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Laminar shallow viscoplastic fluid flowing through an array of

vertical obstacles

Noé Bernabeu, Pierre Saramito, Andrew Harris

November 23, 2017

Abstract – A new Bingham-Darcy shallow depth approximation flow model is
proposed in this paper. This model is suitable for a laminar shallow viscoplas-
tic fluid flowing on a general topography and crossing an array of vertical
obstacles. An analogous porous medium is first introduced for reducing the
array of obstacles. It bases on a continuum model similar to the Brinkman
equations, where the usual Darcy model is extended for viscoplastic Bingham
fluids. Next, a specific asymptotic analysis of this Bingham-Darcy porous
medium in the case of shallow depth flows leads to a new reduced model. The
resulting highly nonlinear parabolic equation in terms of the flow height only
is efficiently solved by a Newton method, without any regularization. The nu-
merical predictions compares both qualitatively and quantitatively well with
both some experimental measurements and full tridimensional simulations. Fi-
nally, a new experiment for a viscoplastic flow over an inclined plane through
a network of obstacle is proposed and numerical simulations are provided for
future comparisons with experiments.

1 Introduction

The problem of complex fluids flowing through networks of discrete obstacles applies to
many applications in natural and material sciences. During natural risk assessments,
for example, volcanic debris and/or lava flows may move through dense forests, as was
the case for lavas advancing during Kilauea’s July 1974 eruption [24] and Etna’s 2002-03
eruption [2], among others. To date, lava flow emplacement models have tended to consider
tree-free surfaces in completing their simulations (e.g., [6, 18, 20]). The same applies to
non-volcanic debris flows in forested mountainous or urban areas (see e.g. [15, 31]). In
terms of material sciences, flow of a viscoplastic fluid through arrays of solid cylinders
needs to be considered in industrial processes such as the case of fresh concrete spreading
through networks of steel bars (see e.g. [40, 41]).

Taking into account each obstacle in numerical simulations leads to very time consuming
computations. The usual approach is to replace the discrete configuration of obstacles by
an equivalent continuous medium, the so-called fibrous porous medium. In the case of a
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Newtonian fluid, this continuous medium is described by the classical Darcy model [14].
This model proposes a linear relation between the flow rate and the pressure drop across
the porous medium. In 1949, Brinkman [12] proposed a modification of the classical
Darcy model by combining the Navier-Stokes equations with the Darcy model. This
combination is useful for situations where there is both flow sub-regions with and without
porous media. The Brinkman model provides a global description of both these sub-
regions, while the Darcy model alone was unable to describe regions without porous media.
Conversely, in the case of a non-Newtonian fluid, the situation is rather complex, due
to, from one hand, the complexity of the fluid behavior, and from the other hand, due
to the porous micro-structure. Bourgeat and Mikelić [10] proposed a first theoretical
analysis of of quasi-Newtonian shear-thinning and shear-thickening fluids and derived a
modified Darcy model. This modified Darcy model involves an effective viscosity ηeff,
which depends both upon the flow rate and the microstructural characteristics of the
porous medium: the permeability tensor κ and porosity φ. The porosity φ interprets
as the volume fraction of fluid in the medium constituted by both the fluid and the
obstacles: it is equal to one for a medium without obstacles and tends to zero when the
obstacle density increases. The permeability κ depends both upon φ and the geometric
configuration of the obstacles: some explicit expressions of κ vs φ exists, depending on the
geometrical hypothesis upon the obstacles distribution. For Non-Newtonian viscoplastic
fluids, a yield stress have to be reached for obtaining a transition between the unyielded,
arrested, state and the yielded state (see e.g. [34, 35]). Thus, there fluids do not typically
obey to the usual linear Darcy model in their rheological response to an applied stress,
as there is also some no-flow situations in porosities [19, 32]. Pascal [28], based on an
experimental investigation, proposed for an Herschel-Bulkley viscoplastic fluid a modified
Darcy model that uses a threshold gradient. Some papers focused on the specific flow
through packed beds of spherical particles. Al-Fariss and Pinder [1] extended the Pascal’s
model by deriving an equation for the threshold gradient to describe the flow of waxy oil
through beds of packed spheres. Chevalier et al. [13], based on experimental measurements
with an yield stress fluid through packed glass beads, proposed an empirical relationship
between the pressure drop and the flow rate. Recent studies consider complex fluids
flow through fibrous porous media. Bleyer and Coussot [8] performed two-dimensional
numerical simulations of a viscoplastic flow through an ordered array of disks and proposed
a quite general modified Darcy model of these fluids. Shahsavari and McKinley [36]
investigated the flow of yield stress fluids through fibrous media by means of numerical
studies and a scaling analysis. They developed an effective viscosity function which can
be used in the modified Darcy model for steady fully-developed viscoplastic flows. Vasilic
et al. [40] defined an apparent shear rate using a shift factor and a generalized Brinkman
equation. Their also performed some numerical simulations using a bi-viscosity regularized
viscoplastic model and compared with experimental measurements on a Carbopol gel flow
which was slowly poured into a transparent container where an array of cylindrical steel is
located in the middle zone. Comparing simulations and experimental observations, They
obtained both qualitative and quantitative agreements for the final shape of the flow, at
the arrested state.

For thin flows, an usual approach is to consider shallow-depth approximations. The
shallow-flow approximations of laminar viscoplastic Bingham fluids were first studied by
Liu and Mei [25], based on a rigorous asymptotic analysis. This approach was revisited
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by Balmforth and Craster [4] and extended to the axisymmetric case [3], with application
to volcanic lava domes. For fast flows, such as debris and mud flows on mountain slopes,
Laigle and Coussot derived in [23] the first reduced model that combines both inertia and
viscoplastic effects. Viscoplastic effects are estimated from the friction at the bottom.
Assuming a compressible material, Bresch et al. derived in [11] a reduced viscoplastic
model that also includes inertia effects. This approach was next revisited in the incom-
pressible case in terms of asymptotic analysis by Fernández-Nieto et al. in [16] and by
Ionescu in [21] with an augmented Lagrangian algorithm. Practical predictions of natural
hazard require to take into account general tridimensional and complex topographies (see
e.g. [5]). A new approach for topography in shallow flow models was proposed by Bouchut
et al. in [9] which relaxes most restrictions, such as slowly varying topographies. Next,
Ionescu in [22], considering Bingham and Drucker-Prager models, extended this approach
with an elegant formulation based on surface differential operators (surface gradient and
divergence) and also included inertia effects. For a more exhaustive review about various
shallow flow approximations of viscoplastic fluids, see the recent review paper [35].

The present model proposes for the first time a shallow-flow approximation of both the
Bingham-Brickman model, involving a modified Darcy model for viscoplastic fluids. This
model is of practical interest to assess risks, by opening the possibility to numerically
investigate the effects of forests on the spatial and temporal flow propagation. This model
could be also useful for industrial processes, such as fresh concrete spreading through ar-
rays of steel bars, as the required computing time is dramatically decreased. Instead of
time-dependent tridimensional simulations with moving free-surfaces, the present model
requires only the resolution a simple two-dimensional parabolic equation for the flow
height. The array of obstacles is first reduces to a continuum model by a generalized
tensor Brinkman equations for yield stress fluids. Second, assuming a shallow flow, we
extends a previous asymptotic analysis [5] to the Brinkman equations extended for the
Bingham model.

