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When 2N/(N + 1) < p < 2 and 0 < q < p/2, non-negative solutions to the singular diffusion equation with gradient absorption

vanish after a finite time. This phenomenon is usually referred to as finite time extinction and takes place provided the initial condition u 0 decays sufficiently rapidly as |x| → ∞. On the one hand, the optimal decay of u 0 at infinity guaranteeing the occurence of finite time extinction is identified. On the other hand, assuming further that p -1 < q < p/2, optimal extinction rates near the extinction time are derived.

Introduction

We study some properties related to the phenomenon of finite time extinction of nonnegative solutions to the initial value problem in R N for the singular diffusion equation with gradient absorption

∂ t u -∆ p u + |∇u| q = 0, (t, x) ∈ (0, ∞) × R N , (1.1) 
u(0) = u 0 , x ∈ R N , (1.2) 
when the exponents p and q satisfy

p c := 2N N + 1 < p < 2, 0 < q < p 2 , (1.3) 
the p-Laplacian operator being given as usual by ∆ p u(t, x) = div(|∇u| p-2 ∇u)(t, x), (t, x) ∈ (0, ∞) × R N .

We also assume throughout the paper that the initial condition u 0 enjoys the following properties:

u 0 ∈ L 1 (R N ) ∩ W 1,∞ (R N ), u 0 (x) ≥ 0, x ∈ R N , u 0 ≡ 0. (1.4)
According to the analysis performed in [8, Section 6], the Cauchy problem (1.1)-(1.2), with initial condition satisfying (1.4), has a unique non-negative (viscosity) solution u, the notion of viscosity solutions being the one developed in [START_REF] Ohnuma | Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation[END_REF] to handle the singularity of the diffusion, see [START_REF] Iagar | Positivity, decay, and extinction for a singular diffusion equation with gradient absorption[END_REF]Definition 6.1]. It is also a weak solution by [START_REF] Iagar | Positivity, decay, and extinction for a singular diffusion equation with gradient absorption[END_REF]Theorem 6.2]. Moreover, in the range of exponents (1.3), the phenomenon of extinction of the solution u in finite time occurs according to [START_REF] Iagar | Positivity, decay, and extinction for a singular diffusion equation with gradient absorption[END_REF]Theorem 1.2(iii)] provided that the initial condition u 0 decays sufficiently fast as |x| → ∞. More precisely, it is shown that, if

u 0 (x) ≤ C 0 |x| -(p-Q)/(Q-p+1) , x ∈ R N , (1.5) 
for some C 0 > 0 and suitable Q > 0 (which is equal to q if q > q 1 := max{p-1, N/(N +1)} and is arbitrary in (q 1 , p/2) otherwise), then T e := sup{t ≥ 0 : u(t) ≡ 0} (1.6) is finite and positive. More recent works such as [START_REF]Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption[END_REF][START_REF] Iagar | Instantaneous shrinking and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion[END_REF] go further in characterizing how the finite time extinction takes place, showing that (under suitable conditions on u 0 ) an even more striking phenomenon, the instantaneous shrinking of the support takes place for q ∈ (0, p -1). More precisely, the positivity set P(t) of u at time t defined by

P(t) = {x ∈ R N : u(t, x) > 0} (1.7)
is compact (and localized uniformly in t) for any t ∈ (0, T e ), even if u 0 (x) > 0 for any x ∈ R N . In [START_REF]Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption[END_REF], Eq. (1.1) with critical exponent q = p -1 is studied thoroughly and both optimal extinction rates and precise extinction profiles (in separate variable form) are given, provided that the initial condition u 0 is radially symmetric, radially non-increasing in |x|, and has an exponential spatial tail as |x| → ∞. As a by-product, it is also shown that simultaneous extinction occurs both for q = p -1 and for q ∈ (p -1, p/2), that is,

u(t, x) > 0, for any (t, x) ∈ (0, T e ) × R N .
However, it was noticed already in [10, Theorem 1.1 and Theorem 1.2] for the range 0 < q < p -1 that the previous tail (1.5) is not optimal for finite time extinction to take place and our first main result is devoted to the identification of the optimal decay of u 0 as |x| → ∞ guaranteeing the occurrence of this phenomenon. (a) Assume further that

u 0 (x) ≤ C 0 (1 + |x|) -q/(1-q) , x ∈ R N , (1.8) 
for some C 0 > 0. Then the extinction time T e of u defined in (1.6) is positive and finite.

(b) If

lim |x|→∞ |x| q/(1-q) u 0 (x) = ∞, u 0 (x) > 0 for any x ∈ R N , (1.9) 
then T e = ∞ and P(t) = R N for any t > 0.

