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A HYBRID FINITE VOLUME METHOD FOR ADVECTION EQUATIONS

AND ITS APPLICATIONS IN POPULATION DYNAMICS

CHANG YANG AND LÉON MATAR TINE

Abstract. We present in this paper a very adapted finite volume numerical scheme for
transport type-equation. The scheme is an hybrid one combining an anti-dissipative method
with down-winding approach for the flux [8, 6] and an high accurate method as the WENO5
one [13]. The main goal is to construct a scheme able to capture in exact way the numeri-
cal solution of transport type-equation without artifact like numerical diffusion or without
“stairs” like oscillations and this for any regular or discontinuous initial distribution. This
kind of numerical hybrid scheme is very suitable when properties on the long term asymp-
totic behavior of the solution are of central importance in the modeling what is often the case
in context of population dynamics where the final distribution of the considered population
and its mass preservation relation are required for prediction.
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1. Introduction

In this paper we are interested in finite volume numerical simulations of PDEs of hyperbolic
type with transport term. More precisely we are looking to correct the numerical dissipation
which appears in the simulations of the asymptotic profile of such PDEs. Indeed this nu-
merical dissipation is an artifact that is inherent to most of existing numerical schemes even
for high-order ones. So, as reported first in [3] and confirmed in [8] for the Lifshitz-Slyozov
equation which is of transport type, capturing numerically the exact asymptotic profile for
transport equation is a real challenge because numerical dissipation smooths out the fronts
and leads to an artificial profile. In the context of biology modeling, specially in population
dynamics, most of existing models [20, 10, 4] contain at least a transport part which takes into
account the growth of the considered population, it is crucial to recover the exact asymptotic
profile in order to predict the behavior of the population or to estimate some parameters for
instance its growth, division or death rates by using measures that are based on the profile.
Some authors address the question consisting to correct this inherent numerical dissipation
by establishing adequate schemes such as the WENO (Weighted Essentially Non-Oscillatory)
scheme [13], anti-dissipative scheme ADM (Anti Dissipative Method) [8], anti-diffusive flux
correction [29], etc. All these schemes define their numerical fluxes in order to minimize at
best the artifacts. The WENO schemes in [13] is a fifth-order finite difference one developed
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for the resolution of contact discontinuities and is based on the successful ENO (Essentially
Non-Oscillatory) schemes [12, 24, 25]. The WENO schemes are very suitable for problems
containing both shocks and smooth flow features. Though, they are relatively weak for the
resolution of contact discontinuities. It is the difficult challenge in general for the high order
methods to maintain at the same time non-oscillatory property and well contact disconti-
nuities [23]. Of course, to overcome this challenge, many efficient strategies are proposed in
[11, 30, 23] but all these attempts are unsuccessful for multi-dimensional problems except for
few situations [26].

The ADM scheme is based on the approach called limited downwind scheme and is devel-
oped by B. Desprès and F. Lagoutière [7]. It is similar to the class of flux limiters by Sweby
[27] which allow to keep well the contact discontinuities with non-linear stability. In linear
advection, the strategy in ADM scheme is the same with the ultrabee scheme [21] developed
by Roe. With the anti-dissipative flux, the scheme is very successful for keeping contact
discontinuities even in scalar system cases. Of course the scheme is only first order accurate
and is not really appropriate for reconstructing solutions containing both discontinuities and
smooth profiles. Indeed for smooth solutions, the ADM scheme shows some “stair steps”
looking like oscillations. For more details one can refers to [8, 7, 2].

For the anti-diffusive flux correction [29], the authors use the approach of [7, 2] for the high
order finite difference WENO schemes in [1, 13] to maintain a high order accuracy in smooth
regions, a non-oscillatory behavior near discontinuities and a sharp contact discontinuity
resolution even in larger time. Contrary to the first-order anti-dissipative scheme in [8, 7, 2],
Xu and Shu don’t use a simple Euler forward time discretization, they perform a high order
Runge Kutta time discretization and they introduce some readjustments at each stage of the
Runge Kutta methods in order to maintain a sharp contact discontinuity resolution.

We propose here a hybrid finite volume scheme where the construction of the numerical flux
appears as a combination of the WENO and ADM fluxes and where the time discretization
is a high order Runge-Kutta one with a slight adaptation. This scheme is very suitable for
firstly removing the numerical artifacts but also correct the stair treads appearing in ADM
scheme. More precisely we use a discontinuity detector at each grid point and use the WENO
order 5 scheme when the solution is regular near the point otherwise we apply the ADM.
We choose a WENO reconstruction instead of a linear one because in the case where the
solution is continuous and change rapidly it is shown that WENO is better. As a validation
of this hybrid scheme we use two test cases. The first one is a classical (academic) test case
for transport equation where the initial distribution is considered on one hand as a very
oscillatory one as given in [13]; in the other hand, we use in 2D the famous Zalesak’ disk
test that is given in [14]. The second kind of test is based on population dynamics and
polymerization process where we consider a population of cells or polymers growing either by
nutrients uptake (for cells) or by gain and lost of monomers (for polymers). This application
on population dynamics is of great importance because in many cases some predictions on the
numerical behavior of the solution allow to investigate inverse problem of estimating relevant
parameters of the considered model. So, having a bad numerical reconstruction induces bad
parameters estimation.

The paper is organized as follows. In section 2, we recall the biology context on which we
focus our study. In section 3, we detail the derivation of our hybrid scheme which is based on
a general conservation laws. The section 4 is devoted to the numerical results and comparison
of our hybrid method with WENO and ADM schemes.

2. Biological models

In cell biology as in physics of particles, the evolution dynamics of a group of cells or
macro-particles in cell culture or in a bath of micro-particles plays a central role in the
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understanding and the explanation of some physical and biological behaviors. Often the
observed quantities evolve by growth process either by nutrients uptake (the example of the
micro-organism Daphnia which uses the nutrients to grow [20, sect. 4.3.1], [17, 22]) or by
earnings micro-particles by polymerization (for polymers modeling [16]).

Lots of conjectures are based on the observation of these quantities, especially on their
evolution dynamics in long term. In modeling point of view this long term evolution dynamic
is obtained by the analysis of the asymptotic behavior of the considered quantity.

Following the processes taken into account in the model, the asymptotic behavior can
either be dependent or be independent of the initial distribution of the considered group
of cells or parasites. Indeed, in the case where the considered population evolves only by
growth it is proven in Lifshitz-Slyozov equations that the asymptotic behavior depends on
the initial distribution [3, 8]. However, when aggregation process or division process is taken
into account, the asymptotic behavior is regularized towards a quasi-universal profile as shown
in [8] and then it is independent to the initial distribution.
A crucial point linked to the modeling of these phenomena is the numerical simulation which
can lead, following the used scheme, to bad conjectures on the behavior of the model. These
bad conjectures are resulted from some numerical artifacts caused by numerical dissipation
inherent to some standard schemes [8].