An outline of the paper is as follows. Section 2 proposes a new shallow-depth approxima-
tion of the viscoplastic Bingham model flowing on a general topography and crossing an
arrays of vertical obstacles. Section 3 proposes a Newton algorithm for efficiently solve
the unregularized nonlinear Bingham-Brickman reduced model. Comparisons between
numerical simulations and experimental observations are presented and discussed in sec-
tion 4. Finally, the flow of viscoplastic fluids on an inclined plane through different fibrous
mediums is numerically investigated, in order to understand and quantify the influence of
the obstacles on the flow propagation. This numerical experiment could be reproduced
with real fluids for future comparisons and benchmarking. The impatient reader, who is
not involved by the asymptotic analysis, can read paragraph 2.1 for the initial problem,
then paragraph 2.5 for the final reduced one and finally jump to section 4 for results and
discussion.
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2 Bingham-Darcy shallow depth approximation

2.1 The initial tridimensional problem

We consider the Bingham model [7] constitutive equation which expresses the deviatoric
part τ of the stress tensor versus the rate of deformation tensor γ̇ as:{

τ = ηγ̇ + τy
γ̇
|γ̇| when γ̇ 6= 0,

|τ | 6 τy otherwise.
(1)

where η > 0 is the plastic viscosity and τy > 0 is the yield stress. Here |τ | =
((1/2)

∑3
i,j=1 τ

2
ij)

1/2 denotes the conventional norm of a symmetric tensor in mechanics.
The total Cauchy stress tensor is σ = −p.I + τ where p is the pressure and I the identity
tensor. We suppose that the array of obstacles can be treated as an equivalent continuum
porous medium. The constitutive equation (1) is then completed by the conservations of
momentum and mass:

ρ (∂tu + (u.∇)u)− div(τ ) + ∇p = fp + ρg, (2)

divu = 0, (3)

where ρ > 0 is the constant density, g is the gravity vector and fp a source term based
on local generalized Darcy’s law (e.g. see [29]) relating the force exerced on the pore fluid
(typically gradient pressure and gravity force) to the macroscopic-scale velocity by:

fp = −ηeffκ
−1u, (4)

where ηeff > 0 is the material local apparent viscosity and κ the permeability tensor. The
conservation equations with the addition of a Darcy source term in momentum equation
is called Brinkmann equations [12]. This model allows to deal with a mixed cases where
only a part of the calculation domain is taken up by a fibrous porous medium. In this
case, out of the porous zone, the permeability is infinite and the source term fp is vanished
that gives the standard conservation equations.
It proved in [27,30] that the permeability tensor is symmetric and positive definite. That
means that the permeability tensor has three principal orthogonal axes and three positive
principal values. For an arbitrary porous medium, it is possible to find a coordinate
system (x, y, z) in which the permeability tensor has the diagonal form. When the
medium is anisotropic, at least two elements of the diagonalized permeability tensor
are not equal. Otherwise, when it does not depend on direction, then the permeability
is isotropic, and the elements of the diagonalized permeability tensor are equal. If the
distribution of pores or principal directions varies from one point in the medium to
another, the permeability tensor is spacially heterogeneous, otherwise, it is homogeneous.

In our case with an array of vertical obstacles, the equivalent continuum medium is a
fibrous porous one. For convenience, we assume that the z-axis is parallel to the fibers
axis and that the arrangement of fibers is uniform in each direction perpendicular to the
z-axis, so κ = diag(κ‖, κ‖, κ⊥), where κ‖ is the permeability in the direction perpendicular
to the fibers and κ⊥ the permeability in the direction parallel to the fibers. The local strain
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rate is a complex function of the geometry and the fiber arrangement. In the equivalent
porous media, it is necessary to define a local effective shear rate γ̇eff which is for the
fibrous media a diagonal tensor where its components are frequently expressed [37]:

γ̇eff,ii =
αiiui√
κiiφ

, ∀i ∈ {x, y, z},

where α = diag(αii)i∈{x,y,z} denotes the medium dependent shift factor (also called
the shape factor) and αii is factor in the principal direction i. Different expressions
are proposed in [36, 41] for viscoplastic fluids. We assume that α has the same form
as the permeability tensor: α = diag(α‖, α‖, α⊥). Let us introduce the tensor A =
diag(α‖/

√
κ‖φ, α‖/

√
κ‖φ, α⊥/

√
κ⊥φ). When γ̇eff 6= 0, which is equivalent to u 6= 0, from

the Bingham constitutive equation (1), we obtain the following expression of the effective
viscosity:

ηeff(γ̇eff) = η +
τy
|γ̇eff|

= η +
τy
|Au| ,

which when combined with the generalized Darcy’s law leads when u 6= 0 to the following
expression

fp = −
(

τy
|Au| + η

)
κ−1u.

In the general case, we obtain a tensor generalization of the Pascal’s law [28] for an
anisotropic fibrous media:fp = −

(
τy
|Au| + η

)
κ−1u, when u 6= 0,

|Aκfp| 6 τy when u = 0.
(5)

The yield stress τy leads to a threshold condition for the transition between “solid” and
“fluid” rheological behaviour inside the porous zone in term of the anisotropic norm
|Aκ · |. There are five equations (1)-(5) and four unknowns τ , u, p and fp.

We consider a flow over a variable topograhy as supplied from a vent and passing through
a porous zone (see Fig. 1). For any time t > 0, the flow domain is represented by:

Λ(t) = {(x, y, z) ∈ Ω× R; f(x, y) < z < f(x, y) + h(t, x, y)}

where Ω is an open and bounded subset of R2. The function f denotes the topography
and h the flow height. The boundary ∂Λ(t) of the flow volume Λ(t) can be split into three
parts (see Fig. 1): the basal topography Γs, the flow (upper) free surface Γf (t), and the
lateral part Γw(t), defined by:

Γs = {(x, y, z) ∈ Ω× R; z = f(x, y)}
Γf (t) = {(x, y, z) ∈ Ω× R; z = f(x, y) + h(t, x, y)}
Γw(t) = {(x, y, z) ∈ ∂Ω× R; f(x, y) < z < f(x, y) + h(t, x, y)}

5



Figure 1: 2D schematic view of a flow on a variable topography, supplied through a vent
at the speed we, passing through a porous zone with a permeability κ and a porosity φ.

For any t > 0, the boundary conditions at the flow base are a no-slip condition, an imposed
vertical speed and natural zero stress on the free surface:

ux = uy = 0 and uz = we on Γs and u = 0 on Γw (6)

σ · ν = 0 on Γf (t) (7)

where ν denotes the unit outward vector of ∂Λ(t) on Γf (t). The imposed vertical speed
we corresponds to a supply speed of an injection or a lava eruption. Its value is zero
beyond the vent.

It remains to describe the evolution of the free surface. It is convenient to introduce the
level set function ϕ that expresses as:

ϕ(t, x, y, z) = z − f(x, y)− h(t, x, y).

Notice that the zero level set, where ϕ(t, x, y, z) = 0, is exactly the free surface. The level
set function is transported by the flow: ∂tϕ+ u ·∇ϕ = 0,. On Γs(t), where z = f + h,
this writes:

∂th+ ux∂x(f + h) + uy∂y(f + h)− uz = 0, ∀t > 0 and (x, y) ∈ Ω. (8)

This is a first-order transport equation for the height h that should be supplemented by
an initial condition:

h(t = 0, x, y) = hinit(x, y), ∀(x, y) ∈ Ω. (9)

where hinit is given. The set of equation is finally completed by an initial condition for
the velocity u:

u(t = 0) = uinit in Λ(0) (10)

6



.

To summarize, the three-dimensional problem is composed by the equations (1)-(10) and
involves the following unknows: the stress tensor τ , the velocity field u, pressure p, the
Darcy source fp and the height h.

2.2 Asymptotic shallow analysis

The dimensionless procedure

In this paragraph, we extend the asymptotic analysis developed in [5] for a case of tridi-
mensional flow on a arbitrarilly topography to the case of a flow through a fibrous porous
zone. Let H be a characteristic length of the bidimensional domain Ω and H a char-
acteristic height of the flow. We introduce the dimensionless parameter ε = H/L. Let
U = ρgH3/(ηL) be a characteristic flow velocity in the (x, y) plane and g = |g| is the
gravity constant. Let W = εU be a characteristic velocity in the z direction, T = L/U a
characteristic time, and P = ρgH a characteristic pressure. The problem is reformulated
with dimensionless quantities and unknowns, denoted with tildes:

x = Lx̃, y = Lỹ, z = Hz̃, t = T t̃, p = P p̃, h = Hh̃,

ux = Uũx, uy = Uũy, uz = εUũz, we = εUw̃e

fp,x =
ηU

κ‖
f̃p,x, fp,y =

ηU

κ‖
f̃p,y, fp,z = ε

ηU

κ⊥
f̃p,z.

