
HAL Id: hal-01646782
https://hal.science/hal-01646782

Submitted on 23 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Completeness and Decidability of Converse PDL in the
Constructive Type Theory of Coq

Christian Doczkal, Joachim Bard

To cite this version:
Christian Doczkal, Joachim Bard. Completeness and Decidability of Converse PDL in the Constructive
Type Theory of Coq. Certified Programs and Proofs, Jan 2018, Los Angeles, United States. �hal-
01646782�

https://hal.science/hal-01646782
https://hal.archives-ouvertes.fr

Completeness and Decidability of Converse PDL in
the Constructive Type Theory of Coq
Christian Doczkal∗

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP
christian.doczkal@ens-lyon.fr

Joachim Bard
Saarland University

Abstract
The completeness proofs for Propositional Dynamic Logic
(PDL) in the literature are non-constructive and usually pre-
sented in an informal manner. We obtain a formal and con-
structive completeness proof for Converse PDL by recasting
a completeness proof by Kozen and Parikh into our con-
structive setting. We base our proof on a Pratt-style decision
method for satisfiability constructing finite models for sat-
isfiable formulas and pruning refutations for unsatisfiable
formulas. Completeness of Segerberg’s axiomatization of
PDL is then obtained by translating pruning refutations to
derivations in the Hilbert system. We first treat PDL without
converse and then extend the proofs to Converse PDL. All
results are formalized in Coq/Ssreflect.

1 Introduction
Propositional Dynamic Logic (PDL) [12, 15] is a modal logic
developed for reasoning about programs with applications
for instance in knowledge representation [3]. The modalities
of PDL are given by regular programs (i.e., regular expres-
sions with tests) describing binary relations on states. The
formula [α]φ is satisfied by some state if all α-reachable
states satisfy φ. The language of programs includes a re-
flexive transitive closure operation (α∗) causing PDL to be
non-compact. Converse PDL (CPDL), also defined in [12],
extends PDL with a converse operation on programs. Both
PDL and CPDL have the small-model property [12] and are
EXPTIME-complete [12, 21]. Axiomatizations of PDL and
CPDLwere first given by Segerberg [22] and shown complete
independently by Gabbay [13] and Parikh [19].

Our main result is a machine-checked constructive proof
that for every PDL or CPDL formula φ one can either con-
struct a proof of ¬φ from the respective axioms or a model of
∗This author has been funded by the European Research Council (ERC)
under the European Union’s Horizon 2020 programme (CoVeCe, grant
agreement No 678157).
This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of
Université de Lyon, within the program “Investissements d’Avenir” (ANR-
11-IDEX-0007) operated by the French National Research Agency (ANR).

CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record will appear in
Proceedings of the 7th International Conference on Certified Programs and
Proofs, January 8 – 9, 2018.

bounded size satisfying the formula. Completeness and the
small-model property as well as decidability of satisfiability,
validity and provability then follow as corollaries. The form
of constructive completeness result established here is more
informative than a classical completeness result in the sense
that it provides an algorithm constructing proofs for valid
formulas rather than merely showing the existence of such
proofs.

The completeness proofs for (C)PDL in the literature either
use non-standard canonical models and filtration [15, 19] or
construct “canonical” models inside a finite syntactic uni-
verse [18]. Both techniques are non-constructive in the sense
that they assume (at least) logical decidability of provability
(i.e., ⊢ φ ∨ ̸⊢ φ for all φ). While logical decidability follows
from (computational) decidability, the easiest way to show
decidability of provability is via completeness.

In order to obtain a constructive completeness result, we
base the completeness proof on a decision method for satis-
fiability. We employ a variant of pruning [17, 21] extended
to provide refutations for unsatisfiable formulas in addition
to constructing models for satisfiable formulas. Translating
these pruning refutations to proofs in the Hilbert system
then yields the desired completeness result. The use of prun-
ing as decision procedure underlying the completeness result
naturally leads to a factorization of the proof into an algo-
rithmic part for the decision method, a semantic argument
for the model construction, and a syntactic translation from
pruning refutations to Hilbert refutations. We believe that
the constructive nature of the proof and the clear separation
of concerns makes the proof particularly easy to follow.

The pruning-based approach is inspired by completeness
proofs for the branching time logics UB (“unified branch-
ing”) [5] and Computation Tree Logic (CTL) [11] and was
employed by the first author to obtain formal and construc-
tive completeness proofs of Hilbert and sequent systems for
CTL [8, 10]. For the construction of models using pruning,
we follow the presentation of pruning in [16]. The transla-
tion from pruning refutations to Hilbert proofs builds on
ideas in [18]. For CPDL, we show that the Hilbert system val-
idates the conversion of formulas to converse normal form
and then use pruning for converse normal formulas. This
isolates the treatment of converse to a few select places in
the proof. We are not aware of any other completeness proof
treating converse this way.

1

CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA Christian Doczkal and Joachim Bard

The mathematical proofs described in this paper are con-
structive and designed with the formalization in mind. The
accompanying Coq development [9] follows the proofs out-
lined in the paper and provides the details elided in the paper.
The development is carried out using the Ssreflect [14] proof
language and the Mathematical Component Libraries [25].
Our development builds upon the formal and constructive
completeness proof for test-free PDL presented in [4].
The rest of the paper is organized as follows. Section 2

recalls the syntax, semantics, and Hilbert system of PDL
and describes their representation in Coq. Sections 3 to 6
describe the constructive completeness result for PDL. Sec-
tion 7 describes the changes required to extend our results
to CPDL. Section 8 provides a high-level overview of the
accompanying Coq development [9].

2 Propositional Dynamic Logic
We fix a countably infinite type of atomic programsA and a
countably infinite type of atomic propositions P. The letter
a ranges over atomic programs and the letter p ranges over
atomic propositions. We consider Propositional Dynamic
Logic (PDL) with the following syntax for programs (denoted
α , β, . . .) and formulas (denoted φ,ψ , . . .).

α , β B a | α + β | αβ | α∗ | φ? (a : A)
φ,ψ B p | ⊥ | φ → ψ | [α]φ (p : P)

We define the remaining logical operations in terms of this
syntax (i.e., ¬φ B φ → ⊥, φ ∧ ψ B ¬(φ → ¬ψ), ⟨α⟩φ B
¬[α]¬φ, . . .).1 We write |φ | and |α | for the sizes of formulas
and programs (i.e., the size of the syntax tree).
Formulas are interpreted over transition systems where

the states are labeled with atomic propositions and the tran-
sitions are labeled with atomic programs. A transition sys-
tem M hence consists of

• A (possibly infinite) type |M| whose elements are
called states

• A transition relation
a⇒M : |M| → |M| → Prop for

every a : A
• A labeling LM : P → |M| → Prop.

