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§University of Maryland, College Park 20742, USA
¶Tampere University of Technology, Korkeakoulunkatu 10, 33720 Tampere, Finland

Abstract—Current trends in high performance and embedded
computing include design of increasingly complex hardware
architectures with high parallelism, heterogeneous processing
elements and non-uniform communication resources. In order
to take hardware and software design decisions, early evalua-
tions of the system non-functional properties are needed. These
evaluations of system efficiency require Electronic System-Level
(ESL) information on both the algorithms and the architecture.

Contrary to algorithm models for which a major body of work
has been conducted on defining formal Models of Computation
(MoCs), architecture models from the literature are mostly em-
pirical models from which reproducible experimentation requires
the accompanying software. In this paper, a precise definition
of a Model of Architecture (MoA) is proposed that focuses
on reproducibility and abstraction and removes the overlap
previously existing between the notions of MoA and MoC. A
first MoA, called the Linear System-Level Architecture Model
(LSLA), is presented. To demonstrate the generic nature of the
proposed new architecture modeling concepts, we show that the
LSLA Model can be integrated flexibly with different MoCs.

LSLA is then used to model the energy consumption of a
State-of-the-Art Multiprocessor System-on-Chip (MPSoC) when
running an application described using the Synchronous Dataflow
(SDF) MoC. A method to automatically learn LSLA model
parameters from platform measurements is introduced. Despite
the high complexity of the underlying hardware and software,
a simple LSLA model is demonstrated to estimate the energy
consumption of the MPSoC with a fidelity of 86%.

Index Terms—modeling, architecture, hardware/software co-
design, performance optimization, design space exploration, sys-
tem on chip, multiprocessor SoC, power modeling and estimation.

I. INTRODUCTION

In the 1990s, models of parallel computation such as the
ones over-viewed by Maggs et al. in [1] were designed
to comprehensively represent a system including hardware
and software-related features. Since the early 2000s, rapid
prototyping initiatives like the Algorithm-Architecture Match-
ing (AAA) methodology [2] have fostered the separation of
algorithm and architecture models in order to automate the
Design Space Exploration (DSE). Separation of concerns plays
a major part in mitigating the design complexity of systems. In
particular, the design productivity of Cyber-Physical Systems

(CPS), hampered by intricate hardware, application, and exter-
nal constraints [3], calls for innovative model-based methods.

Several levels of abstraction exist to model a hardware
architecture, ranging from the transistor model level to logic
gate level, register transfer level, and transaction level. The
unprecedented complexity of current systems, embedding bil-
lions of transistors, has led to the creation of a higher level of
abstraction named Electronic System-Level (ESL) [4]. ESL
methods empower designers to perform early analysis and
DSE through coarse grain modeling. The added value of
ESL methods is testified by company products such as SLX
Explorer from Silexica [5] or Pareon from Vector Fabrics [6]
whose aims include providing early system efficiency figures.

At the ESL level, the system is decomposed into a be-
havioral model, expressed with a MoC, and an architecture
description, expressed with an MoA [4]. We have proposed
in [7] the first precise definition of an MoA removing the
existing overlap between the concepts of an MoA and a MoC.
Moreover, the LSLA MoA has been introduced in [7] and
shown to be the only model fully respecting the proposed
definition of an MoA, i.e. the only architecture model capa-
ble of providing a reproducible computation of an abstract
efficiency cost from an application model respecting a MoC.
One may note a difference between system performance and
system efficiency. In computer science, performance is often
a synonym of throughput [8], [9]. However, system design
requires decisions based on many non-functional costs such
as memory, energy, latency, or area. In order to evaluate non-
functional costs, an MoA must represent the internal behavior
of an architecture at a high level of abstraction while offering
an evaluation accurate enough to take early design decisions.

Contributions: As an extension of [7], this paper puts
MoAs into practice for modeling the energy consumption of
an MPSoC. After defining the concepts of MoA and LSLA,
the paper covers two new aspects of MoAs: first, a new
method is introduced to learn an MoA from measurements of a
studied platform; then, the LSLA MoA is shown to predict the
energy consumption of a modern MPSoC executing a complex
application. This paper demonstrates that, additionally to their
formal interest, LSLA, and more generally MoAs, can be
applied in practice to evaluate the efficiency of a system.



2

The paper is organized as follows: Sections II and III intro-
duce the context and related work of MoAs. Then, the LSLA
MoA is defined in Section IV and its cost computation mech-
anism is demonstrated. In Section V, a method is proposed to
learn an LSLA model from platform measurements. Finally,
the method is applied in Section VI to model the energy
consumption of an MPSoC executing a SDF application.

II. THE CONTEXT OF MODEL-BASED DESIGN

MoAs complement the work on MoCs in providing pre-
cise semantics for the second input of the Y-chart design
method [10]. The Y-chart separates the description of an
application from the one of an architecture, as illustrated in
Figure 1 where algorithm descriptions, conforming to a precise
MoC are combined with architecture descriptions conforming
to an MoA. The objective of this paper is to sketch the
contours of MoAs as the architectural counterparts of MoCs.
This section introduces the MoCs used in Section IV-B to
demonstrate the cost computing capability of the proposed
LSLA MoA.

Model of ArchitectureModel ofComputation Algorithm Architecture

Mapper and Simulator

efficiency metrics

conform to conform to

redesign redesign

Fig. 1: MoC and MoA in the Y-chart [10].

Many MoCs have been designed to represent the behavior
of a system. The Ptolemy II project [11] has a considerable
influence in promoting MoCs with precise semantics. Different
families of MoCs exist such as finite state machines, pro-
cess networks, Petri nets, synchronous MoCs and functional
MoCs [12]. The LSLA MoA discussed in this paper is demon-
strated with both dataflow MoCs and the Bulk Synchronous
Parallel (BSP) MoC for their capacity to represent parallel
computation. Section II-A presents a static and a dynamic
dataflow models while Section II-B introduces the BSP MoC.

A. Dataflow Models of Computation (MoCs)

A dataflow MoC represents an application behavior with
a graph where vertices, named actors, represent computation
and exchange data through First In, First Out data queues
(FIFOs). The unitary exchanged data is called a data token.
Computation is triggered when data present on the input
FIFOs of an actor respects a set of conditions called firing
rules. Dataflow MoCs constitute an important class of MoCs
targeting the modeling of streaming applications. Dozens of
different dataflow MoCs have been explored [13] and this di-
versity of MoCs demonstrates the benefit of precise semantics
and reduced model complexity. To draw a parallel between
MoCs and MoAs, the SDF, EIDF and CFDF dataflow MoCs
are presented in the next sections.

a) Synchronous Dataflow (SDF): SDF [14] is the most
commonly used dataflow MoC [15]. SDF has a limited ex-
pressivity and an extended analyzability. Production and con-
sumption token rates set by firing rules are fixed scalars. Static
analysis is applied on an SDF graph to determine whether
or not fundamental consistency and schedulability properties
hold. Such properties, when they are satisfied, ensure that an
SDF graph can be implemented with deadlock-free execution
and FIFO memory boundedness. An SDF graph (Fig. 2) is
defined as G = 〈A,F 〉 where A is the set of actors, and
F is the set of FIFOs. For an SDF actor, a positive-integer-
valued data rate is specified for each port by the function
rate : P in

data ∪ P out
data → N∗ where N∗ is the set of strictly

positive natural numbers, P in
data is the set of all input ports

for an actor and P out
data is the set of all output ports for an

actor. These rates correspond to the fixed firing rules of an
SDF actor. A delay d : F → N, where N is the set of natural
numbers, is set for each FIFO f ∈ F , corresponding to a
number of tokens present initially.