An obvious consequence of Theorem 1.1 is the optimality of the tail behavior (1.8) for finite time extinction to occur. Furthermore, it strictly improves [8, Theorem 1.

2(iii)]. Indeed, since p > q + Q, the exponent Q being introduced in (1.5), it follows that (p -Q)(1 -q) > q(Q -p + 1) or equivalently p -Q Q -p + 1 > q 1 -q .
Consequently, the decay assumed in (1.5) is strictly faster than the optimal one (1.8). Let us also remark that we state Theorem 1.1 here for exponents p and q satisfying (1.3), but for the range of exponents 0 < q < p -1, it is already proved in [10, Theorems 1.2 and 1.3].

Once it is known that finite time extinction takes place, a further important step in understanding the extinction mechanism is to identify the behavior of the solution u to the Cauchy problem (1.1)-(1.2) as t → T e , where T e is the extinction time defined in (1.6).

To this end, a first point is to determine the extinction rate, that is, the precise (optimal) space and time scales in which u(t) vanishes as t → T e . This is the second main result of the present note. Before stating it, let us introduce the exponents

α := p -q p -2q , β := q -p + 1 p -2q , (1.10) 
which will be used throughout the paper.

Theorem 1.2 (Optimal extinction rate). Assume that p ∈ (p c , 2) and p-1 < q < p/2. Let u be the solution to the Cauchy problem (1.1)-(1.2) with an initial condition u 0 satisfying (1.4) as well as the decay property

0 ≤ u 0 (x) ≤ K 0 |x| -(p-q)/(q-p+1) , x ∈ R N , (1.11) 
for some K 0 > 0. Then there exist two positive constants c ∞ and C ∞ (depending on N , p, q, and the initial condition), such that

c ∞ (T e -t) α ≤ u(t) ∞ ≤ C ∞ (T e -t) α , t ∈ (T e /2, T e ).
(1.12)

Furthermore, there are two positive constants c 1 and C 1 (depending on N , p, q, and the initial condition), such that

c 1 (T e -t) α-N β ≤ u(t) 1 ≤ C 1 (T e -t) α-N β , t ∈ (T e /2, T e ).
(1.13)

The proof of these optimal bounds near extinction is very clear-cut, elementary and based on a rather simple energy technique, and its application is thus likely to extend beyond (1.1). For instance, we refer the interested reader to the companion paper [START_REF] Iagar | Optimal extinction rates for the fast diffusion equation with strong absorption[END_REF] where a related approach allows us to derive optimal extinction rates for a fast diffusion equation with zero order strong absorption.

Let us point out here that the range of application of Theorem 1.2 is narrower than that of Theorem 1.1, as we have to impose two further restrictions. The first one is related to the decay at infinity of the initial condition u 0 , which is required to be much faster than the optimal one (1.8) identified in Theorem 1.1. As a consequence, we do not know whether, for initial conditions satisfying (1.8) but not (1.11), the outcome of Theorem 1.2 remains valid. The second restriction is related to the range of the exponent q which is restricted to the smaller interval (p -1, p/2) in Theorem 1.2. This assumption is seemingly only technical and some arguments in that direction are the following: on the one hand, for the critical case q = p -1, the extinction rate (1.12) is already proved in [START_REF]Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption[END_REF] for radially symmetric initial data, though by a completely different technique. In addition, an optimal upper bound near the extinction is derived for the L 2 -norm of u. On the other hand, when q ∈ (0, p -1), the behavior near the extinction time is studied in [10, Proposition 5.1].

Although we show the validity of the lower bound in (1.8) in that case as well, we are unfortunately only able to obtain upper bounds of the form C(ε)(T e -t) α-ε without a suitable control on the behavior of C(ε) as ε → 0. A proof of the upper bound in (1.8) when q ∈ (0, p -1) might however require a different approach. Indeed, in that case, as we previously mentioned, instantaneous shrinking takes place, that is, the support of u(t) is compact for all t ∈ (0, T e ), and identifying the optimal rate of shrinking of the support might be an helpful piece of information. We finally mention that optimal extinction rates have also been studied for the related fast diffusion equation with zero order strong absorption