In the following, we writeM for transitions systems as well
as their underlying type of states.
Let M be a transition system. We define a satisfaction

relation between states w of M and formulas φ, written
w |= φ, and an interpretation of programs α as binary rela-
tions onM, written

α⇒ (withM implicit), by mutual recur-
sion on formulas and programs (cf. fig. 1). Note that we use
the same symbols (e.g.→) both for the logical operators of
PDL and for those of the type theory. This does not lead to
ambiguity.

1While φ → ψ could be defined as [φ?]ψ , we include it in the syntax since
this allows us to define the Hilbert system with minimal reliance on defined
logical operations.

w |= p B LM pw

w |= ⊥ B ⊥
w |= φ → ψ B w |= φ → w |= ψ

w |= [α]φ B ∀v .w α⇒ v → v |= φ

w
a⇒ v B w

a⇒M v

w
α+β
⇒ v B w

α⇒ v ∨w
β
⇒ v

w
α β
⇒ v B ∃u .w α⇒ u ∧ u

β
⇒ v

w
α ∗
⇒ v B w (α⇒)∗ v

w
φ?
⇒ v B w = v ∧w |= φ

Figure 1. Semantics of formulas and programs

Our goal is to show soundness and completeness of the
Hilbert system for PDL presented in fig. 2. The Hilbert sys-
tem employed here is a variant of Segerberg’s axiomatization
as presented in [15]. We replace the original induction axiom
(i.e., [α∗](φ → [α]φ) → φ → [α∗]φ) with a rule (Ind) and
omit ⊢ φ → [α][α∗]φ → [α∗]φ, which is derivable by induc-
tion. We prefer the system from fig. 2 because, a priori, it
appears weaker. Nevertheless, it is straightforward to show
that the two systems are equivalent (see [9] for the details).
Hence, all our results apply to both systems.

The satisfaction relation essentially constitutes a shallow2

embedding of the classical object logic PDL into the construc-
tive type theory of Coq. In order to ensure that the object
logic is interpreted classically we restrict our attention to
those transition systems for which the satisfaction relation
is stable under double negation.

Definition 2.1. A (classical) model is a transition systemM
for which |= is stable under double negation, i.e., a transition
system satisfying

∀w : M ∀φ.¬¬(w |= φ) → w |= φ (*)

Classical models can be understood in several ways. The
condition (*) localizes the classical assumptions required for
soundness into the definition of models. In fact, classical
models are the largest class of models for which one can
constructively show soundness of the Hilbert system for
PDL given in fig. 2.

Theorem 2.2 (Soundness). Let M be a transition system.
Then ⊢ is sound for M (i.e., ⊢ φ implies w |= φ for all φ and
allw : M) if and only if M is a classical model.

2Here, shallow refers to the fact that w |= φ is just a proposition talking
about some relations over an arbitrary type.

2

Completeness and Decidability of Converse PDL in Coq CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA

⊢ φ → ψ → φ (1)
⊢ (θ → φ → ψ) → (θ → φ) → θ → ψ (2)
⊢ ¬¬φ → φ (3)
⊢ [α](φ → ψ) → [α]φ → [α]t (4)
⊢ [α]φ → [β]φ → [α + β]φ (5)
⊢ [α + β]φ → [α]φ (6)
⊢ [α + β]φ → [β]φ (7)
⊢ [αβ]φ → [α][β]φ (8)
⊢ [α][β]φ → [αβ]φ (9)
⊢ [α∗]φ → φ (10)
⊢ [α∗]φ → [α][α∗]φ (11)
⊢ [φ?]ψ ↔ (φ → ψ) (12)

MP
⊢ φ → ψ ⊢ φ

⊢ ψ
Nec

⊢ φ
⊢ [α]φ

Ind
⊢ φ → [α]φ
⊢ φ → [α∗]φ

Figure 2. Hilbert system for PDL

Note that every transition system is a classical model if
one assumes excluded middle. Moreover, one can show con-
structively that all finite transition systems (with boolean
transition relations and labeling) are classical models. This
amounts to proving decidability of the model-checking prob-
lem – which in the case of PDL is straightforward. Since PDL
has the small-model property, we only need to construct
finite models to show completeness.
For the rest of the paper, the word model always means

classical model.We say that a formulaφ is satisfiable ifw |= φ
for some statew of some model and valid ifw |= φ for every
statew of every model.
The main result of this paper is a constructive proof that

for every formula φ, one can either construct a finite model
certifying the satisfiability of φ or a proof of ¬φ from the
axioms in fig. 2 (certifying the unsatisfiability of φ). Com-
pleteness of the Hilbert system (i.e., ⊢ φ whenever φ is valid)
as well as decidability of satisfiability, validity and provability
then follow as corollaries.
The central notions in the completeness proof are the

notions of demo, subformula universe, and pruning. Demos
are a class of finite syntactic models designed such that for
every subformula universe U , there exists a largest demo
over U satisfying all satisfiable formulas in U . We construct
this largest demo using pruning in such a way that we obtain
proofs of ¬φ for all unsatisfiable formulas φ inU .

3 Subformula Universes
We now define the notion of subformula universe. A sub-
formula universe for a formula φ is a finite set of signed

formulas [23] containing all formulas that play a role in
deciding satisfiability of φ.

Definition 3.1. We call a finite set F of formulas subformula
closed if it satisfies the following closure properties:
S1. If φ → ψ ∈ F , then {φ,ψ } ⊆ F .
S2. If [a]φ ∈ F , then φ ∈ F .
S3. If [α + β]φ ∈ F , then {[α]φ, [β]φ,φ} ⊆ F .
S4. If [αβ]φ ∈ F , then {[α][β]φ, [β]φ,φ} ⊆ F .
S5. If [α∗]φ ∈ F , then {[α][α∗]φ,φ} ⊆ F .
S6. If [ψ ?]φ ∈ F , then {ψ ,φ} ⊆ F .

Note that subformula closedness requires the presence
of more than just the subformulas of every formula (e.g.,
[α][α∗]φ when [α∗]φ ∈ F).
It is a standard result about PDL that every formula is

included in a subformula closed set of size linear in |φ | called
the Fisher-Ladner closure [12, 15] of φ. This closure be com-
puted using two mutually recursive functions FL and FL□ as
follows:

FL(p) B {p}
FL(⊥) B {⊥}

FL(φ → ψ) B {φ → ψ } ∪ FL(φ) ∪ FL(ψ)
FL([α]φ) B FL□(α ,φ) ∪ FL(φ)

FL□(p,φ) B {[p]φ}
FL□(α + β,φ) B {[α + β]φ} ∪ FL□(α ,φ) ∪ FL□(β,φ)

FL□(αβ ,φ) B {[αβ]φ} ∪ FL□(α , [β]φ) ∪ FL□(β ,φ)
FL□(α∗,φ) B {[α∗]φ} ∪ FL□(α , [α∗]φ)
FL□(ψ ?,φ) B {[ψ ?]φ} ∪ FL(ψ)

In order to show that FL(φ) is subformula closed, we first es-
tablish the following transitivity property. The proof follows
the presentation in [15].