Remark the non-isotropic scaling procedure for the z coordinate and the z vector compo-
nent of the velocity vector u. The dimensionless rate of deformation tensor ˜̇γ is also related
to its dimensional counterpart γ̇ = ∇u +∇uT by the following non-isotropic relations:

γ̇αβ = (U/L) ˜̇γαβ, α, β ∈ {x, y}
γ̇αz = (U/H) ˜̇γαz, α ∈ {x, y}
γ̇zz = (U/L) ˜̇γzz.

The scalling procedure for the deviatoric part of stress τ is similar:

ταβ = η (U/L) τ̃αβ, α, β ∈ {x, y},
ταz = η (U/H) τ̃αz, α ∈ {x, y},
τzz = η (U/L) τ̃zz.

The constitutive equation

The dimensionless rate of deformation tensor can be expressed versus the dimensionless
velocity as:

˜̇γαβ = ∂β̃ũα + ∂α̃ũβ, α, β ∈ {x, y},
˜̇γαz = ∂z̃ũα + ε2∂α̃ũz, α ∈ {x, y},
˜̇γzz = 2∂z̃ũz.
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The tensor norm scales as: |γ̇| = (U/H)E, where by using (3), we get:

E =
{
ε2(∂x̃ũy + ∂ỹũx)2 + 2ε2(∂x̃ũx)2 + 2ε2(∂ỹũy)

2

+2ε2(∂x̃ũx + ∂ỹũy)
2 + (∂z̃ũx + ε2∂x̃ũz)

2 + (∂z̃ũy + ε2∂ỹũz)
2
} 1

2

Let us introduce the Bingham dimensionless number Bi that compares the yield stress τy
to a characteristic viscous stress ηU/H:

Bi =
τyH

ηU
= ε−1 τy

ρgH
.

We suppose that Bi = O(1) in ε. This hypothesis interprets as τy/(ρgH) = O(ε) or equiv-
alently that the yield stress τy is supposed to be small when compared to the gravity effets
ρgH. When |τ | > τy we obtain a dimensionless version of the constitutive equation (1):

τ̃ij =

(
Bi

E
+ 1

)
˜̇γij

Then |τ | = η(U/H)T where:

T =

{
τ̃2
xz + τ̃2

yz +
1

2
ε2τ̃2

xx +
1

2
ε2τ̃2

yy +
1

2
ε2τ̃2

zz + ε2τ̃2
xy

} 1
2

.

Remark that the von Mises condition |τ | > τy then becomes T > Bi. The constitutive
equation (1) writes: {

τ̃ =
[
Bi
E + 1

]
˜̇γ when E 6= 0,

T 6 Bi otherwise.
(11)

The Darcy source term equation

The anisotropic norm of velocity scales as: |Au| = |A|UV where:

V =

(
A2
xxũ

2
x +A2

yyũ
2
y + ε2A2

zzũ
2
z

)1/2
|A| .

Let us introduce the Darcy-Bingham dimensionless number Bip that compares the yield
stress τy to a characteristic viscous stress in fibrous porous medium ηU |A|:

Bip =
τy

ηU |A| =
1

H|A|Bi.

We suppose that Bip = O(1) in ε. This hypothesis interprets as τy|A|/(ρg) = O(ε) or
equivalently that the yield stress τy is supposed to be small when compared to the gravity
effets in a porous medium ρg/|A|. When u 6= 0 we obtain a dimensionless version of the
Darcy source term equation (5):

f̃p = −
(
Bip
V

+ 1

)
ũ
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The Darcy source term norm scales as: |Aκfp| = |A|ηUF where

F =

(
A2
xxf̃

2
p,x +A2

yyf̃
2
p,y + ε2A2

zz f̃
2
p,z

)1/2

|A| .

Then, the threshold condition |Aκfp| 6 τy becomes F < Bip and the Darcy source term
equation (5) writes: f̃p = −

(
Bip
V

+ 1

)
ũ, when ũ 6= 0,

F < Bip when ũ = 0,
(12)

The conservation equations

Let us introduce the Reynolds number and Darcy numbers:

Re =
ρUL

η
=
ρ2gH3

η2
, Da‖ =

κ‖

H2
, Da⊥ =

κ⊥
H2

.

We suppose that Re = O(1) in ε which means that the flow is supposed to be sufficiently
slow for the inertia effects to be neglected at the zeroth order of development in ε. We
suppose also that Da‖ = O(1) and Da⊥ = O(1) which means that the presence of a porous
medium has an influence on the horizontal flow but nothing for the vertical flow.

The conservation of momentum and mass (2)-(3) become:

ε2Re(∂t̃ũx + ũx∂x̃ũx + ũy∂ỹũx + ũz∂z̃ũx) = −∂x̃p̃+ ε2(∂x̃τ̃xx + ∂ỹ τ̃xy) (13a)

+ ∂z̃ τ̃xz +Da−1
‖ f̃p,x, (13b)

ε2Re(∂t̃ũy + ũx∂x̃ũy + ũy∂ỹũy + ũz∂z̃ũy) = −∂ỹp̃+ ε2(∂x̃τ̃xy + ∂ỹ τ̃yy) (13c)

+ ∂z̃ τ̃yz +Da−1
‖ f̃p,y, (13d)

ε4Re(∂t̃ũz + ũx∂x̃ũz̃ + ũy∂ỹũz̃ + ũz∂z̃ũz) = −∂z̃ p̃+ ε2(∂x̃τ̃xz + ∂ỹ τ̃yz + ∂z̃ τ̃zz) (13e)

− 1 + εDa−1
⊥ f̃p,z, (13f)

∂x̃ũx + ∂ỹũy + ∂z̃ũz = 0. (13g)

Boundary and initial conditions

The no-slip boundary condition (6) writes:

ũx = ũy = 0 and ũz = w̃e on Γs and ũ = 0 on Γw

The unit outward normal ν on the free surface Γs(t) expresses as:

ν =
∇ϕ

||∇ϕ|| =
1√

1 + |∇(f + h)|2

 −∂x(f + h)
−∂y(f + h)

1

 .
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Then (7) writes: τxx − p τxy τxz
τxy τyy − p τyz
τxz τyz τzz − p

−∂x(f + h)
−∂y(f + h)

1

 =

0
0
0

 .

and becomes in dimensionless form:

−(ε2τ̃xx − p̃)∂x̃(f̃ + h̃)− ε2τ̃xy∂ỹ(f̃ + h̃) + τ̃xz = 0 (14a)

−ε2τ̃xy∂x̃(f̃ + h̃)− (ε2τ̃yy − p̃)∂ỹ(f̃ + h̃) + τ̃yz = 0 (14b)

−ε2τ̃xz∂x̃(f̃ + h̃)− ε2τ̃yz∂ỹ(f̃ + h̃) + ε2τ̃zz − p̃ = 0 (14c)

where f̃ = f/H denotes the dimensionless topography and is known. The transport
equation (8) for the flow height h becomes:

∂t̃h̃+ ũx∂x̃(f̃ + h̃) + ũy∂ỹ(f̃ + h̃)− ũz = 0. (15)

The dimensionless problem is completed by the initial conditions for the dimensionless
height and velocity. The initial (1)-(10) problem and its dimensionless version are equiv-
alent, since the change of unknowns is simply linear.