A1 Actor

FIFO

Port name
and rate A1 A2

p: 1 p: 1
pi: 2

fi: 4 fo: 4

A3po: 6
p: 3

*4*4
Delay and
number of tokens

Fig. 2: Example of an SDF Graph.

If an SDF graph is consistent and schedulable, a fixed se-
quence of actor firings, called graph iteration, can be repeated
indefinitely to execute the graph, and there is a well defined
concept of a minimal sequence for achieving an indefinite
execution with bounded memory. The notion of graph iteration
is used to compute the cost of mapping an SDF algorithm
model on an LSLA architecture model in Section IV-B1.

b) The Enable-Invoke Dataflow (EIDF) and Core Func-
tional Dataflow (CFDF) MoCs: EIDF is a highly expressive
form of dataflow MoC that is useful for implementing and
analyzing a wide variety of specialized dataflow MoCs [16].
While specialized models such as SDF are useful for ex-
ploiting specific characteristics of targeted application domains
(e.g., see [17]), the more flexibly-oriented MoC EIDF is useful
for integrating and interfacing different forms of dataflow, and
providing tool support that spans heterogeneous applications,
subsystems, or platforms. In EIDF, the behavior of an actor is
decomposed into a set of mutually exclusive actor modes such
that each actor firing operates according to a mode, and at the
end of each actor firing, the actor determines a next mode set
specifying the set of possible modes according to which the
next actor firing can execute. The production or consumption
rate for each port is constant for a given actor mode. However,
the dataflow behavior for the same port may differ for different
actor modes, which allows for specifying dynamic dataflow
behavior. An EIDF graph is defined as G = 〈A,F 〉 and
notations used to denote actors, FIFOs, and data ports are
identical to these defined in the SDF MoC.

This paper uses a restricted form of EIDF called core
functional dataflow (CFDF) (Fig. 3a). CFDF requires that
the next mode set that emerges from any actor firing contain
exactly one mode [18]. This restriction ensures execution
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determinacy. The unique element (actor mode) within the next
mode set of a CFDF actor firing is referred to as the next mode
associated with the firing. Dataflow attributes of a CFDF actor
can be characterized by a CFDF dataflow table (Figures 3b
and 3c). The rows of the table correspond to the different
actor modes, and the columns to the different actor ports.
Given a CFDF actor A, we denote the dataflow table for A
by TA. If m is a mode of A and p is an input port of A, then
TA[m][p] = −κ(m, p), where κ(m, p) denotes the number of
tokens consumed from p in mode m. Similarly, if q is an
output port of A, then TA[m][q] = ρ(m, q), where ρ(m, q)
represents the number of tokens produced onto q in mode m.
κ(m, p) and ρ(m, q) are constant values.

X Actor

FIFO

X YPort:p1

Port:p2

(a) Example of a CFDF graph.

(b) Dataflow table for actor X. (c) Dataflow table for actor Y.

(d) Mode transition graph
for actor X.

(e) Mode transition graph
for actor Y.

Fig. 3: Dataflow attributes of an example CFDF graph.

Mode transition behavior for a CFDF actor can be repre-
sented by a mode transition graph (Figures 3d and 3e). Given
a CFDF actor A, the mode transition graph for A, denoted
MTG(A) is a directed graph in which the vertices are in
one-to-one correspondence with the modes of A. The edge
set of MTG(A) can be expressed as {(x, y) ∈ VA × VA |
y ∈ µA(x)}, where VA represents the set of vertices in
MTG(A), and µA(x) is the set of possible next modes for
actor x. While production and consumption rates for CFDF
actor modes cannot be data-dependent, the next mode can be
data-dependent, and therefore, µA(x) can in general have any
positive number of elements up to the number of modes in A.

The combination of CFDF and LSLA to compute an im-
plementation efficiency will be discussed in Section IV-B2.

B. The Bulk Synchronous Parallel MoC

Another example of an MoC for parallel computation is the
Bulk Synchronous Parallel (BSP) [19] MoC. BSP splits up
an application into several phases called supersteps. A BSP
computation is composed of a set of components A called
agents in this paper to distinguish them from the Processing
Elements (PEs) in an MoA. Each agent γ ∈ Γ has its own
memory. An agent γ can access the memory of another agent
δ through a remote access (message) r(γ, δ) via a so-called
router. The computation execution happens in a series of
supersteps indexed by σ ∈ N and consisting of processing

efforts, remote accesses and a global synchronization s(σ).
An example of a BSP algorithm model is illustrated in Fig. 4.

α Agent α β γ δ ε

Memory

Router
time

Remote
access

Superstep

α1

β1

γ1
δ1

ε1

α2
β2

γ2
δ2

ε2

α3

β3

γ3
δ3

α1
Firing of α in
superstep 1

Synchronization

ε3

Fig. 4: Example of a BSP Representation.

Each agent γ executes the processing effort γσ during
the superstep σ. The processing effort γσ requires a time
w(γσ) ∈ N to be processed. During the superstep σ, an agent
sends or receives at most hσ ∈ N∗ remote accesses, each
access transferring one atomic data from one agent to another.
A barrier synchronization follows each superstep, ensuring
global temporal coherency before starting the superstep σ+1.

BSP provides time performance evaluation for a superstep.
A lower bound for the time of a superstep is computed by:

Tσ = max
0≤γ<card(Γ)

w(γσ) + hσ × g + s (1)

where card(Γ) is the number of agents, g is the time to
execute one atomic remote transfer, and s is a fixed time cost
associated to the synchronization. A superstep has a discrete
length n × L with n ∈ N and L the minimal period of
synchronization. The smaller L is chosen, the closer from the
lower bound Tσ the superstep time results.

This cost computation is limited to the latency efficiency
metric and assumes that communication costs for an agent are
additive. The combination of the BSP MoC and the LSLA
MoA will be explained in Section IV-B3, extending BSP cost
computation mechanisms.