Lemma 3.2. 1. φ ∈ FL(φ) and [α]φ ∈ FL□(α ,φ).
2. Ifψ ∈ FL(φ), then FL(ψ) ⊆ FL(φ).
3. Ifψ ∈ FL□(α ,φ), then FL(ψ) ⊆ FL□(α ,φ) ∪ FL(φ).

Proof. Claim (1) is trivial. Claims (2) and (3) follow by mutual
induction on φ for (2) and α for (3). □

Lemma 3.3. FL(φ) is subformula closed.

Proof. Immediate with lemma 3.2(1) and lemma 3.2(2). □

Lemma 3.4. |FL(φ)| ≤ |φ | and |FL□(α ,ψ)| ≤ |α |.

Proof. By mutual induction on φ and α . □

For the definition of subformula universes, we employ
signed formulas. A signed formula has the form φσ where
φ is a formula and σ ∈ {−,+} is its sign. Signs never occur
within a formula and bind weaker than formula constructors,
e.g, [α]φ+ is to be read as ([α]φ)+. Semantically, negative
signs correspond to top-level negations. That is,w |= φ− is

3

CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA Christian Doczkal and Joachim Bard

to be read asw ̸ |= φ andw |= φ+ asw |= φ. In particular, we
have:

w |= [α]φ− ⇔ ∃v .w α⇒ v ∧w |= φ− ⇔ w |= ⟨α⟩¬φ
Definition 3.5 (Subformula Universe). Let F be a subfor-
mula closed set. We refer to the set {φσ | φ ∈ F ,σ ∈ {+,−} }
as the subformula universe over F . For formulas φ, we write
U (φ) for the subformula universe over FL(φ).

Signed formulas are a technical device allowing us to de-
scribe demos and pruning, which are usually described using
negation-normal formulas, in terms of our minimal syntax
for PDL.

4 Demos
A clause is a finite set of signed formulas. Demos [16, 17] are
certain sets of clauses that can be seen as models in such a
way that every state satisfies all signed formulas it contains.

The first requirement on demos is that all states are Hin-
tikka sets.

Definition 4.1. A clauseH is called aHintikka set if satisfies
the following closure conditions.
H1. ⊥+ < H .
H2. There is no formula φ such that {φ+,φ−} ⊆ H .
H3. If (φ → ψ)+ ∈ H , then φ− ∈ H orψ+ ∈ H .
H4. If (φ → ψ)− ∈ H , then φ+ ∈ H andψ− ∈ H .
H5. If [αβ]φσ ∈ H , then [α][β]φσ ∈ H .
H6. If [α + β]φ+ ∈ H , then [α]φ+ ∈ H and [β]φ+ ∈ H .
H7. If [α + β]φ− ∈ H , then [α]φ− ∈ H or [β]φ− ∈ H
H8. If [α∗]φ+ ∈ H , then φ+ ∈ H and [α][α∗]φ+ ∈ H .
H9. If [α∗]φ− ∈ H , then φ− ∈ H or [α][α∗]φ− ∈ H .
H10. If [φ?]ψ+ ∈ H , then φ− ∈ H orψ+ ∈ H .
H11. If [φ?]ψ− ∈ H , then φ+ ∈ H andψ− ∈ H .

Intuitively, Hintikka sets are clauses that are consistent
with respect to state-local reasoning. Note that if φσ ∈ U for
some subformula universeU , then all formulas mentioned
in the Hintikka condition for φσ are also in U . The use of
signs avoids the need to close subformula universes under
adding/removing top-level negations (as is, for instance, done
in [11]) thus simplifying the reasoning about the closure
properties of the subformula universes.

Every finite set of clauses S , can be seen as a model M(S)
in the following way:

|M(S)| B S

H
a⇒M(S) H

′ B {φ | [a]φ ∈ H } ⊆ H ′

LM(S) p H B p+ ∈ H

Even for sets of Hintikka sets, the states of M(S) will
generally not satisfy all the formulas they contain. To see
this, recall that [a]p− corresponds to the diamond formula
⟨a⟩¬p, and consider the case where S B {{[a]p−,p+}}. Then
the only state of M(S) lacks the a-successor satisfying p−
required by [a]p−.

Definition 4.2. Let S be a finite set of clauses. We interpret
programs as relations on S in the following way:

C
a
⇝S D B {φ+ | [a]φ+ ∈ C } ⊆ D

C
α+β
⇝ S D B C

α
⇝S D ∨C

β
⇝S D

C
α β
⇝S D B ∃E ∈ S .C

α
⇝S E ∧ E

β
⇝S D

C
α ∗
⇝S D B C (α⇝S)∗ D

C
φ?
⇝S D B C = D ∧ φ ∈ C

Remark 1. The set library employed in the formalization
only allows us to write down sets that are finite by construc-
tion. However, finiteness of the unrestricted comprehension
{φ+ | [a]φ+ ∈ C } depends on the injectivity of the box con-
structor. In Coq, we instead use replacement and separation
(i.e., { bodyφ | φ ∈ {ψ ∈ C | isBoxψ } }, where isBox tests for
the shape [α]φ+ and body strips away the outer box) yielding
a set that is finite by construction.

Note that α
⇝S , does not mention the satisfaction relation.

This allows us to use α
⇝S to phrase the condition ensuring

that
α⇒ and |= behave as required.

Definition 4.3 (Demo). A finite set D of Hintikka sets is
called a demo if it satisfies the following condition:
(D) If [α]φ− ∈ C ∈ D, then C

α
⇝D D and φ− ∈ D for some

D ∈ D.

We now show that for demos D, every state of M(D)
satisfies all formulas it contains. We fix some demo D for
the rest of this section. The proof follows [16].

Lemma 4.4. Let [α]φ+ ∈ C such that C
α⇒M(D) D and for

all E ∈ S and allψ with |ψ | < |α | we have that t− ∈ E implies
E ̸ |= ψ . Then φ+ ∈ D.

Proof. By induction onα . The assumption on formulas smaller
than α is required to handle the case for tests. □

Lemma 4.5. Let {C,D} ⊆ D such thatC α
⇝D D and assume

thatψ+ ∈ E implies E |= ψ for all E ∈ D and allψ such that
|ψ | < |α |. Then C α⇒M(D) D.