In order to apply the hybrid method proposed later in this paper, we consider the following
test case where a size-structured cells population model is taken into account and the cells
evolve by gain or loss of micro cells. Let denote by f(t, x, ξ) the size density repartition of
cells of size ξ ≥ 0, located at position x ∈ Ω ⊂ Ri (i = 1,2,3) at time t ≥ 0 where Ω is a smooth
bounded domain. Then the model can be written for all (t, x, ξ) ∈ R+ ×Ω ×R+ as follows

(2.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂

∂t
f(t, x, ξ) + ∂

∂ξ
((a(ξ)c(t, x) − b)f(t, x, ξ)) = 0,

f(t = 0, x, ξ) = f0(x, ξ).

Where c(t, x) is the concentration of micro-organisms (nutrients) and it follows a diffusion
equation of this form:

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂t
(c(t, x) + ∫

∞

0
ξ f(t, x, ξ)dξ) = ∆xc(t, x), t ≥ 0, x ∈ Ω ,

∂

∂ν
c = ∇c ⋅ ν = 0, on ∂Ω.

For this kind of coupling model (2.1)-(2.2), the kinetic coefficients a(ξ), b are interpreted as
the rates at which cells gain or loss nutriments (monomers, micro-organisms).

We assume the micro-cells (or monomers) to follow a diffusion equation as depicted in
equation (2.2). We endowed this diffusion equation with a homogeneous Neumann boundary
condition where ν is the outward unit vector at point x ∈ ∂Ω.

The problem (2.1)-(2.2) is a variant of the very known standard Lifshitz-Slyozov sys-
tem which models the evolution of a population of macro-particles immersed in a bath of
monomers [16].

The analytical study of (2.1)-(2.2) concerning the existence, uniqueness and properties of
the solution is rigorously done in [9] and the main result is based on the following hypothesis:

Hypothesis. The kinetic coefficients a, b are required to satisfy b = 1; a is an increasing
function with a(0) = 0 and a(+∞) = +∞; a ∈ C0([0,∞))∩C1((0,∞)) and for any ξ0 > 0 there
exists La,0 > 0 such that 0 ≤ a′(ξ) ≤ La,0 for ξ ≥ ξ0 > 0.
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The initial condition satisfy c(t = 0, x) ∈ L∞(Ω); f(t = 0, x, ξ) ∈ L∞(Ω;L1((0,∞), (1+ξ)dξ))).

With this previous hypothesis, the authors in [9] prove the following statement on the
well-posedness of (2.1)-(2.2):

Theorem 2.1. There exists a weak solution (c, f) of (2.1)-(2.2) with, for any 0 < T < ∞,
c ∈ L∞((0, T )×Ω)∩L2(0, T ;H1(Ω)), f ∈ L∞((0, T )×Ω;L1((0,∞), (1+ξ)dξ)), c ∈ C0([0, T ];L2(Ω)−
weak), f ∈ C0([0, T ];L1(Ω × (0,∞)) −weak).

In addition they prove thanks to the Neumann boundary condition, the following mass
preservation relation:

(2.3)
d

dt
[∫

Ω
∫

∞

0
ξf(t, x, ξ)dξ dx + ∫

Ω
c(t, x)dx] = 0.

The fact that the space variable x acts as a parameter in the size density repartition
function f implies that (2.1) is a transport equation. The study of its asymptotic behavior
is numerically very challenging.

Indeed, following the chosen model as in (2.1)–(2.2), one needs in the modeling and sim-
ulations to recover the evolution dynamics of the considered population such as the time
evolution of the total number of individuals (even in asymptotic time), the total mass of the
population or the conservation law fulfilled by the model. For the numerical simulations of
the evolution dynamics, a very adapted scheme is required in order to capture in exact way
the solution of the system without artifact in order to get the right and essential properties.
That’s the aim to introduce the following hybrid method.

3. A hybrid finite volume method for advection equations

3.1. Anti-dissipative method. In this section, we consider the following advection equa-
tion

(3.1)
∂f

∂t
+ ∂(V f)

∂x
= 0, t ≥ 0.

where V (t, x) is a given smooth velocity field. Lets consider a regular mesh, with constant
spatial mesh size ∆x > 0: the cells are the intervals [xi−1/2, xi+1/2], i ∈ N with x−1/2 =
0, xi+1/2 = (i + 1)∆x, and xi denotes the midpoint of the cell: xi = (i + 1/2)∆x. We denote

by fni the numerical unknown, which is the approximation of fni = 1

∆x
∫

xi+1/2

xi−1/2
f(t(n), x)dx,

where t(0) = 0 < t(1) < ⋅ ⋅ ⋅ < t(n) < t(n+1) are times discretization with a possible variable time
step ∆t(n) = t(n+1) − t(n). We denote by V n

i−1/2 the approximations of the velocity at the cell

interfaces: namely, we set

V n
i−1/2 = V (t(n), xi−1/2), n ∈ N, i ∈ N.

The finite volume scheme applied to (3.1) gives the following approximation

(3.2) fn+1
i = fni −

∆t(n)

∆x
(V n

i+1/2f
n
i+1/2 − V

n
i−1/2f

n
i−1/2).

Then the main task is how to define the range of the interface fluxes in order to reconstruct
perfect discontinuities if they exist. In other words, the scheme is desired to take the interface
fluxes fni+1/2 so that there is zero numerical dissipation for contact discontinuities. To get this

anti-dissipative property, the flux need to be chosen as close as possible to the downwind
value of the numerical unknown. The used strategy is the same as the one established by
Desprès and Lagoutière [7] and consists to choose the most downwind flux with respect to
stability, consistency and positivity constraints of the scheme.