C. Benefits Offered by MoCs
Each one of the previous MoCs is characterized by a specific

set of properties such as their expressiveness, dynamicity, an-
alyzability, or their decidability. Depending on the complexity
and constraints of the modeled application, a simple SDF
representation or a more complex EIDF or BSP representation
can be chosen. MoCs offer abstract representations of appli-
cations at different levels of abstraction. They can be used for
early system studies or system functional verification. MoCs
simplify the study of a system and, since they do not depend
on a particular syntax, they offer interoperability to the tools
manipulating them.

MoCs, by nature, do not carry hardware related information
such as resource limitations and hardware efficiency. In this
paper, we use the concept of MoA to complement MoCs in
the process of design space exploration.
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III. DEFINITION OF AN MOA AND RELATED WORK

A. Definition of Models of Architecture (MoAs)

The main goal of an MoA is to offer mathematically-
formulated, reproducible ways to evaluate at an ESL level
the efficiency of design decisions. Reproducibility means that
the model alone, without an associated implementation, is
sufficient to reproduce the cost computation. Following this
objective, we introduced a new definition of MoAs [7]:

Definition 1: A Model of Architecture (MoA) is an abstract
efficiency model of a system architecture that provides a
unique, reproducible cost computation, unequivocally assess-
ing a hardware efficiency cost when processing an application
described with a specified MoC.

An MoA does not need to reflect the real hardware archi-
tecture of the system. It aims to represent its efficiency at
a coarse granularity. As an example, a complete cluster of
processors in a many-core architecture may be represented by
a single Processing Element (PE) in its MoA representation,
hiding the internal structure of this PE. Hardware architecture
models at ESL level that have been proposed in the literature
do not comply with Definition 1 because they do not state a
cost computation procedure. These models, qualified as quasi-
MoAs in the rest of the paper, do not guarantee reproducible
cost computation. At the ESL level, operating system and
middleware may be abstracted together, as demonstrated on
an example in Section VI. MoAs can be used at all stages
of the system design process, from early steps (e.g. to define
how many hardware coprocessors are necessary) to late steps
(e.g. to optimize runtime scheduling). An MoA should be as
independent as possible from algorithm-related concerns. For
this purpose, application activity is defined in the next section
as an interface between a MoC and its executing MoA.

B. Application Activity as an Interface between MoC and MoA

As introduced in [7], the notion of application activity is
necessary to ensure the separation of MoC and MoA.

Definition 2: Application activity A corresponds to the
amount of processing and communication necessary for ac-
complishing the requirements of an application. Application
activity is composed of processing and communication tokens.

Definition 3: A quantum q is the smallest unit of application
activity. There are two types of quanta: processing quantum
qP and communication quantum qC .

Two distinct processing quanta are equivalent, thus represent
the same amount of activity. Processing and communication
quanta do not share the same unit of measurement. As an
example, in a system with a unique clock and Byte addressable
memory, 1 cycle of processing can be chosen as the processing
quantum and 1 Byte as the communication quantum.

Definition 4: A token τ ∈ TP ∪ TC is a non-divisible unit
of application activity, composed of a number of quanta. The
function size : TP ∪ TC → N associates to each token the
number of quanta composing the token. There are two types
of tokens: processing tokens τP ∈ TP and communication
tokens τC ∈ TC .

The activity A of an application is defined as the set:

A = {TP , TC} (2)

where TP = {τ1
P , τ

2
P , τ

3
P ...} is the set of processing to-

kens composing the application processing, and TC =
{τ1
C , τ

2
C , τ

3
C ...} is the set of communication tokens composing

the application communication. An example of a processing
token can be a run-to-completion task with static activity. The
task is composed of N processing quanta (e.g. N cycles).
An example of a communication token is a data message.
The token is composed of M communication quanta (e.g. M
Bytes). Using the two levels of granularity of a token and a
quantum, an MoA can reflect the cost of managing a quantum
and the overhead of managing a token composed of several
quanta. To be computed, application activity may require the
definition of a time scope and input data. These concerns are
discussed in Section VI-C4.

The activity definition in its present form is sufficient as
a basis for LSLA. Activity is generic to several families of
MoCs, as will be demonstrated in Section IV-B.

C. Related Work on MoAs

The concept of MoA is evoked in [20] where it is defined
as “a formal representation of the operational semantics of
networks of functional blocks describing architectures”. This
definition allows the concepts of MoC and MoA to overlap.
As an example, an SDF graph representing a fully specialized
system may be considered as a MoC because it formalizes the
application. It may also be considered as an MoA because
it fully complies with the definition from [20]. This is in
contrast to the orthogonalization between MoC and MoA
representations that is supported in our proposed modeling
framework. Table I references architecture models of abstract
heterogeneous parallel architectures. A general idea of the
level of abstraction of each model is given, as well as some
properties.

Model Abstr- Distributed Obj- Reprodu-
action Memory ectives cible cost

HVP [21] - - - no time no
UML Marte [22] - - yes multiple no

AADL [23] - yes time yes
[24] - yes multiple no
[25] + yes multiple yes
[26] + yes time no
[27] ++ yes multiple no

S-LAM [28] ++ yes time no
LSLA +++ yes abstract yes

TABLE I: Properties of different state of the art architecture
models.

High-level Virtual Platform (HVP) [21] is a virtual platform
based on SystemC. The MoC that can be coexplored by
HVP is the Communicating Processes one [29]. The HVP
platform virtually executes tasks and defines task automata
for managing the internal behaviour of application tasks over
time. A virtual platform differs from an MoA, as it builds a
functional platform rather than a formal model.

The Architecture Analysis and Design Language (AADL)
language [23] defines a syntax to describe both software and
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hardware components in a system with an objective of time
simulation. In contrast to this approach, MoAs offer abstract
features for describing hardware architectures and delegate
responsibility for modeling algorithms to MoCs.

UML MARTE [22] is a system modeling standard offering
a holistic approach encompassing all aspects of real-time
embedded systems. The standard consists of UML classes and
stereotypes. MARTE does not standardize how a cost should
be derived from the specified amount of hardware resources
and non-functional properties. Conversely, MoAs focus on
abstract cost computation and can be used in the context of
MARTE.

Castrillón and Leupers define in [24] a quasi-MoA that
represents an architecture with a graph G of PEs where
each edge interconnecting a pair of PEs is associated to
a Communication Primitive (CP). A CP is an application
programming interface that is used to communicate among
tasks. PEs and CPs have sets of properties. The model does
not comply with Definition 1 because it does not specify how
a cost should be computed from these properties.

In [26], Grandpierre and Sorel define a quasi-MoA for
message passing and shared memory data transfer simulations
of heterogeneous platforms. Memory sizes and bandwidths are
taken into account in the model. This model is also considered
as a quasi-MoA because cost computation is not specified.

The System-Level Architecture Model (S-LAM) [28] quasi-
MoA focuses on timing properties of a distributed system
and defines communication enablers such as Random Access
Memory (RAM) and Direct Memory Access (DMA). S-LAM
is focused on time modeling and does not provide a repro-
ducible cost computation procedure.