Theorem 4.6 (Demo Theorem). Let φσ ∈ C ∈ M(D). Then
C |= φσ .
Proof. By complete induction on |φ |. The case for φ = [α]ψ+
follows with lemma 4.4 using the induction hypothesis to
establish the condition on formulas smaller than |α |. Simi-
larly, the case forφ = [α]ψ− follows with the demo condition
and lemma 4.5. All other cases follow by induction using the
Hintikka properties of C . □

5 Pruning
Pruning [17, 21] starts from a given set of Hintikka sets
and removes clauses violating the demo condition until a

4

Completeness and Decidability of Converse PDL in Coq CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA

demo is reached. We will show that when starting from
the set of all maximal Hintikka sets over some subformula
universeU , this process terminates with a demo satisfying
all satisfiable formulas from U . Moreover, we will obtain
pruning refutations for all removed clauses.
We fix some subformula closed set F and writeU for the

subformula universe over F .

Definition 5.1. A Hintikka set C ⊆ U is called maximal if
for all φ ∈ F either φ+ ∈ C or φ− ∈ C .

The pruning function is defined recursively as follows:

prune S B

prune(S \ {C}) ∃[α]φ− ∈ C .¬∃D ∈ S .

C
α
⇝S D ∧ φ− ∈ D

S S is a demo

Remark 2. The definition above does not specify which Hin-
tikka set is to be removed if several violate the demo condition.
In the Coq development, we use a choice operator for finite sets
to deterministically pick a clause to remove.

We now define a demo overU as follows:
S0 B {C ⊆ U | C maximal and hintikka }
D B prune S0

Lemma 5.2. D is a demo contained in S0.

We say that a set of clauses S supports a clause C , written
S ▷ C , if there exists some Hintikka set D ∈ S such that
C ⊆ D. We have already established that a formula φ ∈ F
is satisfiable whenever D ▷ {φ+} (theorem 4.6). In order to
obtain completeness, it remains to show ⊢ ¬φ whenever
D ̸▷ {φ+}. To prove this, we need to generalize from single
formulas to clauses, i.e., prove ⊢ ¬C wheneverD ̸▷ C . When
a clause C appears in the place of a formula, as in ⊢ ¬C
above, it is to be read as the sign respecting conjunction of
the formulas it contains, i.e., C is to be read as

∧
φσ ∈C ⌊φσ ⌋

where ⌊φ−⌋ B ¬φ and ⌊φ+⌋ B φ. If ⊢ ¬C , we callC (Hilbert)
refutable.

We will show that all clauses overU that are not supported
by S0 are refutable. Moreover, we will show that this is an in-
variant that is preserved during pruning. That is, when a Hin-
tikka clause is removed from S0 and therefore some clause
C ⊆ U is no longer supported by the remaining clauses,
we can prove ⊢ ¬C , possibly using proofs constructed at an
earlier stage.
To abstract from the algorithmic details of pruning, we

give an inductive characterization of the clauses overU that
are not supported by D and then translate derivations of
this inductive definition to proofs in the Hilbert system. The
rules are given in fig. 3. If prefC , we say that C is pruning
refutable and if pcoref S for some S ⊆ S0, say that S is prun-
ing corefutable. In both rules, the set S corresponds to some
intermediate stage of pruning and the premise pcoref S cap-
tures the intuition that we have already established prefC
for all preciously removed Hintikka clauses. The rule P1 then

P1
pcoref S C ⊆ U S ̸▷ C

prefC

P2

S ⊆ S0 pcoref S
[α]φ− ∈ C ¬∃D ∈ S .C

α
⇝S D ∧ φ− ∈ D

prefC

pcoref S B ∀C ∈ S0 \ S .prefC

Figure 3. Pruning Refutations

expresses the fact a clause cannot be supported by D if all
clauses that could possibly support it have already been re-
moved and the rule P2 corresponds to the pruning condition.

Lemma 5.3. D is pruning corefutable.

Theorem 5.4 (Pruning Completeness). Let C ⊆ U , then C
is either pruning refutable or satisfied by a model with at most
2 |U | states.

Proof. By case analysis on D ▷C using theorem 4.6 and lem-
mas 5.2 and 5.3. □

6 Hilbert Refutations
We now establish completeness of the Hilbert system by
showing that pruning refutable clauses are also Hilbert refut-
able. The proof is compositional in the sense that we show
the rules for pruning refutations admissible for the Hilbert
system.
For sets of clauses A, we abbreviate

∨
C ∈AC as

∨
A. We

continue to work with the subformula universe U from
the previous section. We say that a set S ⊆ S0 is (Hilbert)
corefutable if ⊢ ¬C for all clauses in S0 \ S .
Lemma 6.1. Let C ⊆ U be maximal but not a Hintikka set.
Then ⊢ ¬C .
Proof. By case analysis on the Hintikka condition being vio-
lated using propositional reasoning and axioms (5-12). □

We remark that lemma 6.1 encapsulates most of the sate-
local reasoning required to prove completeness.

Lemma 6.2 (Extension). Let S ⊆ S0 be corefutable and let
C ⊆ U be a clause. Then ⊢ C → ∨{D ∈ S | C ⊆ D }.
Proof. Since S is corefutable, it suffices to show ⊢ C →∨{D ∈ S0 | C ⊆ D }. The claim follows by induction
on |U | − |C |. If C is maximal, then either C ∈ S0 or ⊢ ¬C
(lemma 6.1). Both cases are trivial. If C is not maximal then
⊢ C → C ∪ {φ+} ∨ C ∪ {φ−} for some φ ∈ F such that
{φ+,φ−} ∩C = ∅ and the claim follow by induction hypoth-
esis. □

Lemma 6.3 (Admissibility of P1). Let S be corefutable and
let C ⊆ U such that S ̸▷ C . Then ⊢ ¬C .

5

CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA Christian Doczkal and Joachim Bard

Proof. Immediate with lemma 6.2. □

Before we can translate the rule P2, we need a few more
auxiliary lemmas.

Lemma 6.4. Let C,D ⊆ U be maximal. Then ⊢ C → ¬D
whenever C , D.

Lemma 6.5. Let S ⊆ S0 be corefutable. Then
1. ⊢ ∨ S .
2. ⊢ ¬(∨A) → ∨(S \A) for all A ⊆ S .

Proof. Claim (1) follows immediately with lemma 6.2. For (2)
it suffices to show ⊢ C → ¬(∨A) → ∨(S \ A) for C ∈ S
(Claim (1)). If C ∈ A we obtain a contradiction with ¬∨

A.
Otherwise, the claim is trivial. □

In addition to the lemmas above, we also make use of the
following facts.

Lemma 6.6. 1. If ⊢ φ → ψ , then ⊢ [α]φ → [α]ψ and
⟨α⟩φ → ⟨α⟩ψ .