∂ t u -∆u m + u q = 0, (t, x) ∈ (0, ∞) × R N , (1.14) 
for exponents m ∈ ((N -2) + /N, 1] and q ∈ (0, 1) but, unlike the present contribution, many works focus on the one-dimensional case N = 1 [START_REF] Chen | Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption[END_REF][START_REF] Ferreira | Extinction behaviour for fast diffusion equations with absorption[END_REF][START_REF] Galaktionov | The structure of solutions near an extinction point in a semilinear heat equation with strong absorption: a formal approach[END_REF][START_REF] Galaktionov | Extinction for a quasilinear heat equation with absorption. I. Technique of intersection comparison[END_REF][START_REF] Herrero | Approaching an extinction point in onedimensional semilinear heat equations with strong absorption[END_REF]. Extinction rates in the general N -dimensional case are only studied in [START_REF] Friedman | Extinction properties of semilinear heat equations with strong absorption[END_REF] for m = 1 and a restricted class of initial conditions and in the companion paper [START_REF] Iagar | Optimal extinction rates for the fast diffusion equation with strong absorption[END_REF] for m ∈ ((N -2) + /N, 1) and q ∈ (m, 1).

Optimal tail for extinction

In this section we prove Theorem 1.1. The technique of the proof is based on constructing suitable supersolutions with finite time extinction, on the one hand, and subsolutions which are positive everywhere, on the other hand. We thus need two preparatory, technical lemmas. As already explained in the Introduction, Theorem 1.1 is already proved in [START_REF] Iagar | Instantaneous shrinking and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion[END_REF] in the range 0 < q < p -1, so that the novelty of this section is the fact that we handle the case q ∈ [p -1, p/2).

Notions of subsolution and supersolution

We recall here for the sake of completeness (according to [8, Definition 6.1]) the notions of subsolution and supersolution that we use in the sequel. They are to be understood in the viscosity sense and follow the general (abstract) approach developed in [START_REF] Ishii | Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor[END_REF][START_REF] Ohnuma | Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation[END_REF], where the class of admissible functions for comparison is reduced in order to cope well with the singular diffusion featured in (1.1). In order to introduce the class of admissible functions for comparison, let F p be the set of functions ξ ∈ C 2 ([0, ∞)) such that

ξ(0) = ξ ′ (0) = ξ ′′ (0) = 0, ξ ′′ (r) > 0 for all r > 0, lim r→0 |ξ ′ (r)| p-2 ξ ′′ (r) = 0. (2.1)
Notice that l'Hospital's rule and (2.1) entail that lim

r→0 |ξ ′ (r)| p-1 r = 0. (2.2)
As a simple example of a function in the class F p , any power ξ(r) = r σ can be taken, provided σ > p/(p -1). We next define the class A of admissible comparison functions. A function

ψ ∈ C 2 ((0, ∞) × R N ) belongs to A if, for any point (t 0 , x 0 ) ∈ (0, ∞) × R N such
that ∇ψ(t 0 , x 0 ) = 0, there exist δ > 0, a function ξ ∈ F p and a modulus of continuity ω ∈ C([0, ∞)) with ω(t)/t → 0 as t → 0 enjoying the following property: for any (t, x) ∈ (t 0 -δ, t 0 + δ) × B δ (x 0 ), there holds:

|ψ(t, x) -ψ(t 0 , x 0 ) -∂ t ψ(t 0 , x 0 )(t -t 0 )| ≤ ξ(|x -x 0 |) + ω(|t -t 0 |). (2.3)
With this construction, we now define viscosity subsolutions and supersolutions.

Definition 2.1. Let T > 0.

(a) An upper semicontinuous function u : (0, T ) × R N → R is a viscosity subsolution to (1.1) if, for any ψ ∈ A and (t 0 , x 0 ) ∈ (0, T ) × R N such that u -ψ has a local maximum at (t 0 , x 0 ), then there holds

   ∂ t ψ(t 0 , x 0 ) ≤ ∆ p ψ(t 0 , x 0 ) -|∇ψ(t 0 , x 0 )|, if ∇ψ(t 0 , x 0 ) = 0, ∂ t ψ(t 0 , x 0 ) ≤ 0, if ∇ψ(t 0 , x 0 ) = 0.
(2.4)

(b) A lower semicontinuous function u : (0, T ) × R N → R is a viscosity supersolution to (1.1) if -u is a viscosity subsolution to (1.1). (c) A continuous function u : (0, T ) × R N → R is a viscosity solution to (1.1) in (0, T ) × R N
when it is at the same time a viscosity subsolution and a viscosity supersolution.

An immediate consequence of Definition 2.1 is that special attention shall be paid to critical points (with respect to the space variable) of subsolutions and supersolutions, this fact being obviously related to the singular behavior of the p-Laplacian operator at critical points of u when p ∈ (1, 2). The main abstract results concerning viscosity subsolutions and supersolutions are contained in [START_REF] Ohnuma | Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation[END_REF]. More precisely, the comparison principle is stated in [13, Theorem 3.9] and the stability property with respect to uniform limits is [13, Theorem 6.1], both of them being valid in a more general setting encompassing Eq. (1.1).