2.3 The zeroth order approximation

In this paragraph, we only consider the dimensionless problem: since there is no ambiguity,
we omit the tilde on the dimensionless variables. We assume that the unknowns admit
the following development in ε when ε� 1:

τ = τ 0 + ετ 1 + ε2τ 2 + . . .

u = u0 + εu1 + ε2u2 + . . .

p = p0 + εp1 + ε2p2 + . . .

h = h0 + εh1 + ε2h2 + . . .

fp = fp,0 + εfp,1 + ε2fp,2 + . . .

In this paragraph, we aim at obtaining the problem at the zero order for τ 0, u, p0 and
h0. Since we only consider the zeroth order, we also omit the zero subscript in this para-
graph. Let us denote ∇‖ = (∂x, ∂y) the gradient vector in the Oxy plane, u‖ = (ux, uy) and
fp,‖ = (fp,x, fp,y), the projected velocity and Darcy’s force in this plane and τ ‖ = (τxz, τyz)
the shear stress vector in the same plane. For any v‖ = (vx, vy) we also denote as

div‖v‖ = ∂xvx + ∂yvy the corresponding plane divergence and
∣∣v‖∣∣ = (v2

x + v2
y)

1/2 the usual
Euclidean norm in R2. For convenience, we also denote as dir

(
v‖
)

= v‖/
∣∣v‖∣∣ the direc-

tion of any nonzero plane vector. With these notations, we have E =
∣∣∂zu‖∣∣ , T =

∣∣τ ‖∣∣
and V =

A‖

|A|
∣∣u‖∣∣ , F =

A‖

|A|
∣∣fp,‖∣∣ at the zeroth order, where A‖ := Axx = Ayy =

α‖√
κ‖φ

.
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The constitutive equation (11) then reduces to:

ταz =

[
Bi∣∣∂zu‖∣∣ + 1

]
∂zuα, ∀α ∈ {x, y}, (16a)

ταβ =

[
Bi∣∣∂zu‖∣∣ + 1

]
(∂βuα + ∂αuβ), ∀α, β ∈ {x, y}, (16b)

τzz = 2

[
Bi∣∣∂zu‖∣∣ + 1

]
∂zuz, (16c)

when ∂zu‖ 6= 0 and ∣∣τ ‖∣∣ 6 Bi, otherwise. (16d)

The Darcy’s force equation (12) then reduces to:

fp = −
(
Bip,‖∣∣u‖∣∣ + 1

)
u, when u‖ 6= 0,∣∣fp,‖∣∣ 6 Bip,‖ when u‖ = 0,

(17)

where Bip,‖ =
|A|
A‖

Bip =

√
κ‖φ

Hα‖
Bi.

From the conservation laws (13) we get at the zeroth order:

∂zτxz − ∂xp+Da−1
‖ fp,x = 0, (18a)

∂zτyz − ∂yp+Da−1
‖ fp,y = 0, (18b)

−∂zp = −1, (18c)

∂xux + ∂yuy + ∂zuz = 0. (18d)

The free surface boundary condition (14) at z = f(x, y) + h(t, x, y) reduces at the zeroth
order to:

τxz + p∂x(f + h) = 0, (19a)

τyz + p∂y(f + h) = 0, (19b)

p = 0. (19c)

The velocity condition at the base (z = f(x, y)) remains unchanged but using the projected
velocity, its writes:

u‖ = 0, (20a)

uz = we. (20b)

The others equations, i.e. the transport equation (15), the no-slip boundary condition on
walls and the initial conditions for u and h remains unchanged at the zeroth order.
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2.4 Reducing the problem

In this paragraph, we show that the zeroth order problem reduces to a nonlinear parabolic
problem involving only one unknow h. All the others quantities τ , u, p and fp at the
zeroth order can be explicitly computed from h.

From (19) we get at the free surface z = f + h:

p(z=f + h) = 0, (21a)

τ ‖(z=f + h) = 0. (21b)

Integrating (18c) in z from z = 0 to z = f + h and using (21a), we have:

p(t, x, y, z) = f(x, y) + h(t, x, y)− z. (22)

As f is known, the quantity p depends only upon the unknown h. From the conservation
laws (18a)-(18b) and the pressure expression (22), we get:

∂zτ ‖ +Da−1
‖ fp,‖ = ∇‖(f + h). (23)

To find more easily an expression of u‖ involving the only unknow h from the set of
equations, we can make some assumptions on the velocity profile u‖ and shear stress
vector τ based on the profiles obtained in the previous paper [5] given by the equations
(21) and (18). We assume that the solutions has the same form: u‖ = −g(z)∇‖(f + h)
where the function g is in C1([f, f +h],R+)∩D2([f, f +h],R+), and τ ‖ = −τ(z)∇‖(f +h)
where the function τ is in C1([f, f + h],R+). Let us first deal with the particular case
where ∇‖(f +h) = 0. In this case, u‖ = 0, τ ‖ = 0 and by (23), fp,‖ = 0. Otherwise, when
∇‖(f + h) 6= 0, we assume that exits critical height hc in [0, h] for which the function g is
strictly increasing on [f, f + hc], constant on ]f + hc, f + h] and for which the function τ

strictly decreases on [f, f + hc] and satisfies:

τ(f + hc) =
Bi∣∣∇‖(f + h)

∣∣ . (24)

Remark that for all points (x, y) ∈ Ω, as g is stricly increasing on [f, f + h], constant on
]f + hc, f + h] and u‖(z = f) = 0, thus an equivalent condition of u‖ = 0, ∀z ∈ [f, f + h]
is hc = 0. From the equation (16a), the von Mises condition (16d) and assumptions on g,
we get: τ ‖ = −

(
Bi

|∇‖(f+h)| + g′(z)

)
∇‖(f + h), when z ∈ [f, f + hc],∣∣τ ‖∣∣ 6 Bi, when z ∈]f + hc, f + h].

(25)

From the Darcy’s force equation (17) projected on the plane Oxy and assumptions on g,
we get: fp,‖(z) =

(
Bip,‖∣∣∇‖(f + h)

∣∣ + g(z)

)
∇‖(f + h), when hc > 0,∣∣fp,‖∣∣ 6 Bip,‖ when hc = 0.

(26)
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Let us describe the equation (23) is the case where hc > 0. By using the expression of τ ‖
(25) and the expression of fp,‖ (26), it gives the following scalar equations

g′′(z)−Da−1
‖ g(z) =

Da−1
‖ Bip,‖∣∣∇‖(f + h)

∣∣ − 1, when z ∈ [f, f + hc], (27)

τ′(z) = Da−1
‖

(
g(f + hc) +

Bip,‖∣∣∇‖(f + h)
∣∣
)
− 1, when z ∈]f + hc, f + h]. (28)

Equation (27) is a second-order linear ODE with z-independent coefficients, with a dis-
criminant ∆ = 4Da−1

‖ . Thus, it exists α and β independents of z such that:

g(z) = α exp
(
Da
−1/2
‖ z

)
+β exp

(
−Da−1/2

‖ z
)

+Da‖

(
1−

Da−1
‖ Bip,‖∣∣∇‖(f + h)

∣∣
)
, for z ∈ [f, f+hc]

(29)
Here, α, β are determined by the boundary conditions. The no-slip condition on the basal
topography write:

g(f) = 0.

The assumption on g to be constant on ]f + hc, f + h] and C1 on [f, f + h] leads to the
second condition when hc < h:

g′(f + hc) = 0. (30)

Remark that when hc = h, the condition (30) stays valid. Indeed, from the value of τ in
z = f + hc = f + h given by (24) and the boundary condition (21b), we get Bi = 0. Thus
by using the expression of τ ‖ in z = f + hc = f + h given in (25), it comes again the
equation (30).