2. ⊢ ¬⟨α⟩⊥
3. ⊢ ⟨α⟩φ → [α]ψ → ⟨α⟩(φ ∧ψ)
4. ⊢ ¬[α]φ ↔ ⟨α⟩¬φ
5. ⊢ [α]φ → [α]ψ → [α](φ ∧ψ)
6. ⊢ ⟨α⟩(φ ∨ψ) → ⟨α⟩φ ∨ ⟨α⟩ψ
7. If ⊢ ψ → φ and ⊢ ⟨α⟩ψ → ψ , then ⊢ ⟨α∗⟩ψ → φ

Note that lemma 6.6(1) justifies rewriting with implica-
tions underneath of modalities, and we will do so without
explicit mention.
In the following we present Hilbert proofs in “backward

style” where each line is obtained from the previous line by
rewriting with some lemma or by propositional reasoning
(usually the introduction or elimination of some big conjunc-
tion or disjunction). We chose this presentation, rather than
the traditional forward chaining, because it closely matches
the way the proofs are obtained in Coq.

The next lemma is the core of the completeness proof. In
particular, this is the place where the induction rule for α∗

is used.

Lemma 6.7. Let S ⊆ S0 be corefutable and letC,D ∈ S . Then
⊢ C → [α]¬D whenever C

α̸⇝S D.

Proof. By induction on α .
Case α = a: By assumption, there exists some [a]φ+ ∈ C
such that φ+ < D. Hence φ− ∈ D since D is maximal. To
show ⊢ C → [a]¬D it therefore suffices to show ⊢ [a]φ →
[a]¬¬φ which follows with lemma 6.6(1).

Case: α = ψ ?: By axiom (12), it suffices to show ⊢ C → ψ →
¬D. Since C ψ ?̸⇝S D, we either have C , D and the claim
follows with lemma 6.4 or C = D and ψ+ < C . But then,
ψ− ∈ C since C is maximal. Therefore ⊢ C → ¬ψ and the
claim follows with propositional reasoning.

Case α = β + γ : By induction hypothesis we have both
⊢ C → [β]¬D and ⊢ C → [γ]¬D. The claim then follows
with axiom (5).

Case α = βγ : We reason as follows:

⊢ C → [βγ]¬D
⇐ ⊢ C → [β][γ]¬D axiom (9)
⇐ ⊢ C → ⟨β⟩⟨γ ⟩D → ⊥ lemma 6.6(4)

⇐ ⊢ C → ⟨β⟩((
∨

S) ∧ ⟨γ ⟩D) → ⊥ lemma 6.5(1)

⇐ ⊢ C → ⟨β⟩(
∨
E∈S

(E ∧ ⟨γ ⟩D)) → ⊥

⇐ ⊢ C →
∨
E∈S

(⟨β⟩(E ∧ ⟨γ ⟩D)) → ⊥ lemma 6.6(6)

⇐ ⊢ C → ⟨β⟩(E ∧ ⟨γ ⟩D) → ⊥ (for E ∈ S)

By assumption, we have C β̸⇝S E or E
γ̸⇝S D. By induction

hypothesis, we obtain either ⊢ C → [β]¬E or ⊢ E → [γ]¬D.
The claim then followswith lemma 6.6(3) and lemma 6.6(2).

Case: α = β∗: We want to apply the induction rule with a
suitable invariant. We define I B { E ∈ S | C β ∗

⇝S E }.
We clearly have C ∈ I and therefore ⊢ C → ∨

I . By
assumption, D < I and therefore ⊢ ∨

I → ¬D since for
every E ∈ I we have E , D and therefore ⊢ E → ¬D
(lemma 6.4). Using the induction rule withψ set to

∨
I , it

suffices to show (∨ I) → [β](∨ I). We reason as follows:

⊢ (
∨

I) → [β](
∨

I)

⇐ ⊢ E → [β](
∨

I) E ∈ I

⇐ ⊢ E → ⟨β⟩(¬
∨

I) → ⊥ lemma 6.6(4)

⇐ ⊢ E → ⟨β⟩(
∨

S \ I) → ⊥ lemma 6.5(2)

⇐ ⊢ E → (
∨
F ∈S\I

⟨β⟩F) → ⊥ lemma 6.6(6)

⇐ ⊢ E → ⟨β⟩F → ⊥ F ∈ S \ I
⇐ ⊢ E → [β]¬F lemma 6.6(4)

Since E β̸⇝S F by the definition of I , the last claim follows
by induction hypothesis. □

Remark 3. The previous lemma can be seen as a generaliza-
tion of the contrapositive of [18, Lemma 1] from the collection
of maximally consistent clauses (over a given universe) to arbi-
trary corefutable collections of maximal Hintikka sets (i.e., all
possible intermediate states of pruning). We need the general-
ization in order to incrementally construct Hilbert derivations
and the contrapositive since at the current point in the develop-
ment there is no easy way to show that provability of formulas
is decidable. Decidability of provability does follow once we
have established decidability of satisfiability and completeness
(cf. corollary 6.12).

Lemma 6.8 (Admissibility of P2). Let S ⊆ S0 be corefutable
and let C ∈ S with [α]φ− ∈ C such that ¬∃D ∈ S .C

α
⇝S D ∧

φ− ∈ D. Then ⊢ ¬C .
6

Completeness and Decidability of Converse PDL in Coq CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA

Proof. Let X B {D ∈ S | φ− ∈ D }. In order to prove ¬C , we
show that C implies both [α](∧D∈X ¬D) and ⟨α⟩∨X and
that that these two consequences are contradictory. For the
first implication we reason as follows:

⊢ C → [α](
∧
D∈X

¬D)

⇐ ⊢ C →
∧
D∈X

[α]¬D lemma 6.6(5)

⇐ ⊢ C → [α]¬D D ∈ X

The last claim follows with lemma 6.7 since C
α̸⇝S D by as-

sumption. For the second implication we have:

⊢ C → ⟨α⟩
∨

X

⇐ ⊢ ¬[α]φ → ⟨α⟩
∨

X ¬[α]φ ∈ C

⇐ ⊢ ⟨α⟩¬φ → ⟨α⟩
∨

X lemma 6.6(4)

⇐ ⊢ {φ−} →
∨

X lemma 6.6(1)

This time, the last claim follows with lemma 6.2. Now it
suffices to show

⊢ [α](
∧
D∈X

¬D) → ⟨α⟩(
∨

X) → ⊥

⇐ ⊢ ⟨α⟩((
∧
D∈X

¬D) ∧
∨

X) → ⊥ lemma 6.6(3)

⇐ ⊢ ¬((
∧
D∈X

¬D) ∧
∨

X) lemma 6.6(2)

The last claim follows with propositional reasoning. Thus
we obtain ⊢ ¬C . □

Lemma 6.9. ⊢ ¬C whenever C is pruning refutable.

Proof. By induction on prefC using lemmas 6.3 and 6.8. □

We are now in the position to prove our main result for
PDL.

Theorem 6.10 (Informative Completeness). For every PDL
formula φ, one can either construct a proof of ¬φ or a model
with at most 22 |φ | states satisfying φ.