As we shall see below in Lemma 2.3, this specific notion of viscosity subsolution and supersolutions requires some care to be properly handled.

Construction of a viscosity supersolution

We devote this subsection to the construction of a viscosity supersolution to (1.1), in the sense of Definition 2.1. It requires a different analysis at points where the spatial gradient of the supersolution vanishes. As in [START_REF] Benachour | Extinction and non-extinction for viscous Hamilton-Jacobi equations in R N , Asymptot[END_REF] for p = 2 and q ∈ (0, 1) and in [START_REF] Iagar | Instantaneous shrinking and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion[END_REF] for p ∈ (p c , 2) and q ∈ (0, p -1], we look for a supersolution in self-similar form.

Lemma 2.2. Assume that p and q satisfy (1.3). There are ā > 0 and b > 0 such that, for any (a, b) ∈ (ā, ∞) × ( b, ∞), the function

W (t, x) = (T -t) α f (|x|(T -t) β ), (t, x) ∈ (0, T ) × R N , (2.5a 
)

f (y) = (a + by θ ) -γ , y ∈ [0, ∞), (2.5b) 
with exponents

α = p -q p -2q , β = q -p + 1 p -2q , θ = p p -1 , γ = (p -1)q p(1 -q) (2.6) is a (classical) supersolution to (1.1) in (0, ∞) × (R N \ {0}). Proof. Let (t, x) ∈ (0, ∞) × (R N \ {0}). We set y = |x|(T -t) β and note that f ′ (y) = -γbθ(a + by θ ) -γ-1 y θ-1 and f ′′ (y) = -γbθ(a + by θ ) -γ-1 y θ-2 θ -1 -θ(γ + 1)
by θ a + by θ .

After direct and straightforward (but rather long) calculations we obtain

LW (t, x) := ∂ t W (t, x) -∆ p W (t, x) + |∇W (t, x)| q = (T -t) α-1 -αf (y) -βyf ′ (y) -(p -1)(|f ′ | p-2 f ′′ )(y) - N -1 y (|f ′ | p-2 f ′ )(y) + |f ′ (y)| q = (T -t) α-1 (a + by θ ) -γ-1 (H 1 (y) + H 2 (y)), (2.7) 
where

H 1 (y) = -αa + (γbθ) p-1 N -1 + (p -1)(θ -1) -(p -1)θ(γ + 1) by θ a + by θ × y (θ-1)(p-1)-1 (a + by θ ) (γ+1)(2-p) = -αa + (γbθ) p-1 N -p(γ + 1) by θ a + by θ (a + by θ ) (γ+1)(2-p) , (2.8) 
since (θ -1)(p -1) = 1 and (p -1)θ = p, and H 2 (y) = (γbθ) q y q(θ-1) (a + by θ ) (1-q)(γ+1) + (βγθ -α)by θ .

(2.9)

Since γβθ -α = - 1 1 -q < 0 and q(θ -1) + θ(1 -q)(γ + 1) = θ,
we obtain that

H 2 (y) ≥ (γbθ) q y q(θ-1) (by θ ) (1-q)(γ+1) - b 1 -q y θ = b 1 -q y θ (1 -q)(γθ) q b (1-q)γ -1 ≥ (γθ) q 2 b 1+(1-q)γ y θ ≥ 0, (2.10) provided b (1-q)γ ≥ 2 (1 -q)(γθ) q .
(2.11)

In order to estimate the term H 1 (y) we split the range (0, ∞) of y into two regions, one close to the origin and another far from the origin. Let thus y 0 > 0 to be determined later and consider first y ∈ (0, y 0 ]. Then,

H 1 (y) ≥ (γbθ) p-1 N -(γ + 1)p by θ 0 a (a + by θ ) (2-p)(γ+1) -aα.
(2.12)

If we require a > 0, b > 0, and y 0 > 0 to satisfy

N a 2p(γ + 1) ≥ by θ 0 , (2.13) 
then we infer from (2.12) that

H 1 (y) ≥ (γbθ) p-1 N 2 (a + by θ ) (2-p)(γ+1) -aα ≥ N (γθ) p-1 2 b p-1 a (2-p)(γ+1) -aα ≥ αa (2-p)(γ+1) N (γθ) p-1 2α b p-1 -a 1-(2-p)(γ+1) ≥ 0, (2.14) provided that N (γθ) p-1 2α b p-1 ≥ a 1-(2-p)(γ+1) . ( 2 