In [25], Kianzad and Bhattacharyya present the CHARMED
co-synthesis framework and its architecture model. The
CHARMED framework aims at optimizing multiple system
parameters represented in Pareto fronts. The model is com-
posed of a set of PEs and Communication Resources (CRs).
Each PE has a vector of attributes representing the area
and price of the processor, the size of data and instruction
memories, and the idle power consumption. Each CR also
has an attribute vector including the power consumption
per each unit of data, the idle power consumption, and the
worst case transmission rate. This model constitutes, to our
knowledge, the closest model to the concept of MoA as stated
by Definition 1. However, it does not abstract the computed
cost, limiting the model to the defined metrics.

Some architecture description languages have been voluntar-
ily omitted because they operate at a different level of abstrac-
tion than MoAs. For instance, VHDL is a language to model a
hardware behavior but its extreme versatility does not orientate
the designer towards a specific Model of Architecture. In
the next section, the LSLA MoA is explained. This model
provides simple semantics for computing an abstract cost from
the mapping of an application described with a precise MoC.

IV. THE LSLA MODEL OF ARCHITECTURE

A. LSLA Definition
LSLA composing elements are illustrated in Fig. 5. An

LSLA model is composed of Processing Elements, Communi-

cation Nodes and Links. LSLA is linear because the computed
cost is a linear combination of the costs of its components.

Link

PE Processing Element

CN Communication Node

10s+1 Per token cost
(s=size(token))

z
PE2

1s

x y

10s 1sPE110s+1

5s+1 PE4

PE3 2s+1

2s+1
λ=0.3

Fig. 5: LSLA MoA semantics elements.
Definition 5: The Linear System-Level Architecture Model

(LSLA) is a Model of Architecture (MoA) that consists of an
undirected graph Λ = (P,C, L, cost, λ) where:

• P is the set of architecture Processing Elements (PEs). A
PE is an abstract processing facility. A processing token
tP must be mapped to a PE p ∈ P to be executed.

• C is the set of architecture Communication Nodes (CNs).
A communication token tC must be mapped to a CN
c ∈ C to be executed.

• L = {(ni, nj)|ni ∈ C, nj ∈ C∪P} is a set of undirected
links connecting either two CNs or one CN and one PE. A
link models the capacity of a CN to communicate tokens
to/from a PE or to/from another CN.

• cost is a function associating a cost to different ele-
ments in the model. The cost unit is specific to the
non-functional property being modeled. It is in nJ in
the energy-centered study of Section VI. Formally, the
generic unit is denoted ν.

• λ ∈ R is a Lagrangian coefficient setting the Computation
to Communication Cost Ratio (CCCR), i.e. the cost of a
single communication quantum relative to the cost of a
single processing quantum.

On the example displayed in Fig. 5, PE1−4 represent Pro-
cessing Elements (PEs) while x, y and z are Communication
Nodes (CNs). As an MoA, LSLA provides reproducible cost
computation when the activity A of an application is mapped
onto the architecture. The cost related to the management of
a token τ by a PE or a CN n is defined by:

cost : TP ∪ TC × P ∪ C → R
τ, n 7→ αn.size(τ) + βn,

αn ∈ R, βn ∈ R
(3)

where αn is the fixed cost of a quantum when executed on
n and βn is the fixed overhead of a token when executed on
n. For example, in the use case developed Section VI, αn
and βn are respectively expressed in energy/quantum and
energy/token, as the cost unit ν represents energy. A token
communicated between two PEs connected with a chain of
CNs Γ = {x, y, z...} is reproduced card(Γ) times and each
occurrence of the token is mapped to 1 element of Γ. This
procedure is explained on different examples in Section IV-B.
In following figures representing LSLA architectures, the
size of a token size(τ) is abbreviated into s and the affine
equations near CNs and PEs (e.g. 10s+ 1) represent the cost
computation related to Equation 3 with αn = 10 and βn = 1.
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A token not communicated between two PEs, i.e. internal
to one PE, does not cause any cost. The cost of the execution
of application activity A on an LSLA graph Λ is defined as:

cost(A,Λ) =
∑
τ∈TP

cost(τ,map(τ))+
λ
∑
τ∈TC

cost(τ,map(τ))
(4)

where map : TP ∪ TC → P ∪ C is a surjective function
returning the mapping of each token on one of the architecture
elements.

B. Computing the cost of an application execution on an LSLA
architecture

While CNs with high cost in a LSLA model (such as
y in Fig. 6) represent bottlenecks in the architecture, i.e.
communication media with low data rates, PEs with high cost
(such as PE1 in Fig. 6) represent processing facilities with
limited processing efficiency. For example, the LSLA model
at the bottom of Figure 6 may represent a set of two processors
{PE1, PE2} and {PE3, PE4} where {PE1, PE2} has a
core PE1 and a coprocessor PE2, and {PE3, PE4} is a
homogeneous bi-core processor with high efficiency (cost of 2
for each firing). PE2 is almost twice as efficient as PE1 (cost
of 5s + 1 instead of 10s + 1 for each token). {PE1, PE2}
and {PE3, PE4} are communicating through a link that
has one tenth of the efficiency of internal {PE1, PE2} and
{PE3, PE4} communications (cost of 10ν instead of 1ν for
each token). The next sections illustrate the cost computation
provided by LSLA when combined with SDF, CFDF, and BSP
MoCs.

LSLA architecture

A1

p: 1 p: 2
A2 activity of an iteration: 

2 A1 tokens, 
2 data tokens, 
1 A2 token

tokens relative costs: 
decomposition into quanta

mapping tokens 
to PEs and CNs

SDF
application

λ=0.3

z
PE2

1s

x y
PE1

10s+1

PE4

PE3

5s+1

10s 1s 2s+1
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Fig. 6: Computing the cost of executing an SDF graph on an
LSLA architecture. The obtained cost for 1 iteration is 31 +
21 + 0.3 (2 + 2 + 20 + 2) + 7 = 66.8 ν (Equation 4).

1) Computing the cost of an SDF application execution
on an LSLA architecture: The cost computation mechanism
of the LSLA MoA is illustrated by an example in Fig. 6
combining an SDF application model with 2 actors A1 and
A2 and an LSLA architecture model with 4 PEs PE1−4

and 3 CNs x, y and z (Section IV-A). Each actor firing
during the studied graph iteration is transformed into one
processing token. Each dataflow token transmitted during one
iteration is transformed into one communication token. A
token is embedding several quanta (Section IV-A), allowing a
designer to describe heterogeneous tokens to represent firings
and messages of different sizes.

Activity computation consists first in choosing a measurable
metric for each token and quantum representing its computa-
tional or communication burden. If time is chosen as the metric
for computation activity, a computation token corresponding to
an actor completed in 4ms can for instance be associated with
4 quanta and the unit for all computation quanta is then the
millisecond. Another actor completed in 3ms would receive
3 quanta. If memory is chosen for communication activity,
a message of 2MBytes can be represented by 2 quanta and
the unit for all computation quanta is then the MByte. In
this particular example, λ is expressed in ms/MBytes. Activity
computation is illustrated on a use case in Section VI-C4.