In order to describe the different constraints, let introduce the following useful notations:
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● νn = ∆t(n)

∆x
,

● mn
i+1/2 = min(fni , fni+1), and Mn

i+1/2 = max(fni , fni+1),

● if V n
i+1/2, V

n
i−1/2 > 0 :

bni+1/2 = 1

νnV n
i+1/2

(fni −max(fni , fni−1)) +max(fni , fni−1)

= 1
νnV n

i+1/2
(fni −Mn

i−1/2) +M
n
i−1/2,

Bn
i+1/2 = 1

νnV n
i+1/2

(fni −min(fni , fni−1)) +min(fni , fni−1)

= 1
νnV n

i+1/2
(fni −mn

i−1/2) +m
n
i−1/2,

Bn
i+1/2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
⎛
⎝
Bn
i+1/2,m

n
i−1/2

V n
i−1/2

V n
i+1/2

+
fni

νnV n
i+1/2

⎞
⎠
, if mn

i−1/2 ≥ 0,

Bn
i+1/2, otherwise,

● if V n
i+1/2, V

n
i−1/2 < 0 :

bni−1/2 = 1

νn∣V n
i−1/2

∣
(fni −max(fni , fni+1)) +max(fni , fni+1)

= 1
νn∣V n

i−1/2∣
(fni −Mn

i+1/2) +M
n
i+1/2,

Bn
i−1/2 = 1

νn∣V n
i−1/2

∣
(fni −min(fni , fni+1)) +min(fni , fni+1)

= 1
νn∣V n

i−1/2∣
(fni −mn

i+1/2) +m
n
i+1/2,

Bn
i−1/2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
⎛
⎝
Bn
i−1/2,m

n
i+1/2

∣V n
i+1/2∣

∣V n
i−1/2

∣
+

fni
νn∣V n

i−1/2
∣
⎞
⎠
, if mn

i+1/2 ≥ 0,

Bn
i−1/2, otherwise,

● if V n
i+1/2, V

n
i−1/2 do not have the same sign, we set bni+1/2 = Bn

i+1/2 = f
n
i if V n

i+1/2 > 0 and

bni+1/2 = Bn
i+1/2 = f

n
i+1 if V n

i+1/2 < 0.

● µni+1/2 = max(mn
i+1/2, b

n
i+1/2), and M n

i+1/2 = min(Mn
i+1/2,B

n
i+1/2).

3.1.1. Stability constraints. Knowing that the flux is nothing else the approximation of the
numerical unknown at the interface, it is sought to define in this section a non-empty interval
containing the numerical unknown thanks to the following standard Courant-Friedrichs-Levy
(CFL) condition:

(3.3) 0 ≤ ∆t(n)

∆x
max
i

(∣V n
i+1/2∣) ≤ 1.

From this CFL condition, we consider the case where the velocity is positive in the cell i:
V n
i−1/2 > 0 and V n

i+1/2 > 0, so we have

1

νnV n
i+1/2

− 1 ≥ 0

and in first hand we multiply this inequality by the non-negative term fni −min(fni , fni−1) and
obtain

( 1

νnV n
i+1/2

− 1)(fni −min(fni , fni−1)) ≥ 0.
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Then we deduce

(3.4)
1

νnV n
i+1/2

(fni −min(fni , fni−1)) +min(fni , fni−1) ≥ fni .

In second hand we also multiply by the negative term fni −max(fni , fni−1) and obtain

( 1

νnV n
i+1/2

− 1)(fni −max(fni , fni−1)) ≤ 0,

then we deduce

(3.5)
1

νnV n
i+1/2

(fni −max(fni , fni−1)) +max(fni , fni−1) ≤ fni .

In last hand, assuming that fni ≥ 0 ∀i (the positivity constraint is discussed later) we deduce
the obvious relation

(3.6)
min(fni , fni−1)

V n
i−1/2

V n
i+1/2

+
fni

νnV n
i+1/2

≥
fni

νnV n
i+1/2

≥ fni .

Owing to (3.4)-(3.6) and the previous notations, one deduce this first non empty interval
where the adequate flux will be chosen

(3.7) fni ∈ [bni+1/2,B
n
i+1/2] ≠ ∅.

For the case where the velocity is locally negative mean V n
i−1/2 < 0 and V n

i+1/2 < 0, we

perform the same reasoning and obtain the non empty interval fni ∈ [bni−1/2,B
n
i−1/2] ≠ ∅.

3.1.2. Consistency constraints. For the consistency of the scheme, we write the very definition
which is that the numerical flux between cell i and cell i+ 1 belongs necessary to the interval
defined by the numerical solutions fni and fni+1. So the consistency constraint is written as
follows

(3.8) mn
i+1/2 ≤ f

n
i+1/2 ≤M

n
i+1/2, ∀ i in the grid.

3.1.3. Positivity constraints. From a positive initial solution, we need to impose a condition
on the numerical fluxes in order to ensure the positivity of the numerical approximation of
the solution given by (3.2). For this, we stell assume V n

i−1/2 > 0, V n
i+1/2 > 0 and we address the

conditions such that

fn+1
i ≥ 0 Ô⇒ νn(V n

i+1/2f
n
i+1/2 − V

n
i−1/2f

n
i−1/2) ≤ f

n
i

Ô⇒ fni+1/2 ≤ f
n
i−1/2

V n
i−1/2

V n
i+1/2

+
fni

νnV n
i+1/2

,

so, obtaining the later inequality is done by imposing the flux to satisfy

(3.9) fni+1/2 ≤m
n
i−1/2

V n
i−1/2

V n
i+1/2

+
fni

νnV n
i+1/2

,

because by the consistency constraints we know that mn
i−1/2 ≤ f

n
i−1/2.

Proposition 3.1. Assume that the CFL condition (3.3) be satisfied. Then for any i the
interval [µni+1/2,M

n
i+1/2] is non empty. By choosing the fluxes fni+1/2 ∈ [µni+1/2,M

n
i+1/2] for any

i, then the following assertions hold:

1) The scheme (3.2) is consistent with (3.1).
2) The scheme (3.2) remains positive for positive initial solution: mean if fni ≥ 0 for any

i then fn+1
i ≥ 0 too.



A HYBRID FINITE VOLUME METHOD FOR THE ADVECTION EQUATIONS 7

3) Thanks to stability and consistency constraints at step n and in case V n
i−1/2 > 0 and

V n
i+1/2 > 0, the discrete solution satisfies the following bounds:

(3.10) mn
i−1/2 − ν

n(V n
i+1/2 − V

n
i−1/2)M

n
i−1/2 ≤ f

n+1
i ≤Mn

i−1/2 − ν
n(V n

i+1/2 − V
n
i−1/2)m

n
i−1/2.

Similar bounds can be obtained if V n
i−1/2 < 0 and V n

i+1/2 < 0. More precisely we have

mn
i+1/2 − ν

n(∣V n
i−1/2∣ − ∣V n

i+1/2∣)M
n
i+1/2 ≤ f

n+1
i ≤Mn

i+1/2 − ν
n(∣V n

i−1/2∣ − ∣V n
i+1/2∣)m

n
i+1/2.