.15)

We turn now our attention to the complementary region y > y 0 . We use the obvious bound by θ /(a + by θ ) < 1 to find

H 1 (y) ≥ -(γbθ) p-1 p(γ + 1)(a + by θ ) (2-p)(γ+1) -aα,
hence, putting L := p(γ + 1)(γθ) p-1 , we further deduce from (2.10) that

(H 1 + H 2 )(y) ≥ (γθ) q 2 b 1+(1-q)γ y θ -aα -Lb p-1 (a + by θ ) (2-p)(γ+1) ≥ (γθ) q 4 b (1-q)γ by θ 0 -aα + (γθ) q 4 b 1+(1-q)γ y θ -Lb p-1+(2-p)(γ+1) y θ-(p-2q)/(1-q) 1 + a by θ 0 (2-p)(γ+1) ≥ b 1+(1-q)γ y θ-(p-2q)/(1-q) (γθ) q 4 y (p-2q)/(1-q) -L 1 + a by θ 0 (2-p)(γ+1)
b (q-p+1)γ , provided that (γθ) q 4α b (1-q)γ+1 y θ 0 ≥ a.

(2.16)

We now choose a = λby θ 0 , (2.17) with λ > 0 to be specified later. Then ), and (2.17). We end the proof by choosing the parameters b, λ, and y 0 in order to ensure the compatibility of all the conditions we had to impose along the way in the estimates. First of all, we set

(H 1 + H 2 )(y) ≥ b 1+(1-q)γ y θ-(p-2q)/(1-q) (γθ) q 4 y (p-2q)/(1-q) 0 -L(1 + λ) (2-p)(γ+1) b (q-p+1)γ ≥ 0, (2.18) provided y (p-2q)/(1-q) 0 ≥ 4L(1 + λ) (2-p)(γ+1) (γθ) q b (q-p+1)γ . ( 2 
λ = 2p(γ + 1) N ,
which implies the validity of (2.13). Moreover, from (2.11) and ( 2.16) we have to choose b > 0 such that b (1-q)γ ≥ max 2 (1 -q)(γθ) q , 4λα (γθ) q .

(2.20)

Finally, inserting (2.17) into (2.15), we readily deduce that

N (γθ) p-1 λ γ(2-p)-p+1 2α b γ(2-p) ≥ y (p-2q)/(1-q) 0 . ( 2 

.21)

Let us notice that, since 2 -p > q -p + 1, the conditions (2.19), (2.20), and (2.21) can be met simultaneously by choosing b > 0 sufficiently large, which ends the proof. Now, let T > 0, a > ā, and b > b, and consider the function W defined by (2.5). With the aim of showing that W is a viscosity supersolution to (1.1) in the sense of Definition 2.1, let ψ ∈ A and (t 0 , x 0 ) ∈ (0, T ) × R N be such that W -ψ has a local minimum at (t 0 , x 0 ). Since both W and ψ belong to C 1 ([0, T ] × R N ), this property implies that

∂ t W (t 0 , x 0 ) = ∂ t ψ(t 0 , x 0 ) and ∇W (t 0 , x 0 ) = ∇ψ(t 0 , x 0 ). (2.22)
Since ∇W (t 0 , x 0 ) = 0 when x 0 = 0, Lemma 2.2 and (2.22) guarantee that the condition to be a viscosity supersolution is fulfilled if x 0 = 0. No information is provided by Lemma 2.2 if x 0 = 0. In that case, we might actually face a problem. Indeed, for W to meet the requirement of viscosity solutions when W -ψ has a local minimum at (t 0 , 0) for some t 0 ∈ (0, T ), the inequality ∂ t ψ(t 0 , 0) ≥ 0 has to be satisfied according to Definition 2.1. However, recalling (2.22), we realize that

∂ t ψ(t 0 , 0) = ∂ t W (t 0 , 0) = -α(T -t 0 ) α-1 a -γ < 0,
and an apparent contradiction. This is in fact an artificial problem: there do not exist any admissible function ψ such that W -ψ attains a local minimum at a point (t 0 , 0) as the following lemma shows.

Lemma 2.3. Let T > 0, a > 0, and b > 0 and consider the function W defined by (2.5), the exponents p and q still satisfying (1.3). Let ψ ∈ A and assume that (t 0 , x 0 ) ∈ (0, T ) × R N is a local minimum for W -ψ. Then x 0 = 0.