In Fig. 6, each firing of actor A1 is associated with a cost
of 3 quanta and each firing of actor A2 is associated to a cost
of 4 quanta. Communication tokens represent 2 quanta each.
The natural scope for the cost computation of a couple (SDF,
LSLA), provided that the SDF graph is consistent, is one SDF
graph iteration (Section II-A).

Each processing token is mapped to one PE. Any heuris-
tic or manual mapping method can be used to choose the
appropriate mapping. Communication tokens are “routed” to
the CNs connecting their producer and consumer PEs. For in-
stance, the second communication token in Fig. 6 is generating
3 tokens mapped to x, y, and z because the data is carried from
PE3 to PE2. It is the duty of the mapping process to verify
that a link l ∈ L exists between the elements that constitute
a communication route. The resulting cost, computed from
Equations 3 and 4, is 66.8ν. This cost is reproducible and
abstract, making LSLA an MoA.

2) Computing the efficiency of a CFDF execution on an
LSLA architecture: For dynamic dataflow models, such as
CFDF, a simulation-based integration is a natural way to apply
MoA-driven cost computation since there is in general no
standard, abstract notion of an application iteration — i.e., no
notion that plays a similar role as the periodic schedules (and
their associated repetitions vectors) of consistent SDF graphs.

λ=0.3

X

p1 p2
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activity of 
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1 X token,
2 X tokens,
2 X token, 
5 data tokens, 
1 Y token
1 Y token

mapping tokens: 
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CFDF
application

LSLA architecture
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into quanta

z
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PE4
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Fig. 7: Computing the cost of executing a CFDF graph
on an LSLA architecture. The obtained cost for the chosen
simulation scope is 62 + 32 + 9.6 + 7 = 110.6ν.

Fig. 7 illustrates an example of execution of a CFDF
dataflow graph on an LSLA architecture. We define the cost
of execution of actor X in mode M(X, 1) to be 3 quanta and
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the cost of execution of actor X in mode M(X, 2) to also be
3 quanta. Similarly, the cost of execution of actor Y in mode
M(Y, 1) is 2 quanta and the cost of execution of actor Y in
mode M(Y, 2) is 4 quanta. These choices represent additional
information associated with the CFDF MoC.

The cost of communication tokens on the FIFO is set to 2
quanta. We can then compute a cost for every PE and CN.
There are 2 actor tokens mapped to PE PE1. Each of them
has 3 quanta. The cost for PE PE1 is 2× (3×10+1) = 62ν.
There are 2 actor tokens mapped to PE PE2. They represent
2 and 4 quanta respectively. The cost for PE PE2 is 1× (2×
5+1)+1× (4×5+1) = 32ν. There is 1 actor token mapped
to PE PE3. It represents 3 quanta. The cost for PE PE3 is
1 × (3 × 2 + 1) = 7ν. There is no actor token mapped to
PE PE4. Therefore, the cost for PE PE4 is 0ν. There are 5
communication tokens mapped to CN x. Each of them has
2 quanta. Therefore, the cost for CN x is 5 × (2 × 1) =
10ν. There is 1 data token mapped to CN y. It has 2 quanta.
Therefore, the cost for CN y is 1 × (2 × 10) = 20ν. There
is 1 data token mapped to CN z. It has 2 quanta. Therefore,
the cost of z is 1 × (2 × 1) = 2ν. Since a multiplication
by λ = 0.3 brings the cost of communication tokens to the
processing domain, the total cost for communication would be
0.3 × (10 + 20 + 2) = 9.6ν. Therefore, the obtained cost is
the summation of all PEs’ cost and CNs’ cost, which in this
example sums up to 62 + 32 + 9.6 + 7 = 110.6ν.
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σ=2
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Fig. 8: Extracting the activity of a BSP model.

3) Computing the efficiency of a BSP execution on an LSLA
architecture: Figures 8 and 9 illustrate the cost computation
of the execution of a BSP algorithm on an LSLA architecture.
Figure 8 displays the extraction of the activity, consisting
of processing and communication tokens, from the BSP de-
scription. Each processing effort ασ is transformed into one
processing token consisting of w(ασ) quanta (Section II-B)
and each remote access is transformed into one communication
token of one quantum. This size of one quantum is chosen
because the BSP model considers atomic remote accesses.

Figure 9 shows the mapping and pooling of tokens, con-
sisting on associating tokens to PEs and CNs and replicating
communication tokens to route the communications. Agents α

and β are mapped on core PE2, agent γ is mapped on core
PE1, agent ε is mapped on core PE3 and agent δ is mapped
on core PE4. The global cost is computed as the sum of
the cost of each token on its PE or CN. The communication
token α→ β is ignored because it is communicating a token
between two agents mapped on the same PE and such a
communication is supposed to have no specific cost in LSLA,
because there is no remote access. An abstract cost of 144.6ν

LSLA architecture
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Fig. 9: Computing the cost of executing the BSP model in
Figure 8 on an LSLA architecture. The obtained cost is 31 +
31 + 11 + 11 + 11 + 6 + 0.3 (6 + 40 + 6) + 7 + 5 + 11 + 5
= 144.6 ν (Equation 4).

is obtained for this couple (BSP, LSLA) and, as for SDF
and CFDF, this cost is reproducible as long as the activity
extraction from the BSP model follows the same conventions.
Compared to using BSP alone, combining it with LSLA helps
studying the cost of mapping several agents on a single PE,
exploiting parallel slackness to balance activity between PEs.

In previous sections, the cost computation mechanisms
of LSLA have been demonstrated on static SDF dataflow,
dynamic CFDF dataflow and BSP MoCs. This generic and
reproducible cost computation makes LSLA an MoA.

4) Discussion on LSLA cost computation: The cost com-
puted by LSLA and resulting from communication and pro-
cessing is linear w.r.t. the number of tokens (Equation 4). This
cost can represent an energy, an area, a price, an amount of
memory, etc., depending on the purpose of the architecture
model. As a simple MoA, LSLA is not aware of the schedule
(i.e. order of execution) of tokens. This is a limitation of LSLA
introduced in exchange for model simplicity. Compared to
models presented in Section III-C, LSLA is the only model
abstracting the computed cost type.

Previous sections have defined the notion of Model of
Architecture (MoA) and introduced an MoA named LSLA. In
the next sections, a method is proposed to infer the parameters
of an MoA from platform measurements. The method is then
applied and evaluated by modeling the energy consumption of
a multicore embedded processor using the LSLA MoA.
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V. LEARNING AN LSLA MODEL FROM PLATFORM
MEASUREMENTS

This section introduces a method to learn parameters of
LSLA from hardware measurements of the MoA-modeled
cost. The method being based on algebra, the next section
presents an algebraic representation of an LSLA model.