Writing these boundary conditions with the expression of g (29) leads to:

α exp
(
Da
−1/2
‖ f

)
+ β exp

(
−Da−1/2

‖ f
)

= Da‖

(
Da−1
‖ Bip,‖∣∣∇‖(f + h)

∣∣ − 1

)
, (31)

α exp
(
Da
−1/2
‖ (f + hc)

)
− β exp

(
−Da−1/2

‖ (f + hc)
)

= 0, (32)

This linear system in terms of α and β solves as:



α = Da‖

(
Da−1
‖ Bip,‖∣∣∇‖(f + h)

∣∣ − 1

)
exp

(
−Da−1/2

‖ (f + hc)
)

2 cosh
(
Da
−1/2
‖ hc

)
β = Da‖

(
Da−1
‖ Bip,‖∣∣∇‖(f + h)

∣∣ − 1

)
exp

(
Da
−1/2
‖ (f + hc)

)
2 cosh

(
Da
−1/2
‖ hc

)
(33)

(34)

It remains to characterize from the input data an equivalent condition of hc < h and
a relation to determine hc. We have already seen that hc = h implies Bi = 0. It can
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be proved that the reverse is true. Indeed, suppose that Bi = 0. From (24) and (21b),
τ ‖(f + hc) = τ ‖(f + h) = 0. Integrate between f + hc and f + h the equation (23) and
using the expression of Darcy’s force given in (26), it gives:

∫ f+h

f+hc

g(z)dz = Da‖(h− hc) (35)

The function g is constant on the interval [f + hc, f + h]. Thus, from the expression of g
(29), forall z ∈ [f + hc, f + h],

g(z) = g(f + hc) = Da‖ −
Da‖

cosh
(
Da
−1/2
‖ hc

) .
Finally, from the egality (35), it comes hc = h, proving the equivalence: hc = h ⇔ Bi = 0.
It remains to determine hc from the input data when Bi 6= 0 ⇔ hc ∈ [0, h[. By integrating
the equation (28) between f + hc and f + h and using (21b), we get:

(h− hc) g(f + hc) =

(
Da‖ −

Bip,‖∣∣∇‖(f + h)
∣∣
)

(h− hc)−
Da‖Bi∣∣∇‖(f + h)

∣∣ . (36)

Writing this equation with the expression of g (29) gives:

(h− hc)
(
α exp

(
Da
−1/2
‖ (f + hc)

)
+ β exp

(
−Da−1/2

‖ (f + hc)
))

= −
Da‖Bi∣∣∇‖(f + h)

∣∣ .
At last, using the expressions of α and β from (33) and (34) in the previous equation, we
get a relation on hc:

Bi cosh
(
Da
−1/2
‖ hc

)
= (h− hc)

(∣∣∇‖(f + h)
∣∣−Da−1

‖ Bip,‖

)
(37)

This expression gives a necessary condition so that hc > 0. Firstly, as Bi cosh
(
Da
−1/2
‖ hc

)
and (h−hc) are strictly positives when 0 < hc < h, necessarly,

∣∣∇‖(f + h)
∣∣−Da−1

‖ Bip,‖ >
0. The inequation still true when hc = h because in this case Bip,‖ = 0. We deduce a
more general necessary condition:

hc > 0⇒ hc

(∣∣∇‖(f + h)
∣∣−Da−1

‖ Bip,‖

)
> 0

⇒ h
(∣∣∇‖(f + h)

∣∣−Da−1
‖ Bip,‖

)
> Bi cosh

(
Da
−1/2
‖ hc

)
⇒ h

(∣∣∇‖(f + h)
∣∣−Da−1

‖ Bip,‖

)
> Bi

The reverse is also true which gives a necessary and sufficient condition for hc > 0. Let us
prove it by contrapositive. If hc = 0, integrating between f + hc and f + h the equation
(23):
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∇‖(f + h)

(
h− Bi∣∣∇‖(f + h)

∣∣
)

= Da−1
‖

∫ f+h

f
f‖dz

Take the norm and use the threshold condition from (26) that gives:

∣∣h ∣∣∇‖(f + h)
∣∣−Bi∣∣ = Da−1

‖

∣∣∣∣∫ f+h

f
f‖dz

∣∣∣∣ 6 Da−1
‖

∫ f+h

f

∣∣f‖∣∣ dz 6 Da−1
‖ Bip,‖ h (38)

By definition, h
∣∣∇‖(f + h)

∣∣ − Bi 6 ∣∣h ∣∣∇‖(f + h)
∣∣−Bi∣∣ which gives with the inegality

(38):

h
(∣∣∇‖(f + h)

∣∣−Da−1
‖ Bip,‖

)
6 Bi.

Define for all z ∈]0, h] and h, ξ in R+ the function:

Fh,ξ(z) = Bi cosh
(
Da
−1/2
‖ z

)
+ (z − h)

(
ξ −Da−1

‖ Bip,‖

)
Note that the function z 7−→ Fh,ξ(z) is an invertible function in ]0, h] when(
ξ −Da−1

‖ Bip,‖

)
> 0. Use the equivalent hc > 0 ⇔ h

(∣∣∇‖(f + h)
∣∣−Da−1

‖ Bip,‖

)
> Bi

leads to a general expression for hc = hc(h,
∣∣∇‖(f + h)

∣∣) where

hc(h, ξ) =

 0 when h
(
ξ −Da−1

‖ Bip,‖

)
6 Bi,

F−1
h,ξ (0) when h

(
ξ −Da−1

‖ Bip,‖

)
> Bi.

(39)

In pratice, the value of hc for a given h and ξ is efficiently computed by a Newton algorithm
and the machine precision is reached in few iterations.

Finally, the general expression of g writes:

g(z) =



(
Bip,‖∣∣∇‖(f + h)

∣∣ −Da‖
)cosh

(
Da
−1/2
‖ (f + hc − z)

)
cosh

(
Da
−1/2
‖ hc

) − 1

 when z ∈ [f, f + hc],

(
Bip,‖∣∣∇‖(f + h)

∣∣ −Da‖
)1− cosh

(
Da
−1/2
‖ hc

)
cosh

(
Da
−1/2
‖ hc

)
 when z ∈ ]f + hc, f + h].

(40)

The last component of the velocity is obtained by integrating the mass conservation (13g)
in [f, z]: ∫ z

f
∂xuxdz +

∫ z

f
∂yuydz +

∫ z

f
∂zuzdz = 0 (41)
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The condition uz = we in z = f gives:

uz(t, x, y, z) = we −
∫ z

f(x,y)
div‖

(
u‖
)

dz (42)

Thus, velocity u admits an explicit expression depending only upon h. Then, the complete
stress τ follows explicitly from (16). It remains to obtain a characterization of h alone.
Let us consider (42) at z = f + h: by swapping the derivation ∂x and ∂y with the integral
over [f(x, y), f(x, y) + h(t, x, y)], and using the no-slip boundary condition at z = f , we
get: ∫ f+h

f
∂αuαdz = ∂α

(∫ f+h

f
uαdz

)
− uα(t, x, y, f + h)∂α(f + h), ∀α ∈ {x, y}

Combining the previous relation with the transport equation (15) at the zeroth order, and
replacing in (42) at z = f + h, leads to:

∂th+ div‖

(∫ f+h

f
u‖dz

)
= we

By replacing in the previous equation u‖ = −g∇‖(f+h) by its expression where g is given
in (40), depending only upon h, we obtain, after rearrangements, the following conservative
equation for h:

∂th− div‖
{
µ̃(h, |∇‖(f + h)|) ∇‖(f + h)

}
= we in ]0,+∞[×Ω (43)

Here, µ̃ denotes a diffusion coefficient, defined for all h, ξ ∈ R+ by:

µ̃(h, ξ) =


(
Da‖ −

Bip,‖

ξ

)[(
h− Bi

ξ −Da−1
‖ Bip,‖

)
−Da1/2

‖ tanh
(
Da
−1/2
‖ hc(h, ξ)

)]
when hc(h, ξ) > 0,

0 otherwise.
(44)

This expression contains three parameters: Bi from the dimensionless Bingham model
and Bip,‖ and Da‖ from the dimensionless Darcy source term added in the momentum
equation. The no-slip velocity condition at the lateral boundaries leads to an homogeneous
Neumann boundary condition:

∂(f + h)

∂n
= 0 on ]0,+∞[×∂Ω (45)

where ∂/∂n = n.∇‖ and n denotes the outward unit normal on ∂Ω in the Oxy plane.
Recall the initial condition:

h(t=0) = hinit in Ω (46)

The reduced problem writes: find h(t, x, y), defined for all t > 0 and (x, y) ∈ Ω and
satisfying (43), (45) and (46).