Proof. Fix some formula φ. By theorem 5.4, we either ob-
tain a model for φ of size 2 |U (φ) | and the claim follows with
lemma 3.4 or we have prefC and the claim follows with
lemma 6.9. □

In Coq, theorem 6.10 takes the form of a function having
the (dependent) type

∀φ. (ΣM (x : M). |M| < 22 |φ | ∧w |= φ) + (⊢ ¬φ)

Corollary 6.11 (Completeness). ⊢ φ whenever φ is valid.

We say a predicate P : X → Prop is decidable if there is
a function p : X → B such that Px ↔ (p x = true) for all
x : X (i.e., p decides P). With respect to this (shallow) notion
of decidability, we also obtain:

Corollary 6.12 (Decidability). Satisfiability, validity and
provability of formulas are decidable.

Proof. Immediate with soundness and completeness. □

Corollary 6.13 (Small-Model Property). Let φ be satisfiable.
Then φ is satisfied by a model with at most 22 |φ | states.

Proof. Immediate with soundness. □

Note that we prove the small-model property (smp) using
a decision procedure rather than proving decidability using
the smp as is often done in classical arguments.

7 Converse
We now extend the informative completeness result from
PDL to CPDL. The proofs remain largely the same as for
PDL. Therefore we only describe the parts that need to be
changed. The formalization accompanying this paper [9]
includes separate developments for the two logics.
We extend the syntax with a new program construct α⌣.

The satisfaction relation for CPDL is defined as for PDL with
the interpretation of α⌣ defined as:

w
α⌣

⇒ v B v
α⇒ w

Following [15], the Hilbert system for CPDL extends the
Hilbert system from fig. 2 with two axioms:

⊢ φ → [α]⟨α⌣⟩φ (13)

⊢ φ → [α⌣]⟨α⟩φ (14)

By duality we obtain:

Lemma 7.1. ⊢ ⟨α⟩[α⌣]φ → φ and ⊢ ⟨α⌣⟩[α]φ → φ.

The main problem in extending the proof to CPDL is to
adapt the proof of lemma 4.4. It turns out that the Hintikka
conditions (definition 4.1) are insufficient to handle the case
for converse appearing on top of other programs. We resolve
this by showing that the Hilbert system validates a conver-
sion to converse normal form (i.e., formulas where converse
is only applied to atomic programs) and then restricting to
converse normal formulas.

We start by computing converse normal forms. We want
to exhaustively apply the following transformations to pro-
grams.

(α + β)⌣ 7→ α⌣ + β⌣ α∗⌣ 7→ α⌣∗

(αβ)⌣ 7→ β⌣α⌣ α⌣⌣ 7→ α

As with the computation of the Fisher-Ladner closure, we
define two functions

cnf : formula → formula

cnp : bool → program → program

by mutual recursion on formulas and programs as shown
in fig. 4. The boolean argument for cnp serves as a flag sig-
naling whether we are currently pushing down a converse

7

CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA Christian Doczkal and Joachim Bard

cnf p B p cnf (φ → ψ) B cnf φ → cnfψ

cnf ⊥ B ⊥ cnf ([α]φ) B [cnp falseα](cnf φ)

cnp falsea B a

cnp truea B a⌣

cnp false (αβ) B (cnp falseα)(cnp false β)
cnp true (αβ) B (cnp true β)(cnp trueα)
cnpb (α + β) B cnpb α + cnpb β

cnpb (α∗) B (cnpb α)∗

cnpb (φ?) B (cnf φ)?
cnpb (α⌣) B cnp (¬b)α

Figure 4. Converse Normalization

operation. This allows for a simple structurally recursive
definition of converse normalization.

Lemma 7.2. 1. ⊢ φ ↔ cnf φ
2. ⊢ [cnp trueα]ψ ↔ [α⌣]ψ
3. ⊢ [cnp falseα]ψ ↔ [α]ψ

Proof. We show claim (1) and the conjunction of (2) and (3) by
mutual induction on φ and α . Most cases follow immediately
with the respective induction hypotheses. It remains to show
⊢ [α]φ ↔ [β]φ whenever α 7→ β . We show one direction of
the case for α∗⌣ 7→ α⌣∗.

⊢ [α⌣∗]φ → [α∗⌣]φ
⇐ ⊢ [α∗⌣]⟨α∗⟩[α⌣∗]φ → [α∗⌣]φ axiom (14)

⇐ ⊢ ⟨α∗⟩[α⌣∗]φ → φ lemma 6.6(1)

⇐ ⊢ ⟨α∗⟩[α⌣∗]φ → [α⌣∗]φ axiom (10)

⇐ ⊢ ⟨α⟩[α⌣∗]φ → [α⌣∗]φ lemma 6.6(7)

(and ⊢ [α⌣∗]φ → [α⌣∗]φ)
⇐ ⊢ ⟨α⟩[α⌣][α⌣∗]φ → [α⌣∗]φ axiom (11)

The last claim follows with lemma 7.1. □

Note that in the proof above, we need to generalize the
claim using axiom (10) before applying the induction lemma
(lemma 6.6(7)).

We extend the definition of FL□ with an additional clause
for converse

FL□(α⌣,φ) B {[α⌣]φ} ∪ FL□(α ,φ)

Lemma 7.3. If φ is converse normal, then allψ ∈ FL(φ) are
converse normal.

The only place in the proof where we need to exploit the
fact that we can restrict to converse normal formulas is when
adapting the proof of lemma 4.4. We adapt the transition

relation on sets of clauses by changing the case for atomic
programs to respect converses of atomic programs

C
a
⇝S D B {φ+ | [a]φ+ ∈ C } ⊆ D ∧

{φ+ | [a⌣]φ+ ∈ D } ⊆ C

and adapt the definition of M(S) accordingly.

Lemma 7.4. Let D be a demo containing only converse nor-
mal formulas and let [α]φ+ ∈ C such that C

α⇒M(D) D and
for all E ∈ S and all ψ with |ψ | < |α | we have that t− ∈ E
implies E ̸ |= ψ . Then φ+ ∈ D.

Proof. By induction on α . The case for a⌣ is symmetric to
the case for a. All other cases are essentially the same as in
the proof of lemma 4.4. □

The translation to Hilbert refutations requires the addi-
tion of two new cases to the proof of lemma 6.7. Firstly,
C

a
⇝S D can now also fail because φ+ < C for some for-

mula [a⌣]φ ∈ D. Secondly, we need to handle the case where
C α⌣̸⇝S D. Both cases are straightforward.

Theorem 7.5. For every CPDL formula φ, one can either con-
struct a proof of ¬φ or a model with at most 24 |φ | states satis-
fying φ.

Proof. Let φ be some formula. Then ⊢ φ ↔ cnfφ (lemma 7.2)
and |U (φ)| ≤ 4|φ | since |cnf φ | ≤ 2|φ |. The claim then fol-
lows analogously to the proof of theorem 6.10. □

The corollaries from the previous section carry over to
CPDL as expected.