Proof. Assume for contradiction that x 0 = 0. On the one hand, since W ∈ C 1 ([0, T ]×R N ), we have ∇ψ(t 0 , 0) = ∇W (t 0 , 0) = 0. On the other hand, ψ ∈ A and there exist a function ξ ∈ F p , a modulus of continuity ω ∈ C([0, ∞)), ω ≥ 0 and a sufficiently small δ > 0 such that, for (t, x)

∈ (t 0 -δ, t 0 + δ) × B δ (0), |ψ(t, x) -ψ(t 0 , 0) -∂ t ψ(t 0 , 0)(t -t 0 )| ≤ ξ(|x|) + ω(|t -t 0 |). (2.23) 
In particular for t = t 0 , (2.23) becomes

|ψ(t 0 , x) -ψ(t 0 , 0)| ≤ ξ(|x|), for x ∈ B δ (0).
Furthermore, since (t 0 , 0) is a local minimum of W -ψ, we realize that

W (t 0 , 0) -W (t 0 , x) ≤ ψ(t 0 , 0) -ψ(t 0 , x) ≤ ξ(|x|), for x ∈ B δ (0). (2.24) 
Taking into account the formula (2.5) for W , we infer from (2.24) that

(T -t 0 ) α a -γ -(a + b|x| θ (T -t 0 ) θβ ) -γ ≤ ξ(|x|), for x ∈ B δ (0), hence, as |x| → 0, (T -t 0 ) α (a + b|x| θ (T -t 0 ) θβ ) γ bγ a (T -t 0 ) θβ |x| θ + o(|x| θ ) ≤ ξ(|x|).
Consequently, recalling that θ = p/(p -1), 1) .

0 < bγ(T -t 0 ) α+θβ a γ+1 ≤ lim inf r→0 ξ(r) r p/(p-
(2.25)

Next, since ξ ∈ F p , we infer from (2.2) that lim r→0 ξ ′ (r) r 1/(p-1) = 0, and a further application of l'Hospital's rule gives lim r→0 ξ(r) r p/(p-1) = 0, thereby contradicting (2.25). Therefore, we cannot have x 0 = 0, ending the proof.

Combining Lemma 2.2 and Lemma 2.3, we infer from the discussion preceding the statement of Lemma 2.3 that, for T > 0, a > ā, and b > b, the function W defined in (2.5) is a viscosity supersolution to (1.1) in the whole (0, T ) × R N in the sense of Definition 2.1. Summarizing, we have established the following result.

Corollary 2.4. Assume that p and q satisfy (1.3). For T > 0, a > ā, and b > b, the function W defined in (2.5) is a viscosity supersolution to (1.1) in (0, T ) × R N .

A similar construction (already performed in [START_REF] Iagar | Instantaneous shrinking and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion[END_REF]) gives us a subsolution to (1.1) that will be used for comparison from below in order to show positivity and non-extinction when u 0 satisfies (1.9). We recall it here for the sake of completeness. Lemma 2.5. Assume that p and q satisfy (1.3). There exists b 0 > 0 depending only on p and q such that, given T > 0 and b ∈ (0, b 0 ), there is A(b, T ) > 0 depending only on N , p, q, b, and T such that the function

w(t, x) := (T -t) 1/(1-q) (a + b|x| θ ) -γ , θ = p p -1 , γ = q(p -1) (1 -q)p , is a subsolution to (1.1) in (0, T ) × R N provided a > A(b, T ).
Proof. The proof is totally identical to that of [10, Lemma 6.1]. In fact, in the quoted reference, it is assumed that 0 < q < p -1, but a simple inspection of the proof shows that it works identically for any q ∈ (0, p/2).

Proof of Theorem 1.1

With these constructions, we are now in a position to prove the optimality of the spatial decay (1.8) for finite time extinction to take place. 

W (t, x) = (T -t) α (a + b(T -t) βθ |x| θ ) -γ , (t, x) ∈ (0, T ) × R N ,
is a supersolution to (1.1) in (0, T ) × R N , the parameters θ and γ being given as usual by

θ = p p -1 > 1, γ = q(p -1) (1 -q)p . For x ∈ R N , W (0, x) = T α (a + bT βθ |x| θ ) -γ = T α-βθγ b -γ a bT βθ + |x| θ -γ = T 1/(1-q) b -γ a bT βθ + |x| θ -γ , since α -βθγ = 1/(1 -q).
Choose in a first step T > 0 sufficiently large such that a bT βθ < 1.

