano particles.
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Figure 4: Extinction cross-section spectra on mesh M1. Comparison of the extinction cross-section spectra of a
metallic nanosphere in dependence of the polynomial interpolation order Pn and the geometric mesh order, i.e. linear or
quadratic mesh elements. The error in comparison to the Mie solution can be found in Table 4
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Figure 5: Extinction cross-section spectra on mesh M2. Comparison of the extinction cross-section spectra of a
metallic nanosphere in dependence of the polynomial interpolation order Pn and the geometric mesh order, i.e. linear or
quadratic mesh elements. The error in comparison to the Mie solution can be found in Table 4
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Figure 6: Extinction cross-section spectra on mesh M1. Comparison of the extinction cross-section spectra of a
metallic nanosphere in dependence of the polynomial interpolation order Pn and the geometric mesh order, i.e. linear or
quadratic mesh elements. The error in comparison to the Mie solution can be found in Table 4

Table 4: Relative error of sphere simulations. The relative error is given with respect to the analytical nonlocal Mie
solution.

P1 P2 P3 P4

M1 − Linear 33.33% 29.95% 28.83% 28.80%
M1 − Quadratic 43.67% 18.51% 6.60% 2.38%

M2 − Linear 33.50% 11.07% 7.18% 5.34%
M2 − Quadratic 39.40% 10.07% 3.58% 0.96%
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Table 5: Performance comparison of Sphere simulations. Sequential mesh and CPU statistics of the mesh M1 with
curvilinear elements and a polynomial order P3 versus the refined mesh M2 with rectilinear elements and a polynomial
order P4. The simulated spectra are depicted in Figure 6. The listed values only contain the actual mesh and do not
contain ghost cells due to boundary conditions and domain decomposition for the parallel MPI runs. These runs have
been performed on an Intel R©Xeon R©CPU E5-2630 v2 2.6 GHz with 64 GB RAM machine.

M1 − Quadratic − P3 M2 − Linear − P4

L2-error (Mie) 6.6% 5.34%
# Cells 13827 14334

# Sphere cells 46 292
# HO cells 200 -

# Iterations 7060 90933
Memory 1481.5 MB 1980.4 MB

Time per
100 iterations 374 s 703 s
Total time in
loop (sequ.) 26404 s 639259 s

Speed-up 24.2 −

Timer per 100
iterations (parallel)

#proc T [s] Tcpu[s] speed-up

2 186 372 2.0
4 94 376 4.0
8 50 400 7.5

12 37 444 10.1

#proc T [s] Tcpu[s] speed-up

2 380 740 1.9
4 200 800 3.5
8 105 840 6.7

12 73 876 9.6
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(a) Spherical dimer system. The spherical dimer sys-
tem consists of two equivalent spheres with a diameter
d = 20 nm and a gap size at the closest points of δ =

2 nm. The incoming plane wave’s electric field is po-
larized along the dimer axis ex and the physical param-
eters are ωP = 1.39 · 1016 rad/s, γ = 3.23 · 1013 rad/s,
β = 0.84 · 106 m/s.

(b) Computational dimer mesh. Red: curvilinear el-
ements inside the sphere, green: curvilinear elements
in the surrounding vacuum. All transparent gray ele-
ments are linear and consist of either vacuum if outside
the red elements or metal if inside.

Figure 7: Spherical dimer setup. Figure (a) shows the principle setup and (b) the computational mesh.

Figure 8 shows the extinction CS spectra for two simulations on a mesh with affine tetrahedra
and a converged reference spectrum obtained on a curvilinear mesh. The solution with centered
fluxes, i.e. α = 0 in (3.8), barely shows dissipation and almost contains all the resonances as the
reference solution. Unfortunately, the spectrum is heavily polluted by spurious oscillations which
makes it extremely difficult for the weaker resonances of amplitudes below 3 · 10−15 cm−2 to be
correctly distinguished and detected. Switching to upwind fluxes, i.e. α = 1.0 in (3.8), damps
away all spurious solutions at the price of higher numerical dissipation making the detection of
weak resonances impossible again.

If curvilinear elements are turned on now, i.e. the black curve in Figure 8, we indeed see that
the previously discussed centered spectrum almost contains all correct resonances plus additional
spurious modes while the upwind solution smoothes out too strongly and at least two resonances
are completely lost. Figure 7b illustrated the computational mesh of the dimer system with the
curvilinear elements being colored in red for metal and green for vacuum.

Comparing a local dispersion model β = 0 with the nonlocal solution in Figure 9 shows
significant blue-shifts for all resonances. The resonances above 0.6ωP are even shifted strong
enough to lie on the next local resonance.