A. Algebraic Expression of costs in an LSLA Model

Let us consider an LSLA model with fixed topology, i.e. the
sets P , C and L of respectively PEs, CNs and Links are fixed.
The parameters αn and βn are initially unknown and will
be learnt from measurements of the modeled non-functional
property on the platform (e.g. energy). The parameters of an
LSLA MoA are gathered in a vector m of size 2η such that:

m = (αn,∀n ∈ P ∪ C;βn,∀n ∈ P ∪ C). (5)

The size of 2η is due to the concatenation of token- and
quanta-related parameters. An arbitrary order is thus chosen
for PEs and CNs and the per-quantum costs αn and per-token
costs βn are concatenated in a unique vector.

B. Applying Parameter Estimation to LSLA Model Inference

Parameter estimation [30] consists of solving an inverse
problem to learn the parameters of a model from real-life
measurements. In the case of LSLA, the relationship between
activity and cost is assumed to be linear and the inverse
problem is solved by a linear regression. A series of measured
cost d can be ideally expressed as the result of the following
forward problem:

d = Gm + ε, (6)

where d = (d1, ..., dM )T is a set of M cost samples (e.g.
energy samples), m is the vector of 2η costs defined in Eq. 5,
ε is the measurements noise resulting in the error vector ε =
(ε1, ..., εm), and each line Gk ∈ G corresponds to an activity
vector containing the number of quanta and tokens mapped to
the corresponding PEs or CNs for a sample dk. Gk can be
decomposed into:

Gk = (
∑

size(τ),∀τ ∈Mk(n1);∑
size(τ),∀τ ∈Mk(n2); ...;

∑
size(τ),∀τ ∈Mk(nη);

card(Mk(n1)); card(Mk(n2)); ...; card(Mk(nη)))
(7)

where Mk : P ∪ C → TP ∪ TC is the mapping function
for experiment k that associates to each PE or CN the set
of tokens executed by this component. card refers to the
cardinality of the considered set, i.e. the number of tokens
while the sum of sizes return the number of quanta. In Eq. 7,
the LSLA Lagrangian coefficient λ has been fixed to 1. λ
affects problem conditioning by balancing communication and
processing costs. Choosing λ = 1 is possible if the user
can choose the quanta units to balance these costs. In the
experimental setup developed in the rest of this paper, λ
is fixed to 1 ns/Byte, assuming communications at around
1 GBytes/s. An advantage for the demonstration is that
LSLA α coefficients for communications can be directly

interpreted as J/Byte. A more precise determination of λ
could be obtained by setting it as the average communication
speed, learnt by benchmarking the platform. The number of
communication quanta in Gk would then be multiplied by λ
for each CN in Eq. 7.

In order to obtain reliable parameter values, the system is
overdetermined by performing more measurements than there
are parameters in the model, i.e. M >> 2η. Furthermore, the
error vector ε is assumed as random variable with zero mean
µε and constant standard deviation σε among samples. From
the forward problem in Equation 6, we can derive the Ordinary
Least Square (OLS) solution to the inverse problem [30]:

mL2 = (GTG)−1GTd. (8)

This equation performs the training of the model. mL2 is
thus a set of parameters αn and βn, deduced from measure-
ments d, that can be entered in the LSLA model. For a new
system activity G′, cost evaluation is computed with:

dLSLA = G′mL2. (9)

This equation performs the prediction of the cost based on
the LSLA model and on the application activity. The residual
error of the prediction can be evaluated as follows:

εm = dLSLA
m − dm m = 1, ...,M (10)

where the error term is expressed as the deviation between
measures and the trained model. Such residuals represent the
measures’ variability that is not considered in the regression
model (e.g., correlated side-effect among measures) [31]. In
section VI-D2, the impact of the error term ε on the trained
model is empirically evaluated. In the next section, parameter
inference is put into practice for predicting the energy con-
sumption of an MPSoC.

VI. EXPERIMENTAL EVALUATION WITH THE LSLA MOA
OF THE ENERGY CONSUMPTION IN AN MPSOC

A. Objective of the Study and Modeled Hardware Architecture

We intend to model with LSLA the dynamic energy con-
sumption when executing an application, modeled with SDF,
on an MPSoC running at full speed where the number of cores
reserved for the application is tuned. The motivation for this
study lies in the hypothesis that dynamic energy consumption
depends additively on application activity.

The modeled architecture is an Exynos 5422 processor from
Samsung. This processor is integrated in an Odroid-XU3 plat-
form that offers real-time power consumption measurements
of the cores and memory. The Exynos 5422 processor embeds
8 ARM cores in a big.LITTLE configuration. Four of the
cores are of type Cortex-A7 and form an A7 cluster sharing
a clock with frequency up to 1.4GHz. The four remaining
cores are of type Cortex-A15 and form an A15 cluster with
frequency up to 2GHz. An external Dynamic Random Access
Memory (DRAM) of 2GBytes is connected as a Package on
Package (PoP). A Linux Ubuntu Symmetric Multiprocessing
(SMP) operating system is running on the platform. Four Texas
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Instruments INA231 power sensors measure the instantaneous
power of the A7 cluster, the A15 cluster, the Graphics Process-
ing Unit (GPU) and the external DRAM memory. The energy
consumed by the GPU is left out of the scope of the paper but
its modeling with an MoA constitutes a promising extension.
Power values are read from an I2C driver. A lightweight script
runs in parallel to the measured program, forces the processor
to run at full speed and reports current and voltage at 10Hz
during program execution. This data is exported into files to be
processed offline. In our experiments, the power measurements
from the A7 and A15 clusters and the memory are summed
up and used as the energy consumption vector d.

B. Choosing the LSLA topology

We consider a fixed target platform from which a model
is learnt. While the parameters set on PEs and CNs are
learnt, their number and topology are chosen, based on a prior
knowledge of the hardware features. This type of model is
qualified as a “hybrid combination of mechanistic and empir-
ical modeling” in [32]. Mechanistic choices are made “from a
basic understanding of the mechanics of the modeled system”
while empirical modeling corresponds to the set of trained
parameters. A method is introduced hereunder to perform
the mechanistic choices. The hardware being characterized is
assumed to preexist the study. The method is decomposed into:

1) the number of coarse-grain PEs to consider in the study
(cores, coprocessors, GPUs...) is determined. One PE is
instantiated in the model per considered platform PE,

2) the hardware communication features of the platform for
inter-core communication are located (including shared
bus, DMA, shared memory, cache coherency manage-
ment, etc.). If several PEs share the same communication
hardware feature, one CN is allocated on the model,
connected to all the cores sharing this feature,

3) if communication hardware features, already modeled by
CNs, are themselves communicating through ”higher-
level” hardware communication, a new CN is created
and connected to their corresponding CNs,

4) step 3 is repeated until the graph is connected.