Then, taking into account that θ > 1 and the elementary inequality 1 + |x| θ ≤ (1 + |x|) θ for any x ∈ R N , we further infer from (1.8) that

W (0, x) ≥ T 1/(1-q) b -γ (1 + |x| θ ) -γ ≥ T 1/(1-q) b -γ (1 + |x|) -q/(1-q) ≥ T 1/(1-q) b -γ C 0 C 0 (1 + |x|) -q/(1-q) ≥ T 1/(1-q) b -γ C 0 u 0 (x) ≥ u 0 (x),
provided we take T > 0 sufficiently large such that

T 1/(1-q) b -γ ≥ C 0 .
Thus, for T sufficiently large, we deduce from the comparison principle that

u(t, x) ≤ W (t, x), (t, x) ∈ (0, T ) × R N ,
and it is immediate to conclude that this implies extinction in finite time for u, with an extinction time T e ≤ T .

Non-extinction with slower tail. Let us now consider a solution u to the Cauchy problem (1.1)-(1.2) with an initial condition u 0 satisfying (1.9). Then the non-extinction in finite time and the positivity for any t > 0 (that is, P(t) = R N for any t > 0) follow from the same proof as in [10, Section 6], which applies identically also for the range q ∈ [p -1, p/2). Thus, optimality of the tail in (1.8) is proved.

Optimal extinction rates

This section is devoted to the proof of Theorem 1.2. We thus assume from now on that the exponents p and q satisfy (1.3) as well as q > p -1. Assume also that u 0 satisfies (1.4) and (1.11) for some constant K 0 > 0. Throughout this section, C and C i , i ≥ 1, denote positive constants depending only on N , p, q, and u 0 . Dependence upon additional parameters shall be indicated explicitly.

We begin with the proof of the lower bound, which relies on the derivation of a functional inequality for the L ∞ -norm of u. Exploiting this functional inequality requires the following preliminary result.

Lemma 3.1. Let T > 0 and a function h

: [0, T ] → [0, ∞) such that µ(t) := inf s∈[0,t] {h(s)} > 0, t ∈ (0, T ), h(T ) = 0 , (3.1) 
and

δ(t -s)h(t) m ≤ h(s) , 0 < s < t < T , (3.2) 
for some m ∈ (0, 1) and δ > 0. Then

h(t) ≥ δ 1-m 2 1/(1-m) 2 (T -t) 1/(1-m) , t ∈ [0, T ]. (3.3) 
Proof. Fix t ∈ (0, T ) and τ ∈ (t, T ). Introducing the sequence (t i ) i≥0 defined by

t i := t 2 i + 1 - 1 2 i τ, i ≥ 0, we observe that t = t 0 < t i < t i+1 < τ, i ≥ 1 , lim i→∞ t i = τ. (3.4) Since t i+1 -t i = (τ -t)/2 i+1 for i ≥ 0, we infer from (3.2) that δ(τ -t) 2 i+1 h(t i+1 ) m ≤ h(t i ), i ≥ 0. (3.5)
Proof of Theorem 1.2: upper bounds. We start again from results contained in [START_REF] Iagar | Positivity, decay, and extinction for a singular diffusion equation with gradient absorption[END_REF]. More precisely, it follows from [8, Eq. (5.5)] and (1.11) that 0 ≤ u(t, x) ≤ C 4 |x| -(p-q)/(q-p+1) , (t, x) ∈ (0, ∞) × R N .

(3.10) Moreover, we have the following gradient estimate [8, Theorem 1.3(iii)]

∇u -(q-p+1)/(p-q) (t, x) ≤ C 1 + u 0 (p-2q)/p(p-q) ∞ t -1/p for (t, x) ∈ [0, T e ) × R N .
Restricting ourselves to t ∈ (T e /2, T e ), the right hand side of the previous inequality is bounded and we further obtain

|∇u(t, x)| ≤ C 5 u(t, x) 1/(p-q) , (t, x) ∈ (T e /2, T e ) × R N . (3.11) 
Let t ∈ (T e /2, T e ). Integrating (1.1) over (t, T e ) × R N and using (3.11) as well as the property u(T e ) 1 = 0, we find

u(t) 1 = Te t R N |∇u(s, x)| q dx ds ≤ C q 5 Te t R N
|u(s, x)| q/(p-q) dx ds.