Notice that, for a Newtonian flow (Bi = 0), expression (44) simplifies as:

µ̃(h, ξ) = Da‖

[
h−Da1/2

‖ tanh
(
Da
−1/2
‖ h

)]
.
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Remark that the present model with porous zone is consistent with the model without
porous zone developed in [5] (i.e. when Da−1

‖ = 0 and Bip,‖ = 0). Indeed, the expression
of µ is then obtained by assuming that Bip,‖ = 0 and by using a truncated expansion in

r = Da
−1/2
‖ . Note hc = hc,0 + rhc,1 + r2hc,2 + r3hc,3 + r4hc,4 + o(r4). The relation (37)

leads to the following limited development of hc :

hc = hc,0 −
Bih2

c,0

2
∣∣∇‖(f + h)

∣∣r2 +
Bih3

c,0

24
∣∣∇‖(f + h)

∣∣
(

13Bi∣∣∇‖(f + h)
∣∣ − h

)
r4 + o(r4)

where hc,0 = h− Bi∣∣∇‖(f + h)
∣∣ . The expansion at order 4 is necessary to obtain that of µ̃

at order 2, which is:

µ̃(h, ξ) =


(2hξ +Bi) (hξ −Bi)2

6 ξ3
+ r2Bi(hξ −Bi)3(hξ − 13Bi)

2ξ5
+ o(r2) when hc > 0,

0 otherwise.

By taking the limit when r tends to zero, we find back the formula (25) given in [5] for
the Bingham case (n = 1).

2.5 The final reduced problem

Going back to dimensional variable, the zeroth order equation (43) for the height h writes:

∂th−
(
ρg

η

)
div‖

{
µ
(
h, |∇‖(f + h)|

)
∇‖(f + h)

}
= we in ]0,+∞[×Ω, (47)

where µ denotes a diffusion coefficient, defined for all h, ξ ∈ R+ by:

µ(h, ξ) =


(
κ‖ −

τy
√
κ‖φ

ρgα‖ξ

)[(
h−

τyα‖
√
κ‖

ρg
√
κ‖ξ −

√
φτy

)
−√κ‖ tanh

(
hc(h, ξ)√

κ‖

)]
when hc(h, ξ) > 0,

0 otherwise,

and where

hc(h, ξ) =

 0 when h
(
ρg
√
κ‖α‖ξ −

√
φτy

)
6 τy

G−1
h,ξ(0) when h

(
ρg
√
κ‖α‖ξ −

√
φτy

)
> τy

where forall z ∈]0, h] and h, ξ in R+ the function G satisfies:

Gh,ξ(z) =
√
κ‖α‖τy cosh

(
z
√
κ‖

)
+ (z − h)

(√
κ‖α‖ρgξ −

√
φτy

)
.
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The equation (47) is completed by the boundary condition:

∂(f + h)

∂n
= 0 on ]0,+∞[×∂Ω

and the initial condition:
h(t=0) = hinit in Ω.

The others unknowns p, u, τ and fp can be explicitly expressed from h. The pressure
directly expresses from h from the equation (22):

p(t, x, y, z) = ρg (f(x, y) + h(t, x, y)− z) .

Likewise, from (40), the horizontal velocity u‖ = (ux, uy) writes u‖ = −g(z)∇‖(f + h)
with:

g(z) =



ρg

η

(
τy
√
κ‖φ

ρgα‖ξ
− κ‖

)
cosh

(
f + hc − z√

κ‖

)

cosh

(
hc√
κ‖

) − 1

 when z ∈ [f, f + hc],

ρg

η

(
τy
√
κ‖φ

ρgα‖ξ
− κ‖

)
1− cosh

(
hc√
κ‖

)

cosh

(
hc√
κ‖

)
 when z ∈ ]f + hc, f + h].

From (42) and the previous expression of u‖, the vertical velocity can be computed as:

uz = we − div‖

(∫ z

f
u‖ dz

)
.

From (16) and the previous expressions of u‖ and uz, the components of the tensor τ
write:

ταz =

[
τy∣∣∂zu‖∣∣ + η

]
∂zuα, ∀α ∈ {x, y},

ταβ =

[
τy∣∣∂zu‖∣∣ + η

]
(∂βuα + ∂αuβ) , ∀α, β ∈ {x, y},

τzz = 2

[
τy∣∣∂zu‖∣∣ + η

]
∂zuz,

when z ∈ [f, f + hc] and ∣∣τ ‖∣∣ 6 τy, otherwise.
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Finally, from (17), the Darcy’s force writes:

fp,‖ = −
(
τy
√
κ‖φ

κ‖α‖
∣∣u‖∣∣ +

η

κ‖

)
u‖,

for the horizontal components and

fp,z = −
(
τy
√
κ‖φ

κ⊥α‖
∣∣u‖∣∣ +

η

κ⊥

)
uz,

for the vertical component, when hc > 0, and

∣∣fp,‖∣∣ 6 τy
√
κ‖φ

κ‖α‖
when hc = 0.

3 Numerical method

3.1 A new dimensionless formulation

The nonlinear parabolic problem is first discretized in time by a full implicit second order
variable step scheme. At each time-step, the subproblem is linearized by a Newthon
algorithm. The resulting subproblems are discretized in space by a finite element method.
From a computational point of view, it is convenient to consider a new dimensionless
formulation. This second dimensionless procedure differs from the previous one as ε does
no more appears in the zeroth order problem: the new dimensionless quantities are denoted
with an hat. Let H be a characteristic length of the problem and let:

ĥ =
h

H
, x̂ =

x

H
, ŷ =

y

H
, ẑ =

z

H
, t̂ =

t

T
, f̂ =

f

H
, ŵe =

we
U

where T =
η

ρgH
represents a characteristic time and U =

ρgH2

η
a characteristic velocity.

After variable substitution, we obtain the following zeroth order dimensionless equation:

∂t̂ĥ− d̂iv‖

{
µ̂
(
ĥ,
∣∣∣∇̂‖(f̂ + ĥ)

∣∣∣) ∇̂‖(f̂ + ĥ)
}

= ŵe in ]0,+∞[×Ω̂

where µ̂ is given by (44) by replacing Da‖, Bi and Bip,‖ by the following new dimensionless
numbers:

D̂a‖ =
κ‖

H2
, B̂i =

τy
ρgH

, B̂ip,‖ =

√
κ‖φ

Hα‖
B̂i.

As we now only consider this dimensionless problem, and since there is no ambiguity, we
omit the hat for all the quantities and also for the dimensionless numbers.
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3.2 A second order implicit time scheme

Let (tm)m>0 the discrete times and ∆tm = tm+1 − tm, m > 0 the corresponding time
steps. As the observed solutions decrease exponentially to an arrested state, we choose a
geometric progression for the time step ∆tm+1 = θ∆tm where θ > 1 and ∆t0 are given.

The time derivative is approximated by the following backward second order variable step
finite difference scheme (BDF2), defined for all ϕ ∈ C0 by:

∂ϕ

∂t
(tm+1) =

2∆tm + ∆tm−1

∆tm(∆tm + ∆tm−1)
ϕ(tm+1)− ∆tm + ∆tm−1

∆tm∆tm−1
ϕ(tm)

+
∆tm

(∆tm + ∆tm−1)∆tm−1
ϕ(tm−1) +O(∆t2m + ∆t2m−1).