Applying this method to the experimental setup, the 8 PEs
corresponding to the Exynos 5422 processor cores are first
instantiated. Then, as each cluster is connected by a shared
memory supporting hardware cache coherency, A7 and A15
clusters are each associated to a CN connecting the 4 cores of
the CN. Finally, The ARM ACE (AXI Coherency Extension)
higher-level cache coherency protocol, connecting the two
clusters, is associated to a CN named ICC. The resulting
model is shown at the bottom of Fig. 10.

After this mechanistic model creation, the model may be
simplified to reduce its number of parameters. First, two
connected CNs may be merged if 1) the set of tokens crossing
both CNs is forecast or measured to be equivalent, or 2) one
of the 2 CNs is forecast or measured to strongly dominate
the other in terms of cost. Moreover, equivalently performing
PEs can be merged to simplify the model. Such a model
simplification is experimented in Section VI-D7.

C. Experimental Setup

1) Software Tools: Fig. 10 summarizes the experimental
setup used to train and test the LSLA MoA of an Exynos
5422 processor from energy measurements. The PREESM
dataflow framework [33] is used to generate code for different
SDF configurations of a stereo matching application from a
Parameterized and Interfaced Synchronous Dataflow (PiSDF)
executable specification. PiSDF [34] is an extension to SDF
that introduces a hierarchy of composable elements, as well
as static and dynamic parameters influencing token production
and consumption. The motivation for using a PiSDF descrip-
tion is that, by fixing various values for application parameters,
different functional SDF applications are obtained. Once the
parameters of the application are fixed, PREESM generates
an executable SDF graph that feeds a multicore mapper and
scheduler. Mapping and scheduling are automatically com-
puted, based on the list scheduling algorithm of [35]. PREESM
then generates a self-timed multicore code for the application
that runs on the target platform. The internal code of the
actors is manually written in C code. PREESM manages the
inter-core communication and allocates the application buffers
statically in the .bss segment of the executable. PREESM
generates one thread per target core and forces the thread to
the corresponding core via affinities.

Communication between actors occurs through shared
memory with cache coherency. Semaphores are instantiated
to synchronize memory accesses. The whole procedure of
mapping, scheduling and generating code with PREESM is
scripted. For the current experiment, scripts have been devel-
oped to automate large numbers of code generations, compi-
lations, application executions and energy measurements. An
application activity exporter has also been added to PREESM
that computes the activity for each core, from which αn and
βn LSLA parameters are learnt. Finally, once its parameters
have been learnt, the LSLA model of the platform can be
used, together with application activity information, to predict
the energy consumption of the platform.

2) Benchmarked Application: The stereo matching algo-
rithm from [36], shown in its SDF form in Fig. 11, is used for
the study. From a pair of views of the same scene, the stereo
matching application computes a disparity map, corresponding
to the depth of the scene for each pixel. The disparity is the
distance in pixels between the representations of the same
object in both views. Parameters can be customized such as the
size of the input images, the number of tested disparities and
the number of refinement iterations in the algorithm. These
parameters allow for various configurations and application
activities to be created. The tested configurations for this study
are summarized in Tab. II. The size of the obtained SDF
graph is stated, as well as its maximum speedup in latency
if executed on a homogeneous architecture with an infinite
number of Cortex-A7 cores and costless communication. The
stereo matching application is open source and available
at [37].

Below each actor in the SDF graph of Fig. 11 is a repetition
factor indicating the number of actor executions during a graph
iteration. This number is deduced from the data production and
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Fig. 10: Experimental setup for inferring the LSLA execution energy model of a Samsung Exynos 5422 MPSoC.

TABLE II: Configurations of the stereo matching application
employed to assess the energy modelling.

Configuration ID 1 2 3 4 5 6
input image size 450×375 90×75 270×225

# disparities 30 2 15 60 60 60
# iterations 4 2 3 4 4 4
# of actors 177 67 134 297 317 317

total # of FIFOs 560 102 323 1040 1050 1050
max. speedup 6× 2.5× 4.7× 6.6× 6.5× 6.6×

consumption rates of actors. Two parameters are shown in the
graph: NbDisparities represents the number of distinct values
that can be found in the output disparity map, and NbOffsets
is a parameter influencing the size of the pixel area considered
for the pixel weight and aggregation calculus of the algorithm.
NbIterations affects the computational load of actors.

The SDF graph contains 12 distinct actors: ReadRGB reads
from a file the pixels of an image, BrdX is a broadcast actor. It
duplicates on its output ports the data token consumed on its
input port. It generates only pointer manipulations in the code.
GetLeft gets the RGB left view of the stereo pair. RGB2Gray
converts an RGB image into grayscale. Census produces an 8-
bit signature for each pixel, obtained by comparing the pixel to
its 8 neighbors: if the value of the neighbor is greater than the
value of the pixel, the signature bit is set to 1, and otherwise
to 0. CostConstruction is executed once per potential disparity
level. By combining the two images and their census signa-
tures, it produces for each pixel the cost of matching this pixel
from the first image with the corresponding pixel in the second
image shifted by a disparity level. ComputeWeights produces
3 weights for each pixel, using characteristics of neighboring
pixels. AggregateCosts computes the matching cost of each
pixel for a given disparity. DisparitySelect produces a disparity
map by computing the disparity of the input cost map from the
lowest matching cost for each pixel. RoundBuffer forwards the
last disparity map consumed on its input port to its output port.
MedianFilter applies a 3×3 pixels median filter to the input
disparity map to smooth the results. The filter is data parallel
and 15 occurrences of the actor are fired to process 15 slices
in the image. Finally, Display writes the depth map in a file.
The SDF description of the algorithm provides a high degree
of parallelism since it is possible to execute in parallel the

repetitions of the three most computationally intensive actors:
CostConstruction, AggregateCosts, and ComputeWeights.

The generated application code is compiled by GCC with
−O3 optimization. For each configuration, 255 different PE
mappings are tested by enabling different subsets of the
platform cores. PREESM schedules the application on the
subsets with the objective of minimizing application latency.

3) Energy Measurements: Only the dynamic energy con-
sumption is considered in this experiment. All the eight cores
are activated and their frequency is fixed at their maximum.
Thus, the static power, measured at 2.4362W in the given
conditions, is subtracted from power samples. d in Eq. 6 is
a vector of energy samples expressed in Joules. The energy
of an application execution is measured by integrating the
instantaneous power consumed by the A7 cluster, the A15
cluster and the memory during application execution time.

The unit being measured and analyzed is one execution
of the application, from the beginning of the retrieval of 2
images to the end of the production of a depth map. By
varying application parameters and the set of authorized cores,
a population of executions is built, modeled and analyzed.