We remark that, since CPDL has both more syntactic con-
structs and a Hilbert system with more axioms, the complete-
ness result for CPDL does not subsume the completeness
result for PDL.

8 Remarks on the Formalization
The Coq development accompanying this paper [9] follows
themathematical development fairly closely and provides the
details elided in the paper. The development consists of about
1300 lines for CPDL and 1000 lines for PDL split roughly half-
and-half between specifications and proofs. This conciseness
is achieved by relying on the mathematical component li-
braries [25] as well as two libraries developed in [8]. The
latter two account for another 2000 lines.
The first library is for reasoning about finite sets over

countable base types (e.g., formulas) and used to define the
Fisher-Ladner closure, clauses, demos, and pruning. While
the mathematical component libraries do contain a library
for extensional finite sets, this library only provides sets over
finite types, which is too restrictive for our purposes. While
we use finite sets as data structure underlying the pruning
method for deciding PDL satisfiability, the purpose is to al-
low for a constructive proof rather than actually running the
procedure. Consequently, we implement finite sets without

8

Completeness and Decidability of Converse PDL in Coq CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA

regard for computational costs. We obtain an extensional
representation by representing each set using some canon-
ical duplicate free list. In addition to the usual operations
(e.g., separation, replacement, and powerset), the library also
features a number of constructions not needed here (e.g., fix-
point operators for bounded monotone functions) and comes
with rudimentary automation based on a tableau calculus
implemented in Ltac [2]. We remark that there is another li-
brary for finite sets over countable types [7], currently being
developed with the aim of integrating it into the mathemati-
cal component libraries, incorporating some of the design
decisions underlying our finite set library.
The second library underlying the development is a li-

brary for constructing Hilbert derivations. It is folklore that
reasoning inside deeply embedded proof systems (i.e., where
the proof system is represented using an inductive defini-
tion) is cumbersome in Coq. This is particularly true for
reasoning inside a bare Hilbert system due to the lack of
assumption management. The libraries developed in [8] pro-
vide tactics for assumption management for any Hilbert
system extending classical propositional logic. Further, it
provides the instances to enable (setoid) rewriting [24] with
the preorder φ ≺ ψ B ⊢ φ → ψ . The facilities for assump-
tion management are mainly used when proving basic, often
propositional, facts. For the more high-level lemmas (e.g.,
lemma 6.7) rewritingwith ≺ is themain source of automation.
We remark that rewriting with equivalences alone would be
too restrictive for our purposes since many important facts
(e.g., axioms (13) and (14)) are only implications.

Morally, we see proofs as computational objects that can
be inspected and manipulated. However, the need for setoid
rewriting described above forces us to formalize the Hilbert
systems as predicates (i.e., ⊢ : formula → Prop) rather than
as families of types (i.e., ⊢ : formula → Type). While the
introduction of universe polymorphism in recent versions of
Coq allows, in principle, to use setoid rewriting also for type
families, we ran into technical problems that we were, so far,
unable to resolve when trying to turn the Hilbert systems
into type families.

From the engineering point of view, it is also unfortunate
that we were forced to create two separate developments for
PDL and CPDL even though there is a considerable overlap
between the two proofs. We could have obtained a limited
amount of sharing by proving basic facts about the Hilbert
systems (e.g., lemma 6.6) for a structure hiding the inductive
nature of the Hilbert system (i.e., the fact that there are no
other axioms) and then instantiating this structure with the
Hilbert systems for both PDL and CPDL. This approach was
used in [8] to build a hierarchy of Hilbert systems including
propositional logic, K, K∗, and CTL. However, given the large
number of syntactic constructs for PDL and the fact that
we only need about a dozen of these basic facts, the gains
would be marginal at best. One option to merge the two
developments might have been the introduction of a boolean

flag, along the lines of the formalization underlying [20],
signaling the presence or absence of converse in definitions
and lemma statements. This could provide for significant
sharing, at the cost of some technical overhead and slightly
less natural definitions and lemma statements.

9 Conclusion
We have given formal and constructive completeness proofs
for PDL and CPDL by combining ideas and techniques from
a variety of sources [15, 16, 18]. We consider the construc-
tive argument given here more informative than a classical
completeness proof in the sense that it provides an algorithm
constructing both finite models for satisfiable formulas and
proofs for valid formulas.3 In addition to basing the proof
on an algorithm, we also prove the correctness of this al-
gorithm without classical assumptions. The reason for this
is twofold. First, classical assumptions (besides those local-
ized to classical models) are simply not necessary. Moreover,
working without axioms allows us to appeal to the normal-
ization property of the logic of Coq. This, for instance, yields
that the shallow notion of decidability used in corollary 6.12
entails computational decidability in the usual sense.
The completeness proof is designed to be constructive

while reusing ideas from the literature wherever possible.
The desire to work constructively essentially rules out the
approach in [15], where completeness is established by using
filtration on an infinite non-standard canonical model. In
fact, even the construction of a finite “canonical” model for a
given subformula universe in [18] is non-constructive in the
sense that it requires decidability of Hilbert provability in or-
der to determinewhich formulas are contained inwhich state.
Of course, Hilbert provability is decidable (corollary 6.12)
However, since the Hilbert system is not analytic, the easiest
way to establish this is via completeness. This motivates
basing the proof on a decision method. We use pruning since
the maximal demo it constructs corresponds closely to the
model employed in [18]. This allows us to obtain one of the
key lemmas in the translation from pruning refutations to
Hilbert refutations by adapting the corresponding lemma
in [18]. Altogether, we obtain a natural factorization of the
proof into an algorithmic part for the decision method, a se-
mantic argument for the model construction, and a syntactic
translation from pruning refutations to Hilbert refutations.
By using converse normalization, we were able to adapt

the proofs for PDL to CPDL with only a few local changes.
We remark that proving the commutation properties under-
lying the correctness of converse normalization (lemma 7.2)
turned out to be surprisingly tricky, in particular as it comes
to ⊢ [α∗⌣]φ ↔ [α⌣∗]φ where both directions require a gener-
alization of the statement before the induction rule is applied.
Our attempts to find the relevant arguments in the literature

3More precisely, it provides an algorithm that is, while still impractical,
more informative than blindly enumerating proofs.