4.5. Nonlocal sensitive gap plasmon for nano cubes
Our last simulation example is concerned with the demonstration of a significant influence of

the nonlocal dispersion model on the gap plasmon resonance in a nano cube setup. Nano cubes
are particularly interesting in the present modeling context because of the high mode confinement
in the gap between the cube and the metallic ground plate which is known to be highly sensitive
to nonlocality in comparison to e.g. a standard surface plasmon [14].

Realistic simulations of such nano cubes face several challenges from a numerical point
of view especially due to the necessary edge and corner roundings [12], which cause severe
difficulties for modal methods and cartesian grid based algorithms. Even for methods based on
unstructured methods, these roundings stay challenging as they are relatively small compared
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Figure 8: Extinction cross-section spectra of the spherical dimer. Comparison of the extinction cross-section spectra
for a spherical dimer system on a linear mesh in dependence of the numerical flux choice. Black: the reference DGTD
solution with quadratic elements and upwind fluxes. Orange: DGTD with centered fluxes and linear mesh cells, and
blue: DGTD with upwind fluxes and linear mesh cells.
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Figure 9: Extinction cross-section spectra of the spherical dimer. Comparison of the extinction cross-section spectra
for a spherical dimer system in dependence of the material model.
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to the cube length and would hence demand an extreme local refinement in the vicinity of the
edges and corners. This leads to a higher amount of mesh cells and further restricts the time step
condition of the explicit time integration scheme. Employing curvilinear elements overcomes
this restriction as shown in Figure 10a.

Beyond purely numerical challenges, the nano cube setup requires the consideration of bound
and free electrons. For this reason, we employ the model we have proposed and studied in section
2.5 which takes into account bound electrons, as well as free electrons by means of a nonlocal
Drude model.

Figure 10b depicts the simulated loss spectra. While the first peak is not linked to gap plas-
mon and does only show a very weak blue-shift of ∆λ ≈ 4 nm, the second resonance is due to the
gap mode and obviously more sensitive leading to a blue-shift of ∆λ ≈ 35 nm. Additionally, the
local dispersion model seems to overestimate ohmic losses with respect to the nonlocal model.

More comprehensive studies of this setup including more geometric details of the complete
setup and the comparison to experimental data are part of a future work.

5. Conclusion and Outlook

In this work, we have set up the modelling of bound and free electrons for spatially dispersive
metal structures in nanophotonics. We have proposed to use a generalized dispersion model for
the bound electron contribution in combination with a linearized hydrodynamic electron model
for the spatially dispersive free electrons of the metal.

Furthermore, we have applied a Discontinuous Galerkin Time Domain discretization to the
complete system, consisting of Maxwell’s equations, a generalized dispersion model and the
nonlocal hydrodynamic equations. We have provided the corresponding upwind fluxes for the
complete system and have studied the semi-discrete stability of the scheme.

The proposed DGTD implementation is high order in space and time and is ready to run on
modern High Performance Computing clusters. We have obtained important performance gains
thanks to the discretization of curved material interfaces with quadratic tetrahedra. Eventually,
we have demonstrated a significant influence of spatial dispersion on spherical dimer systems
and on single nanocubes.

In future works, we will continue to investigate more physically challenging test cases, and
will also focus on improving our material models by including the effect of electron spill-out.

Acknowledgment. Many thanks to Dr. Antoine Moreau, Dr. Matthias Moeferdt and Prof. Kurt
Busch for the fruitful discussions about the results of this work.
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(a) Nano cube mesh. The nano cube setup
consists of a metallic ground plate, a dielectric
spacer (red) and the metallic cube itself (yel-
low). Here, only the dielectric spacer and the
cube are displayed where the linear tetrahe-
dral are gray, independent of the domain and
the curvilinear elements are colored. Red: di-
electric, yellow: metal. The dielectric spacer
measures δ = 3 nm, the cube length Lcube =

60 nm and the radius of the edges and corners
rcube = 3 nm.
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(b) Loss spectrum. Loss spectra of the nano
cube with a locally dispersive gold versus non-
locally dispersive gold. The exact resonance
positions for the local run are λres, local =

{539, 947} nm and λres, nonlocal = {534, 912} nm,
respectively.

Figure 10: Nano cube mesh and result. Figure (a) shows the curvilinear tetrahedral mesh of and (b) simulated loss
spectrum. The gold in the ground plane as well as the cube consist of gold with the parameters from Table 1 for the
bound contribution and ωP = 1.195993·1016 rad/s, 8.052118 rad/s and β = 1.35 m/s for the Drude part. The dielectric
of the spacer is not dispersive in this frequency regime and we have used εr = 2.3104.
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