Proof. The proof of the proposition is essentially based on the gathering of the results (3.4)–
(3.6) and (3.8)–(3.9) for the items 1) and 2).
For the last item, we begin by writing the stability constraint:

1

νnV n
i+1/2

(fni −Mn
i−1/2) +M

n
i−1/2 ≤ f

n
i+1/2 ≤

1

νnV n
i+1/2

(fni −mn
i−1/2) +m

n
i−1/2

and use the consistency constraint: mn
i−1/2 ≤ f

n
i−1/2 ≤M

n
i−1/2 to deduce

1

νnV n
i+1/2

(fni −Mn
i−1/2) + f

n
i−1/2 ≤ f

n
i+1/2 ≤

1

νnV n
i+1/2

(fni −mn
i−1/2) + f

n
i−1/2.

Multiplying all the terms by V n
i+1/2 and adding −V n

i−1/2f
n
i−1/2 we obtain

1

νn
(fni −Mn

i−1/2)+(V
n
i+1/2−V

n
i−1/2)f

n
i−1/2 ≤ V

n
i+1/2f

n
i+1/2−V

n
i−1/2f

n
i−1/2 ≤

1

νn
(fni −mn

i−1/2)+(V
n
i+1/2−V

n
i−1/2)f

n
i−1/2.

So, multiplying all the term by −1 and rearranging the terms we deduce

mn
i−1/2−ν

n(V n
i+1/2−V

n
i−1/2)f

n
i−1/2 ≤ f

n
i −νn(V n

i+1/2f
n
i+1/2−V

n
i−1/2f

n
i−1/2) ≤M

n
i−1/2−ν

n(V n
i+1/2−V

n
i−1/2)f

n
i−1/2,

what achieves the proof of the item 3). The proof of the similar bounds in the case where
V n
i−1/2 < 0 and V n

i+1/2 < 0 is straightforward.

For more details on the proof related to the case of the non conservative transport equa-
tion, one can refer to [8].

Remark 3.2. In the previous reasoning, we exclude the case where the velocities on the
interfaces cell are of different sign. So in the case where V n

i+1/2 < 0 and V n
i−1/2 > 0 then it is

obvious that the positivity of the numerical solution fn+1
i is obtained without any time step

condition. Nevertheless, the case where V n
i+1/2 > 0 and V n

i−1/2 < 0 mean the possible empty

of the cell from the two sides. So we choose the upwind fluxes and the numerical solution
becomes constant in the cell i. Then for this case the non negativity is ensured under a

restricted CFL condition νnmax
i

(∣V n
i+1/2∣) ≤

1

2
.

Remark 3.3. In this above presentation, the numerical flux is designed for general conser-
vation laws, while the one in [8] is more suitable for the transport equations.

For the anti-dissipative strategy, we define the flux fni+1/2 by solving the following mini-

mization problem:

To minimize ∣fni+1/2 − f
n
i+1∣

under the constraint fni+1/2 ∈ [µni+1/2,M
n
i+1/2]
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which solution is given for instance in the case V n
i−1/2 > 0 and V n

i+1/2 > 0 by

(3.11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fni+1/2 = µ
n
i+1/2 if fni+1 ≤ µni+1/2,

fni+1/2 = f
n
i+1 if µni+1/2 ≤ f

n
i+1 ≤ M n

i+1/2,

fni+1/2 = M n
i+1/2 if fni+1 ≥ M n

i+1/2.

This kind of anti-dissipative method is very suitable for discontinuous initial solution,
which has been shown in [6]. However, it is not suitable for smooth solution. Indeed, it turns
the very smooth solutions into a series of step functions with respect to time evolution [6, 8].
The objective of the remaining part is to find an alternative method such that it keeps the
shock sharp near discontinuities while having high accuracy in smooth regions. To the end,
we propose the following hybrid method.

3.2. A hybrid method. We denote fA
i+1/2 the flux computed by the limited Downwind

scheme and fW
i+1/2 the flux computed by a high accurate Upwind scheme, for instance the

fifth order WENO reconstruction [13]. So our desirable flux fH
i+1/2 by the hybrid method will

just be a convex combination of fA
i+1/2 and fW

i+1/2, i.e.

(3.12) fH
i+1/2 = ω

A
i+1/2f

A
i+1/2 + ω

W
i+1/2f

W
i+1/2

where ωA
i+1/2 + ω

W
i+1/2 = 1, ωA

i+1/2, ω
W
i+1/2 ≥ 0. Moreover, it is desirable:

● ωA
i+1/2 = O(1) and ωW

i+1/2 = o(1), near discontinuities,

● ωA
i+1/2 = O(∆xM) and ωW

i+1/2 = O(1), in smooth regions,

where M is a large enough number that causes fW
i+1/2 to be the dominant term in smooth

regions.
According to these considerations, we then need to identify the smoothness of solution.

We consider a similar smoothness measurement, which was first proposed in [5]

(3.13) ei =
∣f̂i − fi∣
D

,

where D is a scaling value given as

(3.14) D = max
i
fi −min

i
fi.

Figure 1 shows the interpolated value, i.e. f̂i is obtained by the fourth-order interpolation.
Note that the point fi itself, as shown in Figure 1, is not included in the interpolation.

(3.15) f̂i =
1

6
(−fi−2 + 4fi−1 + 4fi+1 − fi+2).

Now we need to know whether the corresponding cell i is in the smooth region. For this, let
us study the smoothness indicator for the solution of transport equation with initial condition
as a step function. We consider the simplest case, with only a transition point

fj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, j ≤ 0,

α, j = 1,

0, j ≥ 2.

The smoothness indicator as a function of α is depicted in Figure 2. We see ej , j = 0,1,2 are
intersected. To keep the contact discontinuity of solution, we need to the three cells j = 0,1,2
in non-smooth region, or at least two cells in non-smooth region. Thus a necessary condition
is ej ≤ β, with the criteria β ≤ 0.1 (see the dotted line in Figure 2).
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Figure 1. Interpolation error between the node value fi and interpolated value f̂i.
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Figure 2. The smoothness indicator as a function of α.

Then we choose the smoothness measurement at the cell interface by an upwind way

(3.16) ei+1/2 =
⎧⎪⎪⎨⎪⎪⎩

ei, if Vi+1/2 ≥ 0,

ei+1, else.

Finally, we consider smooth weights defined in [0,1], antisymmetric with respect to β, and
vary rapidly around β (controlled by the parameter c). Such weights can be defined by
hyperbolic tangent function as follows

(3.17) ωA
i+1/2 =

1 − tanh(−c(ei+1/2 − β))
2

, ωW
i+1/2 =

1 + tanh(−c(ei+1/2 − β))
2

.