(3.12)

Since p > 2q, we have q/(p -q) ∈ (0, 1) and we infer from (3.10) and Hölder's inequality that, for any R ∈ (0, ∞) and s ∈ (t, T e ),

R N |u(s, x)| q/(p-q) dx = B R (0) |u(s, x)| q/(p-q) dx + R N \B R (0) |u(s, x)| q/(p-q) dx ≤ B R (0)
u(s, x) dx q/(p-q) B R (0) dx (p-2q)/(p-q)

+ C ∞ R r N -1-q/(q-p+1) dr ≤ C u(s) q/(p-q) 1 R N (p-2q)/(p-q) + R N -q/(q-p+1) ,

where, in order to derive the last inequality, we took into account that, since p-1 < q < p/2 and p > p c , N -q q -p + 1 = (N -1)q -N (p -1) q -p + 1 < (N -1)p -2N (p -1) 2(q -p + 1) = (N + 1)(p c -p) 2(q -p + 1) < 0.

We next optimize in R with the choice u(s) q/(p-q) 1 R N -N q/(p-q) = R N -q/(q-p+1) ,

or equivalently R = u(s)

-(q-p+1)/[(N +1)(p-q)-N ] 1

.

Substituting this choice of R in the previous inequality leads us to

R N |u(s, x)| q/(p-q) dx ≤ C u(s) ω 1 , (3.13) 
with ω := q p -q -N (p -2q)(q -p + 1) (p -q)[(N + 1)(p -q) -N ] .

We observe after straightforward calculations that, since p -1 < q < p/2 < q * = p -N/(N + 1), there holds 1 -ω = p -2q (N + 1)(p -q) -N > 0. Proof of Theorem 1.2: L 1 -lower bound. We are left with proving the L 1 -lower bound for t ∈ (T e /2, T e ). To this end, we use once more the Gagliardo-Nirenberg inequality along with (3.11) to obtain,

u(t) ∞ ≤ C ∇u(t) N/(N +1) ∞ u(t) 1/(N +1) 1 ≤ C u(t) N/(p-q)(N +1) ∞ u(t)
1/(N +1) 1

.

Since u(t) ∞ = 0, we further obtain u(t) [(N +1)(p-q)-N ]/(p-q) ∞ ≤ u(t) 1 , from which the lower bound in (1.13) readily follows with the help of the lower bound in (1.12).

Theorem 1 . 1 (

 11 Optimal tail for extinction). Let u be a solution to the Cauchy problem (1.1)-(1.2) with exponents satisfying (1.3) and an initial condition u 0 satisfying (1.4).

Proof of Theorem 1 . 1 .

 11 Extinction with optimal tail. Let u be a solution to the Cauchy problem (1.1)-(1.2) with an initial condition u 0 satisfying (1.8) and consider a > ā and b > b. For T > 0, it follows from Corollary 2.4 that

1 ≤

 1 Therefore, since u(t) 1 = 0 for t ∈ (T e /2, T e ),u(t) 1 ≤ C 7 (T e -t) [(N +1)(p-q)-N ]/(p-2q) , t ∈ (T e /2, T e ),(3.15)and we have established the upper bound in (1.13). It next follows from(3.11) and the Gagliardo-Nirenberg inequality that, for t ∈ (T e /2, T e ), u(t) ∞ ≤ C ∇u(t) N/(N +1) C u(t) N/(N +1)(p-q) 15) and (3.16), we readily obtain the upper bound in (1.12), as desired.

  It readily follows from (1.1) and the non-negativity of u that s → u(s) 1 is non-increasing and we infer from (3.14) thatu(t) 1 ≤ C 6 (T e -t) u(t) ω 1 , t ∈ (T e /2, T e ).

	Now, combining (3.12) and (3.13) gives			
	u(t) 1 ≤ C 6	t	Te	u(s) ω 1 ds,	t ∈ (T e /2, T e ).	(3.14)
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By an induction argument, we deduce from (3.5) that

where

for i ≥ 1. We then infer from (3.1), (3.4), and (3.6) that

Owing to the positivity of µ(τ ), we may pass to the limit as i → ∞ in the previous inequality to obtain

.

We then let τ → T in the previous inequality to complete the proof.

Proof of Theorem 1.2: L ∞ -lower bound. By [8, Lemma 5.1], there exists C 1 > 0 such that

with ν := (N + 1)(q * -q) p -q , q * := p -N N + 1 .

Also by [8, Theorem 1.7] we have the gradient estimate

Let t > 0 and s ∈ (0, t). We infer from the Gagliardo-Nirenberg inequality and the estimates (3.7) and (3.8) that

from which, taking into account that

we derive that (t -s) u(t) q/(p-q)

Let T e be the extinction time of u. Since q < p -q, it follows from the properties of u prior to the extinction time that we are in a position to apply Lemma 3.1 (with h = u ∞ , T = T e , and m = q/(p -q) < 1) and obtain the claimed lower bound.