9

CPP 2018, January 8 – 9, 2018, Los Angeles, CA, USA Christian Doczkal and Joachim Bard

were unsuccessful. The Coq development [9] contains all
arguments in their entirety.
There are a number of methodical differences between

the proofs presented here and the constructive completeness
proofs for CTL in [8, 10]. Themost fundamental one is the use
of the more traditional Hintikka sets in favor of literal clauses
and support. Here, literal clauses are clauses containing only
formulas of the form [a]φσ and pσ and the support relation
is a recursively-defined decidable predicate corresponding
to the Hintikka conditions, e.g.,

C ▷ (φ → ψ)+ B C ▷ φ− ∨C ▷ψ+

That is, the support relation is defined such that a literal
clause supports all its possible Hintikka extensions. In [8],
where pruning refutations are also translated to derivations
of the sequent system for CTL presented in [6], the support
relation provides a natural fit for the destructive reading of
the sequent rules (i.e., the reading where the active formula
is removed when applying a rule and next state rules are
applied to literal clauses only). We would have preferred
to extend the methodology employed for CTL also to PDL.
However, as observed in [1, 16], a naive recursive definition
of support for PDL, employing

C ▷ [α∗]φ+ B C ▷ φ+ ∧C ▷ [α][α∗]φ
to handle transitive closure, does not terminate on [a∗∗]p+.
This is sometimes called the nested star problem. While a
notion of support can be defined for PDL [16], it is not clear
whether the Hilbert system is expressive enough for con-
structing derivations based on this definition. When moving
from literals and support to Hintikka sets, the recursive defi-
nition of the support relation is replaced with the checking
of closure properties for Hintikka sets, thus avoiding the
nested star problem.
Brünnler and Lange [6] suggest that, following the same

methodology as for CTL, it should be possible to obtain an
analytic sequent system for PDL. To the best of our knowl-
edge, the details have not been worked out yet. It would
be interesting to see if such an analytic sequent system can
indeed be derived for PDL and whether a pruning based
argument can be used to show its completeness.

References
[1] Pietro Abate, Rajeev Goré, and Florian Widmann. 2009. An On-the-Fly

Tableau-Based Decision Procedure for PDL-Satisfiability. In Proc. 5th
Workshop on Methods for Modalities (M4M-5) (Electr. Notes Theor. Com-
put. Sci.), Carlos Areces and Stéphane Demri (Eds.), Vol. 231. Elsevier,
191–209.

[2] Alexander Anisimov. 2015. Proof Automation for Finite Sets. B.Sc.
Thesis. Saarland University.

[3] Franz Baader and Carsten Lutz. 2007. Description Logic. In Handbook
of Modal Logic, Patrick Blackburn, Johan van Benthem, and Frank
Wolter (Eds.). Studies in Logic and Practical Reasoning, Vol. 3. Elsevier,
757–820.

[4] Joachim Bard. 2017. A Formal Completeness Proof for Test-free PDL.
B.Sc. Thesis. Saarland University.

[5] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. 1983. The Tem-
poral Logic of Branching Time. Acta Inf. 20 (1983), 207–226.

[6] Kai Brünnler and Martin Lange. 2008. Cut-free sequent systems for
temporal logic. J. Log. Algebr. Program. 76, 2 (2008), 216–225.

[7] Cyril Cohen. 2017. A finset and finmap DRAFT library. https://github.
com/math-comp/finmap. (Nov. 2017). Accessed Nov. 17th, 2017.

[8] Christian Doczkal. 2016. A Machine-Checked Constructive Metatheory
of Computation Tree Logic. Ph.D. Dissertation. Saarland University.

[9] Christian Doczkal and Joachim Bard. 2017. Coq development accom-
panying this paper. https://perso.ens-lyon.fr/christian.doczkal/cpp18/.
(2017).

[10] Christian Doczkal and Gert Smolka. 2016. Completeness and Decidabil-
ity Results for CTL in Constructive Type Theory. J. Autom. Reasoning
56, 3 (2016), 343–365.

[11] E. Allen Emerson and Joseph Y. Halpern. 1985. Decision Procedures
and Expressiveness in the Temporal Logic of Branching Time. J.
Comput. System Sci. 30, 1 (1985), 1–24.

[12] Michael J. Fischer and Richard E. Ladner. 1979. Propositional Dynamic
Logic of Regular Programs. J. Comput. System Sci. 18 (1979), 194–211.
Issue 2.

[13] Dov M. Gabbay. 1977. Axiomatization of Logic Programs. (1977). Text
of a letter to V. Pratt.

[14] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2008. A Small
Scale Reflection Extension for the Coq system. Research Report RR-6455.
INRIA. http://hal.inria.fr/inria-00258384/en/

[15] David Harel, Dexter Kozen, and Jerzy Tiuryn. 2000. Dynamic Logic.
The MIT Press.

[16] Mark Kaminski. 2012. Incremental Decision Procedures for Modal Logics
with Nominals and Eventualities. Ph.D. Dissertation. Saarland Univer-
sity.

[17] Mark Kaminski, Thomas Schneider, and Gert Smolka. 2011. Correct-
ness and Worst-Case Optimality of Pratt-Style Decision Procedures
for Modal and Hybrid Logics. In TABLEAUX 2011 (LNCS (LNAI)), Kai
Brünnler and George Metcalfe (Eds.), Vol. 6793. Springer, 196–210.

[18] Dexter Kozen and Rohit Parikh. 1981. An Elementary Proof of the
Completness of PDL. Theor. Comput. Sci. 14 (1981), 113–118.

[19] Rohit Parikh. 1978. The Completeness of Propositional Dynamic
Logic. In Mathematical Foundations of Computer Science (LNCS), Józef
Winkowski (Ed.), Vol. 64. Springer, 403–415.

[20] Damien Pous. 2013. Kleene Algebra with Tests and Coq Tools for while
Programs. In Interactive Theorem Proving (ITP 2013) (LNCS), Sandrine
Blazy, Christine Paulin-Mohring, and David Pichardie (Eds.), Vol. 7998.
Springer, 180–196.

[21] Vaughan R. Pratt. 1979. Models of Program Logics. In Proc. 20th Annual
Symp. on Foundations of Computer Science (FOCS’79). IEEE Computer
Society Press, 115–122.

[22] Krister Segerberg. 1977. A Completeness Theorem in the Modal Logic
of Programs. Notices Amer. Math. Soc. 24 (1977), A–552.

[23] Raymond M. Smullyan. 1963. A Unifying Principal in Quantification
Theory. Proceedings of the National Academy of Sciences 49 (1963),
828–832.

[24] Matthieu Sozeau. 2009. A New Look at Generalized Rewriting in Type
Theory. J. Form. Reason. 2, 1 (2009), 41–62.

[25] The Mathematical Components team. 2008. Mathematical Compo-
nents. (2008). http://math-comp.github.io/math-comp/

10

https://github.com/math-comp/finmap
https://github.com/math-comp/finmap
https://perso.ens-lyon.fr/christian.doczkal/cpp18/
http://hal.inria.fr/inria-00258384/en/
http://math-comp.github.io/math-comp/

	Abstract
	1 Introduction
	2 Propositional Dynamic Logic
	3 Subformula Universes
	4 Demos
	5 Pruning
	6 Hilbert Refutations
	7 Converse
	8 Remarks on the Formalization
	9 Conclusion
	References