The approximate solution sequence (hm)m>0, hm ≈ h(tm), is defined recursively, for all
m > 1 by:

(P )m: hm−1 and hm being known, find hm+1 such that:

αmh
m+1 − div‖

{
µ
(
hm+1,

∣∣∇‖(f + hm+1)
∣∣)∇‖(f + hm+1)

}
= gm + we in Ω (48a)

∂(f + hm+1)

∂n
= 0 on ∂Ω (48b)

where

αm =
2∆tm + ∆tm−1

∆tm(∆tm + ∆tm−1)

gm =
∆tm + ∆tm−1

∆tm∆tm−1
hm − ∆tm

(∆tm + ∆tm−1)∆tm−1
hm−1

The sequence is initiated by h−1 = h0 = hinit for m = −1 and 0, respectively and stopped
when ||(∂h∂t )m||L2 < ε where (∂h∂t )m is the approximation by means of the BDF2 scheme of
∂h
∂t (tm) and ε is a tolerance that we fixe at 10−12 for all our simulations.

3.3 Newton algorithm

The initial time-dependent nonlinear parabolic problem is transformed as a sequence of
nonlinear subproblems. It proposed in [5] an under-relaxed fixed point algorithm. We
present here a new more efficiently Newton algorithm.

Define for all m > 0 and for all h ∈ R+ the function Fm:

Fm(h) = αmh− div
(
µ
(
h,
∣∣∇‖(f + h)

∣∣)∇‖(f + h)
)
− (gm + we).

The problem (48) can be equivalently reformulate by using the function Fm:
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(P )m: hm−1 and hm being known, find hm+1 such that:

Fm(hm+1) = 0, dans Ω,

∂(f + hm+1)

∂n
= 0, sur ∂Ω.

The Newton algorithm writes:

Algorithm 1 (Newton).

• k = 0 : ϕ(0) := hm.

• k > 1 : ϕ(k) known, find δϕ(k) such that:

F ′m

(
ϕ(k)

)
δϕ(k) = −Fm

(
ϕ(k)

)
,

• calculate explicitly:
ϕ(k+1) := ϕ(k) + δϕ(k),

where F ′m denotes the Fréchet derivative of Fm.

Note ψ : R −→ R2; h 7→
(
h,
∣∣∇‖(f + h)

∣∣) and ζ : R −→ R; h 7→ µ ◦ ψ(h). With
these notations, Fm(h) = αmh− div (ζ(h))∇‖(f +h))− (gm +we). Start by calculate the

Fréchet derivative of ζ. For all h ∈ R+, δh ∈ R+ : ψ′(h)(δh) =

(
δh,

∇‖(f + h).∇‖(δh)∣∣∇‖(f + h)
∣∣

)
.

Likewise, for all h ∈ R+, ξ ∈ R+ : δZ ∈ (R+)2, µ′(h, ξ)(δZ) = ∇µ(h, ξ).δZ. Finally,
according to the rules of the derivative of the composition of functions:

ζ ′(h)(δh) = µ′(h, ξ) ◦ ψ′(h)(δh)

= ∇µ(h, ξ).

(
δh,

∇‖(f + h).∇‖(δh)∣∣∇‖(f + h)
∣∣

)
,

with ∇µ(h, ξ) =

(
∂µ

∂h
,
∂µ

∂ξ

)
(h, ξ) where

∂µ

∂h
(h, ξ) =

(
Da‖ −

Bip,‖

ξ

)1− ∂hc
∂h

(h, ξ)
1

cosh2
(
Da
−1/2
‖ hc

)
 ,

∂µ

∂ξ
(h, ξ) =

(
Da‖ −

Bip,‖

ξ

) Bi

(ξ −Da−1
‖ Bip,‖)2

− ∂hc
∂ξ

(h, ξ)
1

cosh2
(
Da
−1/2
‖ hc

)


+
Bip,‖

ξ2

((
h− Bi

ξ −Da−1
‖ Bip,‖

)
−Da1/2

‖ tanh
(
Da
−1/2
‖ hc

))
.
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The partial derivatives of hc are obtained from the relation on hc (37):

∂hc
∂h

=
ξ −Da−1

‖ Bip,‖

Da
−1/2
‖ Bi sinh

(
Da
−1/2
‖ hc

)
+ ξ −Da−1

‖ Bip,‖

=
1

Da
−1/2
‖ tanh

(
Da
−1/2
‖ hc

)
(h− hc) + 1

,

∂hc
∂ξ

=
h− hc

Da
−1/2
‖ Bi sinh

(
Da
−1/2
‖ hc

)
+ ξ −Da−1

‖ Bip,‖

=
h− hc(

ξ −Da−1
‖ Bip,‖

)(
Da
−1/2
‖ tanh

(
Da
−1/2
‖ hc

)
(h− hc) + 1

) .
Finally, by using these partial derivatives and the relation (37) once again:

∂µ

∂h
(h, ξ) =

(
Da‖ −

Bip,‖

ξ

) Da
−1/2
‖ tanh

(
Da
−1/2
‖ hc

)
(h− hc) + tanh2

(
Da
−1/2
‖ hc

)
Da
−1/2
‖ tanh

(
Da
−1/2
‖ hc

)
(h− hc) + 1

,

∂µ

∂ξ
(h, ξ) =

Da‖(h− hc)
ξ

Da
−1/2
‖ tanh

(
Da
−1/2
‖ hc

)
(h− hc) + tanh2

(
Da
−1/2
‖ hc

)
Da
−1/2
‖ tanh

(
Da
−1/2
‖ hc

)
(h− hc) + 1

+
Bip,‖

ξ2

((
h− Bi

ξ −Da−1
‖ Bip,‖

)
−Da1/2

‖ tanh
(
Da
−1/2
‖ hc

))
.

Write now the explicit strong formulation of the linear tangent problem (LT):

� (LT) Let ϕ know, find δϕ defined on Ω such that

αmδϕ− div

(
µ
(
ϕ,
∣∣∇‖(f + ϕ)

∣∣)∇‖δϕ+
∂µ

∂h

(
ϕ,
∣∣∇‖(f + ϕ)

∣∣) δϕ∇‖(f + ϕ)

+
∂µ

∂ξ

(
ϕ,
∣∣∇‖(f + ϕ)

∣∣)∇‖(f + ϕ) ·∇‖δϕ∣∣∇‖(f + ϕ)
∣∣ ∇‖(f + ϕ)

)
= −Fm

(
ϕ(k)

)
∂(f + δϕ)

∂n
= 0 on ∂Ω.

This linear subproblem is completely standard and is efficiently solved by a piecewise
quadratic finite element method, as provided by the Rheolef library [33]. The numerical
solution is obtained by solving the linear tangent problem in this weak form (WLT):

� (WLT) find δϕ ∈W 1,∞(Ω) such that:

a1(ϕ; δϕ, δχ) = l1(δχ), ∀δχ ∈W 1,∞(Ω),
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where a1(.; ., .) and l1(.) are defined for all ϕ, δϕ, δχ in W 1,∞(Ω) by:

a1(ϕ; δϕ, δχ) =

∫
Ω

(
αmδϕδχ+ µ

(
ϕ,
∣∣∇‖(f + ϕ)

∣∣)∇‖δϕ ·∇‖δχ
+
∂µ

∂h

(
ϕ,
∣∣∇‖(f + ϕ)

∣∣) δϕ∇‖(f + ϕ) ·∇‖δχ

+
∂µ

∂ξ

(
ϕ,
∣∣∇‖(f + ϕ)

∣∣) 1∣∣∇‖(f + ϕ)
∣∣(∇‖(f + ϕ) ·∇‖δϕ)(∇‖(f + ϕ) ·∇‖δχ)

)
dx,

l1(δχ) = −
∫

Ω
rδχ dx.