It is clear that ωA
i+1/2 + ω

W
i+1/2 = 1 and 0 ≤ ωA

i+1/2, ω
W
i+1/2 ≤ 1. An example of weight ωW

i+1/2 is

illustrated in Figure 3 with parameters β = 0.09, c = 150.
Let recall that parameters β and c have a none negligible influence in the behavior of the
numerical solution as described in (3.17).

In smooth regions, using a Taylor expansion analysis, we have:

ei+1/2 = O(∆x4).

So the weights are approximately equal to:

ωA
i+1/2 ≈ 0, ωW

i+1/2 ≈ 1.

Thus, the Upwind flux with fifth-order WENO reconstruction is activated, i.e.

fH
i+1/2 ≈ f

W
i+1/2.
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Figure 3. The weight ωW
i+1/2 with parameters β = 0.09, c = 150.

For a discontinuity, since the size of the discontinuity does not change as ∆x→ 0, one can
conclude

ei+1/2 = O(1).
So the weights are approximately equal to:

ωA
i+1/2 ≈ 1, ωW

i+1/2 ≈ 0.

Thus, the limited Downwind flux is activated, i.e.

fH
i+1/2 ≈ f

A
i+1/2.

Remark 3.4. In the original method [5], the parameter D depended on the index i and it
was a convex combination of the global and local scales, i.e.

Di = csSg + (1 − cs)Sl,
where Sg = maxi fi −mini fi, i ∈ {1, . . . , imax}, Sl = maxi fi −mini fi, i ∈ {i − 2, . . . , i + 2}. The
parameter cs was chosen as 0.1 or 0.01 in [5]. This choice can highlight the small jumps in
the solution. However, in the paper we focus on the major jumps in the solution. Therefore,
the global scale Sg seems more appropriate.

3.3. Time discretization. The second-order TVD Runge-Kutta time discretization [25] is
given by

f (1) = fn +∆tL(fn),

fn+1 = 1

2
fn + 1

2
f (1) + 1

2
∆tL(f (1)),

where L is the spatial discretization of −∂(V f)∂x . This is equivalent to

f (1) = fn +∆tL(fn),

fn+1 = fn + 1

2
∆tL(fn) + 1

2
∆tL(f (1)).

In order to maintain the moving travelling wave solutions for piecewise constant functions
containing contact discontinuities as in the Euler forward case, we modifiy the previous
scheme as

f (1) = fn +∆tL(fn),(3.18)

fn+1 = fn + 1

2
∆tL(fn) + 1

2
∆tL′(f (1)),(3.19)
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where the operator L is defined for fn by

(3.20) L(fn)i = −νn(Vi+1/2f
n
i+1/2 − Vi−1/2f

n
i−1/2)

In case where L′(f (1)) is chosen equal to L(fn), it is clear that this time discretization is
equivalent to the Euler forward scheme. For example, for the transport equation

∂tf + a∂xf = 0,

when CFL number is equal to 0.4, i.e. a∆t
∆x = 0.4, and the inital condition is a step function

f0
j =

⎧⎪⎪⎨⎪⎪⎩

1, j ≤ 0,

0, otherwise.

Moreover, let us consider only the anti-dissipative method described in Section 3.1. The
sequence of the numerical solution for the first few time steps are:
after one-time step

f1
j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, j ≤ 0,

0.4, j = 1,

0, otherwise.

after two-time steps

f2
j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, j ≤ 0,

0.8, j = 1,

0, otherwise.

after three-time steps

f3
j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, j ≤ 1,

0.2, j = 2,

0, otherwise.

after four-time steps

f4
j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, j ≤ 1,

0.6, j = 2,

0, otherwise.

after five-time steps

f5
j =

⎧⎪⎪⎨⎪⎪⎩

1, j ≤ 2,

0, otherwise.

Clearly f5
j = f0

j−2, hence the numerical solution repeats itself after four-time steps with a

shift. If a∆t
∆x is not a rational number, the numerical solution will not exactly repeat after

finite time steps, but the number of transition points will not be larger than one.
The spatial discretization of the anti-dissipative method is only a first order method [6],

thus a second time discretization will not improve accuracy. However, it is necessary to use
high order time discretization method when a high order spatial discretization is used. So,
in order to implement with our hybrid spatial discretization described in Secition 3.2, we use
the following discretization for the operator L

L(fn)i = −νn(Vi+1/2f
H,n
i+1/2

− Vi−1/2f
H,n
i−1/2

),(3.21)

L′(f (1))i = −νn(Vi+1/2f
H,(1)
i+1/2

− Vi−1/2f
H,(1)
i−1/2

),(3.22)
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where

fH,n
i+1/2

= ωA,n
i+1/2

fA,n
i+1/2

+ ωW,n
i+1/2

fW,n
i+1/2

,(3.23)

f
H,(1)
i+1/2

= ω
A,(1)
i+1/2

fA,n
i+1/2

+ ωW,(1)
i+1/2

f
W,(1)
i+1/2

.(3.24)

We remark that, in the hybrid f
H,(1)
i+1/2

, the anti-dissipative flux is equal to fA,n
i+1/2

and not to

f
A,(1)
i+1/2

. So, in the case ωA,n
i+1/2

= ωA,(1)
i+1/2

= 1, the formulae (3.20) for fn, f (1) and (3.21)-(3.22) are

equivalent. Therefore, the second order time discretezation is given by (3.18)-(3.19), (3.21)-
(3.24).

The third-order TVD Runge-Kutta method in [25] has the following form:

f (1) = fn +∆tL(fn),

f (2) = 3

4
fn + 1

4
f (1) + 1

4
∆tL(f (1)),

fn+1 = 1

3
fn + 2

3
f (2) + 2

3
∆tL(f (2)),

which is equivalent to

f (1) = fn +∆tL(fn),

f (2) = fn + 1

4
∆tL(fn) + 1

4
∆tL(f (1)),

fn+1 = fn + 1

6
∆tL(fn) + 1

6
∆tL(f (1)) + 2

3
∆tL(f (2)).