Note, for all ϕ ∈ R+ and ξ ∈ R2:

β(ϕ, ξ) =
∂µ

∂h
(ϕ, |ξ|)ξ,

k(ϕ, ξ) =
(
µ(ϕ, |ξ|)I2 +

∂µ

∂ξ
(ϕ, |ξ|) 1

|ξ|ξ ⊗ ξ
)
,

where I2 is the identity matrix 2× 2. Thus a1 can be written with a more compact form:

a1(ϕ; δϕ, δχ) =

∫
Ω
αmδϕδχ+

(
δϕβ (ϕ,∇‖(f + ϕ)) + k(ϕ,∇‖(f + ϕ))∇‖δϕ

)
·∇‖δχ dx.

4 Results and discussion

4.1 Comparison with the Vasilic’s experiment [39]
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Figure 2: Views of the flow height along the container: (a) Flow heights at different times
t = 3 s, 6 s, 9 s, 12 s and the final time tf ≈ 1057 s (obtained from BDF2 algorithm
and the stopping condition); (b) comparison of the final height between present model
and both observations and 3D simulations from [39]. The grey band represent the porous
zone.
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The Vasilic’s experiment results are taken from [39]. During the experiment, 12 liters of
Carbopol gel are slowly poured into a 20 x 20 x 60 cm transparent container. An array
of d = 3 mm cylindrical steel bars is located in the middle zone and spaced of 19 mm in
the two horizontal directions. The yield stress of this material was measured to be 15 Pa,
while its plastic viscosity was measured to be around 1 Pa·s. The obtained value for the
horizontal permeability components is κ‖ = 6.34 · 10−5 m2 and α‖ = 1.5 for the horizontal
shift factor. The material flow through the funnel is replaced is our simulations by an
equivalent injection. The total volume is injected with a supply rate of Q during a time
te by means of an imposed vertical speed we through a vent. Assumme a circular vent
with radius re cm center at the origin and a second order polynomial speed we versus the
radius in the vent which writes:

we(t, r) =


2Q

πr4
e

(r2
e − r2)+ if t 6 te,

0 if t > te.
(50)

The values used in simulations are Q = 1 l/s, re = 5 cm and te = 12 s.

Fig. 2 (a) shows the shape of the flow at different times. Observe that the porous zone
has an effect on the spreading. After 12 s, the flow is not anymore supplied, it is slowly
still moving until the stoppage. Fig. 2 (b) compares our results with both laboratory
experiments and 3D simulations from [39], using a regularized Bingham model. Results are
shown at the final arrested state. Notice that, neglecting lateral wall effects, our problem
here still reduces to a 1D time dependent one. Observe good quantitative agreement of the
present approach with both experimental observations and 3D simulations, especially for
the slop of the flow front within the porous zone. The discrepancies that can be observed
before and after the porous zone, might be result of wall effect during the experiment.

4.2 Flow on a sloped plan for different porous mediums characteristics

We present here results for a new numerical experiment. Differents simulations have been
made for a flow injected on an inclined plan and which crossing a porous zone. The
rheological parameters used are η = 1 Pa·s and τy = 20 Pa. Two angles of inclinaison
have been employed: θ = 5◦ and θ = 10◦. Differents porous medium configurations
have been investigated. Their characteristics have been defined from different geometrical
configurations of periodic array of vertical cylinders. By noting d the diameter of the
cylinders, M the distance which them separates and X = M/d the relative distance, the
porosity value is φ = 1− a/(1 +X)2 where a is the fiber arrangement, a = π/4 for square
packing and a = π/(2

√
3) for hexagonal packing. The permeability can be computed

by numerical simulation using Newtonian fluid as proposed in [40] or approximated by a
formula like the law of Tamayol and Bahrami [38] where the horizontal permeability is a
function of the porosity and the fiber arrangement:
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κ‖(φ) = d2 0.16 a

(
1−

√
(1− φ)/a

)3

(1− φ)
√
φ

.

The simulations have been realised for a square packing (a = π/4) of d = 3 mm cylinders.
The total injected volume is 6 liters by means of an imposed vertical speed we following
the law (50) shown in the previous section with a supply rate of Q = 1 l/s, a vent radius
re = 5 cm and an injection duration te = 6 s.

The Fig. 3 gives a qualitative comparison of the final state after the stoppage for two
simulations, with an angle of θ = 5◦ and in (a) without porous zone (denoted by the label
X = ∞) and in (b) with X = 6. The permeability is calculated by the Tamayol and
Bahrami’s law. We clearly observe that the presence of a porous zone change completely
the shape of the flow.

(a) X =∞ (b) X = 6

Figure 3: Comparative 3D views for θ = 5◦ and (a) X = ∞ (without obstacles) and (b)
X = 6. The white zone on (b) represents the porous zone.

For a more quantitative comparison, the final height along the symmetry line and the final
front contours for a range of relative distances X are shown on the Fig. 4. We observe
on Fig. 4 that more the distance between obstacle is high, more the flow is close to the
case without obstacles (X = ∞). When the distance decreases, we observe by the front
views on Fig. 4 (a) and (b) that the flow spreads more laterally and less in the slop
direction. Observe on 4 (c) and (d) that a higher thickness of fluid piles up in the porous
zone. We can conclude from the Fig. 4 that the presence of a porous zone has a limiting
effect on the spatial flow propagation by widening the spreading on the lateral sides and
by accumulating more volume of fluids per unit surface.

The Fig. 5 shows the maximum flow advance xmax(t) in the slop direction versus real
physical time for several relative distances X. We observe that the presence of porous
zone has also an delaying effect by slowing the flow in the slop direction.
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(a) θ = 5◦ (b) θ = 10◦
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Figure 4: Comparative views for different relatives distances between obstacles X =
6, 12, 24,∞ of the final front contours in (a) for θ = 5◦ and in (b) for θ = 10◦ and
the final heights along the symmetry line in (c) for θ = 5◦ and in (d) for θ = 10◦. The
grey band represent the porous zone and the dot �•� the center of the injection.

5 Conclusion

A new reduced model has been developed for laminar shallow viscoplastic fluids flowing
on a general topography and crossing an array of vertical obstacles. The model includes
two mathematical reductions. The first reduction replaces the obstacles zone by a fibrous
media using an extended tensor form of the Brinkman equations for the Bingham rheo-
logical behaviour. The second reduction in the vertical direction bases on an asymptotic
analysis based on the shallow-depth approximation. An efficient numerical resolution us-
ing the BDF2 algorithm for time-discretization and a Newton algorithm for nonlinearities
have been developed in Section 3. The sequence of linear subproblems are solved by a
finite element method. Finally, two numerical applications are detailed. A comparison
with the measurements and 3D-simulations of [39] shows that the present results are in
a good quantitative agreement. The advantage with the present reduced model is that
the computational-time took few minutes for simulations instead a few hours for 3D-
simulations from [39]. We propose also a numerical benchmark concerning the flow of a
Bingham fluid over an inclined plane which pass through a fibrous media. The simulations
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Figure 5: Evolution in time of the maximum flow advance for several relative distances
X = 6, 12, 24,∞ with a slop θ = 5◦ in (a) and θ = 10◦ in (b). The grey band shows the
passage of the front into the porous zone. The supply duration is te = 6 s.

produced for a range of obstacle densities showed the ability of a porous zone to limit the
spatial flow advance and to delay it. This suggests to reproduce this study experimentally
and compare with the present results. Other further work would be to extend the asymp-
totic analysis presented here for Bingham material to Herschel-Bulkley one. For natural
applications such as volcanic lava flows through forest, perspectives will be to include
complex topographies and thermal effects as developed before in [6] and to integrate new
thermal effects specific to the trees burning. In this regard, volcanoes are often vegetated,
and ingress of lava into such zones will dry, ignite and burn vegetation, and can encase
trees in lava to create vertically-oriented solid objects known as “lava trees” [17,26].
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