In the same strategy, as we did in the second order time discretization, we modify the previous
scheme as

f (1) = fn +∆tL(fn),(3.25)

f (2) = fn + 1

4
∆tL(fn) + 1

4
∆tL′(f (1)),(3.26)

fn+1 = fn + 1

6
∆tL(fn) + 1

6
∆tL′(f (1)) + 2

3
∆tL′′(f (2)).(3.27)

The operations L, L′, L′′ are defined as

L(fn)i = −νn(Vi+1/2f
H,n
i+1/2

− Vi−1/2f
H,n
i−1/2

),(3.28)

L′(f (1))i = −νn(Vi+1/2f
H,(1)
i+1/2

− Vi−1/2f
H,(1)
i−1/2

),(3.29)

L′′(f (2))i = −νn(Vi+1/2f
H,(2)
i+1/2

− Vi−1/2f
H,(2)
i−1/2

),(3.30)

where

fH,n
i+1/2

= ωA,n
i+1/2

fA,n
i+1/2

+ ωW,n
i+1/2

fW,n
i+1/2

,(3.31)

f
H,(1)
i+1/2

= ω
A,(1)
i+1/2

fA,n
i+1/2

+ ωW,(1)
i+1/2

f
W,(1)
i+1/2

.(3.32)

f
H,(2)
i+1/2

= ω
A,(2)
i+1/2

fA,n
i+1/2

+ ωW,(2)
i+1/2

f
W,(2)
i+1/2

.(3.33)
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Therefore, the third order time discretization is given by (3.25)-(3.33). Here also be carful

that in the expressions f
H,(1)
i+1/2

and f
H,(2)
i+1/2

the anti-dissipative fluxes are both equal to f
A,(n)
i+1/2

.

4. Numerical results

In this section, we will present several numerical results to depict the behaviors of our
hybrid method and its applications in population dynamics.

4.1. The classical numerical tests. Here, we first compare different methods for transport
equation with mixed initial condition. Then we perform the classical tests with the 1D free
transport equation and the 2D rotation equation to verify the convergence of our hybrid
method for the regular and irregular initial data. In the sequel, the modified third order
Runge-Kutta method is used for time discretization.

4.1.1. Comparison of different methods. To compare different methods, we consider the free
transport equation

(4.1)
∂f

∂t
+ ∂f

∂x
= 0, x ∈ [−1,1], t ≥ 0,

with a very oscillatory initial condition, given by [13],

(4.2) f(0, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = 1
6[G(x, z − δ) + G(x, z − δ) + 4G(x, z)], if − 0.8 ≤ x ≤ −0.6,

f2(x) = 1, if − 0.4 ≤ x ≤ −0.2,

f3(x) = 1 − ∣10(x − 0.1)∣, if 0 ≤ x ≤ 0.2,

f4(x) = 1
6[F (x, z − δ) + F (x, z − δ) + 4F (x, z)], if 0.4 ≤ x ≤ 0.6,

0, otherwise.

where G(x, z) = exp(−β(x−z)2), F (x, a) = {max((1−α2(x−a)2)1/2,0)} with a = 0.5, z = −0.7,
δ = 0.005, α = 10 and β = (log 2)/36δ2. Moreover, the periodic boundary conditions is
considered.

The numerical results is presented in Figure 4. We first see that the WENO method is
well adapted for the smooth regions of solution (see the Gaussian function), while it becomes
significantly diffuse near contact discontinuity (see the step function). For the refined mesh
(nx = 400), we can still observe clearly this diffusion near the step function. The anti-
dissipative method adapts perfectly for the step function, however it turns the smooth solution
into a stair form, which can not be regularized by refining mesh. The Xu-Shu’s method was
shown [29] to be a successful method for capturing contact discontinuities. However, by
performing the same test with their method, we find it keeps well the contact discontinuity,
but it does not adapt very well for the smooth solutions. We see, for the Gaussian function,
Xu-Shu’s method is better than the anti-dissipative method, but some stair forms can still be
observed. Finally, with the hybrid method, both the contact discontinuity and the smooth
functions are adapted well on two different meshes.

4.1.2. Convergence for the 1D transport equation. Let us first consider a smooth solution,
where the initial condition is chosen as

f(0, x) = sin (πx) , x ∈ [−1,1].
The numerical error for different methods is presented in Table 1. We first notice that the
anti-dissipative method has only first order of convergence rate. At contrast, the WENO
method and the hybrid method have both the fifth order convergence rate. Thus they are
much more precise than the anti-dissipative method. Moreover, the hybrid method does not
disturb at all the precision of numerical results in smooth solution case.



14 CHANG YANG AND LÉON MATAR TINE
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Figure 4. Numerical solutions for 1D transport equation (4.1) with initial
data (4.2) : The left column for nx = 200 while the right column for nx = 400.
∆t is chosen such that CFL= 0.2. The final time is Tend = 8.
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nx 200 400 800
∥ ⋅ ∥1 r ∥ ⋅ ∥1 r ∥ ⋅ ∥1 r

Anti-dissipative method 4.31e-2 1.07 2.06e-2 1.07 1.06e-2 0.96
WENO scheme 1.14e-7 5.00 3.57e-9 5.00 1.12e-10 4.99
Hybrid method 1.14e-7 5.00 3.57e-9 5.00 1.13e-10 4.99

Table 1. 1D transport equation : Error in L1-norm and order of convergence
r. The final time is Tend = 8.
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Figure 5. Numerical solutions for 1D transport equation (4.1) with initial
data (4.3) : The left column for Tend = 10 while the right column for Tend = 100.
nx = 100 and ∆t is chosen such that CFL= 0.2.

We next consider a step function as follows

(4.3) f(0, x) =
⎧⎪⎪⎨⎪⎪⎩

1, for − 0.5 ≤ x ≤ 0.5,

0, otherwise.

The results as Tend = 10 (after 5-time periods) and at Tend = 100 are shown in Figure 5.
We can see the classical fifth order WENO method progressively smears the contact discon-
tinuities, and gets more severely with larger time. While the hybrid method has a sharp
resolution for the contact discontinuities, which does not deteriorate noticeably with larger
time.

Moreover, the hybrid method does not significantly increase the computational cost. In-
deed, in average the WENO scheme and the ADM method take 74 operations and 27 opera-
tions respectively. While the hybrid method consists of these two methods (103 operations)
and in addition the computation of smoothness indicator (27 operations). So in total the
hybrid method takes approximately 130 operations, about 1.76 times of the WENO scheme
or 4.81 times of the ADM method. However, considering its important features, we think the
additional computational cost of our hybrid method is acceptable.

4.1.3. 2D rotation equation. We can directly extend the hybrid method to two dimensional
cases. In fact, the numerical flux can be computed dimension by dimension. For example, in
the x direction, the numerical flux can be computed by

(4.4) fH
i+1/2,j = ω

A
i+1/2,jf

A
i+1/2,j + ω

W
i+1/2,jf

W
i+1/2,j
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where ωA
i+1/2,j+ω

W
i+1/2,j = 1, ωA

i+1/2,j , ω
W
i+1/2,j ≥ 0. Then we choose the smoothness measurement

at the cell interface by an upwind way

(4.5) ei+1/2,j =
⎧⎪⎪⎨⎪⎪⎩

exi,j , if Vi+1/2,j ≥ 0,

exi+1,j , else,

where the smoothness measurement exi,j is the same as in (3.13)-(3.15) for j fixed. The weights
have forms

(4.6) ωA
i+1/2,j =

1 − tanh(−c(ei+1/2,j − β))
2

, ωW
i+1/2,j =

1 + tanh(−c(ei+1/2,j − β))
2

.

Similarly, we can compute the numerical flux fH
i,j+1/2 in y direction.

To test the efficiency of the hybrid method, we use the famous Zalesak’ disk test. The
governed equation is the 2D rotation equation

(4.7)
∂f

∂t
+ y

∂f

∂x
− x

∂f

∂y
= 0, x × y ∈ [−1,1] × [−1,1], t ≥ 0.

The initial solution is [14]
(4.8)

f(0, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if
√
x2 + (y − 0.5)2 ≤ r0 && (∣x∣ ≥ 0.025 ∣∣ y ≥ 0.75),

1 − 1
r0

√
x2 + (y + 0.5)2, if

√
x2 + (y + 0.5)2 ≤ r0,

1+cosπ 1
r0

√

(x+0.5)2+y2

4 , if
√

(x + 0.5)2 + y2 ≤ r0,

0, otherwise,

where the radius r0 = 0.3.
We illustrate the numerical results in Figure 6. We first notice that the initial condition

consists of the Zalesak’ disk, the conical body and the peak of the hump. Then after one
period, the WENO method preserves well the conical body and the peak of the hump, however
a clear diffusion appears in the Zalesak’ disk. The anti-dissipative method keeps well the
shape of the Zalesak’ disk, but it destroys completely the others two objects. Finally, we
observe that the hybrid method performs well for all these three objects. Therefore, the
hybrid method is suitable for both the smooth solution and the irregular solution for the
advection equations.

4.2. Biological numerical tests. In this subsection, we will focus on numerical simulations
for the polymerization/depolymerization type model. The objective here is to highlight the
good performance of our hybrid method on the long term asymptotic behavior of the solution.

4.2.1. Space-homogeneous polymerization/depolymerization type model. Here we are inter-
ested on the numerical behavior of the standard Lifshitz-Slyozov equations [16] that we refer
as homogeneous in space in comparison to the system (2.1)–(2.2).

This standard Lifshitz-Slyozov equations can be interpreted in the point of view of popu-
lation dynamics as a model describing a population of cells evolving only by nutrients uptake
(without birth, death and division) where the nutrients are characterized by their concentra-
tion c(t) which fulfills a mass preservation equation as follows

(4.9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂t
f(t, ξ) + ∂

∂ξ
((ξ1/3c(t) − 1)f(t, ξ)) = 0,

c(t) + ∫
∞

0
ξf(t, ξ)dξ = ρ,
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(a) Reference solution (b)WENO method

(c) Anti-dissipative method (d) Hybrid method

Figure 6. 2D rotation equation : Plot solutions of the linear equation (4.7)
with initial data (4.8). Mesh size is nx × ny = 400 × 400, while ∆t is chosen
such that CFL= 0.2. The final time is Tend = 2π.

where ρ is a constant and measures the total initial mass, ξ the cell-size and f the size density
repartition.

Despite its simplistic appearance, this model (4.9) is very intriguing when one is interested
on the time asymptotic behavior. An interesting discussion is made in [8] and the authors
highlight specifically the importance of using an anti-dissipative numerical scheme in order to
avoid numerical artifact (diffusion) and then capture the exact asymptotic profile. In order
to test our scheme defined in section 3 and show its accuracy, we compare the numerical
results with those obtained either by a WENO scheme (see [3]) or by the anti-dissipative
scheme (see [8]). Two types of initial distribution functions will be considered: the regular
one, which represents the size-density of cells in a normal distribution as in (4.10),

(4.10) f0(ξ) = 0.1 exp(−0.1(ξ − 20)2).
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Figure 7. Polymerization/depolymerization test in homogeneous space: the
regular and irregular initial data corresponding to (4.10) and (4.11).

While the irregular one represents that the size-density of cells is concentrated around a spot
as in (4.11),

(4.11) f0(ξ) = { 0.1, if 10 ≤ ξ ≤ 30,
0, else.

These two types of size-density are illustrated in Figure 7.
We first consider the numerical results with the regular data (4.10) (see Figure 8). Our

hybrid scheme has the same results as the classical WENO scheme. More precisely, a very
smooth profile is formed, which moves towards cells of large size. This observation has a
good agreement with the physical behavior of transport equation which does not modify the
general shape of the initial distribution function. In biological point of view, the observation
show the growth of big size cells at the expense of smaller ones. This competition between
big size cells and smaller size ones is due to the fact that at any time there exists a critical
size ξcrit = 1

c(t)3
such that the velocity vanish; then cells of size ξ > ξcrit grow while cells of

size ξ < ξcrit shrink. This competition phenomenon is well known under the name “Ostwald
ripening” [18, 19, 15, 28]. At contrast, the anti-dissipative method forms a very sharp front,
which is caused by the Downwind flux and it can not be significantly improved by mesh
refinement. Even in the zone view for small size particles (see the right column of Figure 8),
the anti-dissipative method generates “stairs” looking like oscillations.

Then, with the irregular data (4.11), as pictured at the figure 9, we first notice that the
irregular data is regularized by the numerical diffusion by using the WENO scheme. Indeed,
I. M. Lifshitz and V. V. Slyozov in their original paper [16] conjecture that the asymptotic
solution is in the same form despite the initial data (compare with the left column of Figure 8).
However, as pointed out in [8], the irregular data does have an influence for long term solution.
Our scheme as the anti-dissipative one preserves well the front propagation at long time
(no numerical dissipation) what is physically very important when dealing with transport
equation and can be interpreted in biology as the fact that very stiff localized population
of cells must remain stiff localized if they are subject to only transport process. Moreover,
our scheme corrects well the “stairs” looking like oscillations in the numerical solution of the
anti-dissipative method (see the right column of Figure 9).

4.2.2. Non-space-homogeneous polymerization/depolymerization type model. Here we are in-
terested on the numerical behavior of the non-homogeneous system (2.1)-(2.2) with the choice
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(e) t = 1750 (f) Zoom, t = 1750
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Figure 8. Polymerization/depolymerization test in homogeneous space: Plot
solutions of the equation (4.9) with the regular initial data (4.10). Mesh size
is nx = 800, ∆t = 1/8, CFL ≈ 0.12, ρ = 41.
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Figure 9. Polymerization/depolymerization test in homogeneous space: Plot
solutions of the equation (4.9) with the irregular initial data (4.11). Mesh size
is nx = 800, ∆t = 1/8, CFL ≈ 0.12, ρ = 41.
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a(ξ) = ξ1/3, b = 1, that we rewrite as follows

(4.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
f(t, x, ξ) + ∂

∂ξ
((ξ1/3c(t, x) − 1)f(t, x, ξ)) = 0, t ≥ 0, x ∈ Ω, ξ ≥ 0,

∂t (c(t, x) + ∫
∞

0
ξf(t, x, ξ)dξ) = ∆xc(t, x), t ≥ 0, x ∈ Ω.

The diffusion equation is endowed with homogeneous Neumann boundary condition

∂νc = ∇c ⋅ ν = 0, on ∂Ω.

Here we choose Ω ⊂ R means 1D in space-variable. The system (4.12) describes the immersion
of a population of cells in a culture of micro-organisms (nutrients) that are subjected to
diffusion equation while de size density repartition of cells is parametrized by the space
position x.

The numerical simulations are performed in the slab x ∈ [0,60]. The size variable is
truncated to ξ ∈ [0,100]. The initial concentration is defined by

(4.13) c(t = 0, x) = 0.5Ix∈[20,40].

As we did in the previous test, two types of size-density are considered: a regular one

(4.14) f(t = 0, x, ξ) = 0.01 exp(−0.2(ξ − 30)2)Ix∈[20,40].

and an irregular one

(4.15) f(t = 0, x, ξ) = 0.01Ix∈[20,40] × Iξ∈[30,35].

The initial data is presented in Figure 10.
Let us briefly describe the algorithm for the system (4.12). The third order Runge-Kutta

method is used as the time discretization for the advection equation of the size-density of
macro-particles. In the reconstruction of numerical flux, both the WENO scheme and our
hybrid scheme are applied for the purpose of comparison. Then for the diffusion equation
of monomers, the crank-Nicolson method is used for time discretization. A classical second-
order finite difference discretization method is applied for the lapacian operator, and the
integral is approximated by the classical Simpson’s rule.

Firstly, in the case with the regular data (4.14), there are almost no difference from the
size-density distribution between the two numerical methods (see Figure 11). The initial
distribution is in a plaque form at t = 0, then it generates a moon shape caused by the
diffusion of the concentration of monomers. In evolution in time, we see that the solution is
very smooth in size direction.

Secondly, we consider the irregular data (4.15). The micro-organisms (nutrients) concen-
tration c(t, x) and the mass of the cells ∫

∞

0 ξf(t, x, ξ)dξ are presented in Figure 12. From
these two quantities, we see there are no difference at different times. Moreover, the total
mass for both methods preserves well in whole time evolution (see Figure 13). However, we
observe clearly that numerical dissipation appears with the WENO scheme, while our hybrid
method preserves a sharp profile (see Figure 14).

In general, having a scheme able to reconstruct accurately the profile of the solution is of
paramount importance in population dynamics; indeed this profile is often used for parameter
estimation and comparison with experimental measurements for prediction purposes such as
prediction of the evolution of bacterial populations followed by genetic algorithms or the
assessment of the average time for the balance of a product (micro-organisms or monomers
in our case) in the considered mixture. That’s the case in this paper because following the
initial distribution, the expected solution does not have the same profile and thus does not
lead to same predictions.
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(a) Regular initial size distribution function (b) Irregular initial size distribution function
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Figure 10. Polymerization/depolymerization test in non-homogeneous
space: the initial data corresponding to (4.13)-(4.15).

5. Conclusion and perspective

In this paper we have proposed a hybrid finite volumes scheme based on the flux convex
combination between the Anti-Dissipative Method (ADM) [6, 8] and the fifth order WENO
method [13]. The obtained numerical results show a good accuracy in reconstructing the
solution of transport type equation even in case of discontinuous initial data. Indeed the
simulations in figure 8 show results that are as good as the ones in WENO scheme and better
than ADM scheme which fail for regular initial distribution. In reverse, for irregular initial
distribution, the hybrid scheme show better numerical results than de ADM scheme in the
sense that it advects very well the solution without “stairs” and it shows also better results
than WENO scheme which develop numerical diffusion for irregular distribution as depicted
in figure 9. So, when the WENO order 5 scheme fails because of numerical diffusion artifact,
the hybrid method remains anti-dissipative and when ADM scheme develops “stairs” like
oscillations, the hybrid scheme corrects them. This property is very suitable for long term
asymptotic behavior of the solution of population dynamics, as presented in the numerical
simulations for the polymerization/depolymerization type models.
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(d) WENO Scheme (e) Hybrid Method (f) x = 30, t = 80
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(g) WENO Scheme (h) Hybrid Method (i) x = 30, t = 200
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(j) WENO Scheme (k) Hybrid Method (l) x = 30, t = 350

Figure 11. Polymerization/depolymerization test in non-homogeneous
space: Plot the size distribution function of the equation (4.12) with the regu-
lar initial data (4.13), (4.14) at different time. Mesh size is nx×nξ = 100×800,
∆t = 0.1, CFL ≈ 0.13.
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Figure 12. Polymerization/depolymerization test in non-homogeneous
space: Evolution of the monomers concentration c(t, x) (first row) and the
mass of the marco-particles ∫

∞

0 ξf(t, x, ξ)dξ (second row) corresponding to
the equation (4.12) with the irregular initial data (4.13), (4.15). Mesh size is
nx × nξ = 100 × 800, ∆t = 0.1, CFL ≈ 0.13.
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Figure 13. Polymerization/depolymerization test in homogeneous space:
Mass conservation property corresponding to (2.3). Mesh size is nx × nξ =
100 × 800, ∆t = 0.1, CFL ≈ 0.13.
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(d) WENO Scheme (e) Hybrid Method (f) x = 30, t = 80

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

ξ axis

f(
t=

2
0

0
,x

=
3

0
,ξ

)

 

 

WENO Scheme
Hybrid Method

(g) WENO Scheme (h) Hybrid Method (i) x = 30, t = 200
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(j) WENO Scheme (k) Hybrid Method (l) x = 30, t = 350

Figure 14. Polymerization/depolymerization test in non-homogeneous
space: Plot the size distribution function of the equation (4.12) with the irregu-
lar initial data (4.13), (4.15) at different times. Mesh size is nx×nξ = 100×800,
∆t = 0.1, CFL ≈ 0.13.
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