4) Application Activity: The activity of the application must
be expressed in terms of tokens and quanta (Section III-B).
The stereo matching application is represented by a static SDF
graph and the computational loads of its actors do not depend
on input data. Its application activity does thus not depend
on input data. For supporting a more dynamic application
with data-dependent loads and topology, the CFDF MoC
could be used (Section IV-B2), and a time scope, as well as
training input data, representative of application data, would
be necessary to compute activity.

In the code generated by PREESM, each PE runs a loop
that processes a schedule of actors and the different PEs
are synchronized by blocking messages. Several possibilities
arise when choosing the format of tokens and quanta. Using
PREESM information, the number of computational tokens
on a given PE is set to the number of actor firings onto this
PE and the number of communication tokens is the number
of messages between actors. Time computational quanta in
nanoseconds are used, corresponding to the execution time
of the actor on the considered core. They are measured by
repeating actor execution and running the C clock() function to
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Fig. 11: Illustration of the stereo matching application graph. The number of duplications of each actor is specified. All rates
are implicitly multiplied by the picture size.

retrieve timings. This operation is automated in the PREESM
tool. As an example, the timings of actors for application
configuration 4 are shown in Tab. III. Communication quanta
correspond to the size of exchanged messages (in Bytes).

Instead of time quanta, the per-actor computational energy
could be used. Each computation quantum could correspond,
for instance, to 1mJ of energy to execute the actor on the
considered core. Such an approach requires each actor to be
characterized in energy. Activity focuses on particular aspects
of a design while ignoring others. For instance, application-
related GPU and cache activities are not modeled in the chosen
application activity and they are also ignored in the MoA. As
the energy of cores is measured independently from the energy
of the GPU, the model can ignore its presence. However, the
multiport caches with hardware coherency management are
being measured and their activity depends on the data flowing
between cores. In the built model, the energy of managing a
message by cache coherency is assumed to be affine. A more
sophisticated MoA could be developed to precise simulation.

TABLE III: Time quanta (in us) per actor type and core type
for configuration 4.

Actor time on time on tA7

name Cortex-A7 Cortex-A15 tA15

ReadRGB 1, 813 719 2.5×
RGB2Gray 6, 682 2, 459 2.7×
Census 6, 846 2, 320 3.0×

ComputeWeights 85, 265 32, 251 2.6×
CostConstruction 13, 240 2, 698 4.9×
AggregateCosts 76, 262 29, 052 2.6×
disparitySelect 6, 192 1, 128 5.5×
MedianF ilter 4, 923 2, 555 1.9×

Display 131, 638 100, 411 1.3×

D. Experimental Results

1) Measuring Computational Dynamic Energy: Each of
the six application configurations from Tab. II are scheduled
with each of the 255 possible mapping patterns in the Odroid
architecture, resulting in M = 1530 energy measurements.
Having M = 1530 measurements for 2η = 22 parameters,
the constraint M >> 2η stated in Section V-B is respected.
The mapping pattern refers to a binary-composed integer
representing the currently used subset of cores (1 for PE1,
2 for PE2, 3 for PE1 + PE2, 4 for PE3, etc.).

To ensure reliable measures, application iteration is repeated
from 10 to 100 times for each measurement. All energy

measurements are repeated 10 times to obtain the energy
standard deviation. As illustrated in Fig. 12, the average
standard deviation of measurements is moderate (0.21J , or
2.4%). This low variation shows that energy consumption is
stable for a given application activity and motivates for MoA
modeling. For each configuration, the first measurements on
the left (in a dashed circle on Fig. 12) show less energy than
the rest of the measurements of their application configuration
on their right. This is due to the fact that PEs 1 to 4 are
Cortex-A7 cores and these cores are more energy efficient than
Cortex-A15 cores. These samples use only Cortex-A7 cores
and, as a consequence, show more energy efficiency. One may
note in the third column of Tab. III that the energy efficiency
of Cortex-A7 cores comes at the price of a significantly lower
speed.

2) Learning the Energy Model with LSLA: Following the
experimental setup depicted in Fig. 10 and the learning method
from Section V, an LSLA model is inferred from the energy
measurements of previous section and from the application
activity provided by PREESM.

The learning curve is drawn in Figure 13 to evaluate the test
error εte of the model as a function of the number of training
points. The measured energy samples are split into two parts:
a training set containing between 1 sample and 80% of the
samples (1224 samples), and a test set with the remaining 20%
of the samples (306 samples). The samples of the training set
are randomly chosen. Fig. 13 displays the training root-mean-
square (RMS) error and the test RMS error as the number of
training samples rises.

The training error εtr is calculated over the training dataset
while the test error εte is calculated over the test dataset.
The RMS deviations are computed as follows: RMSte =√
E{ε2te} and RMStr =

√
E{ε2tr}.

The model reasonably fits data, as test error lowers rapidly
when the number of training samples grows and reaches a
plateau at about 150 training samples before stabilizing at
RMSte = 1.37J . The training error rises until RMStr =
1.21J , showing that, as expected, the model does not capture
the entire physical sources of energy consumption, but the
rising rate of the training error lowers with the number of
training samples.

3) Discussion on the LSLA Model Parameters: In the next
experiments, the model is trained over M = 1224 samples and
the test set is fixed to 306 samples. The data vector d of Eq. 6 is
of length 1224, the matrix G is of size 1224×22 and the model
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Fig. 12: Training set composed of processor energy measurements. The dynamic of measurements is displayed.
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Fig. 13: LSLA dynamic energy model learning curve for a
fixed test set of 306 samples and a variable training set of 0
to 1224 samples.
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Fig. 14: LSLA dynamic energy model inferred from energy
measurements with computational quanta in ns, communica-
tion quanta in Bytes, and energy data vector d in nJ. PE1−4

are Cortex-A7 cores and PE5−8 are Cortex-A15 cores.

vector m is of length 22. The values of the obtained parameters
are displayed in Fig. 14. The solid line in Fig. 15 corresponds
to the energy predicted with the model from Fig. 14 on the test
set. Points correspond to energy samples. The full model offers
an energy assessment with a RMSte of 1.37J , corresponding
to an average error of 16%.

Easily explainable parameters in Fig. 14 are αPE1
to αPE8

because they translate into average core execution dynamic
power, in nJ/ns = W . PEs 1 to 4 have an average dynamic
power of 236mW and PEs 5 to 8 have an average dynamic
power of 1.23W . These values are credible and correspond to
the average dynamic powers of a Cortex-A7 core (PEs 1 to 4)
and of a Cortex-A15 core (PEs 5 to 8) running at full speed.

One may observe in Fig. 15 that the last energy samples of
each configuration are lower than their prediction with LSLA.
This effect can be explained by the intra-cluster parallelism
that reduces the execution time of the application without
increasing as much the instantaneous power. This intra-cluster
parallelism tends to decrease the dynamic energy. This effect
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Fig. 15: Comparing the LSLA predicted cost and the median
of the corresponding energy measurements in test set.

is partly captured by the learnt negative costs on internal
cluster communication quanta αA7CN = −1.322nJ/Byte
and αA15CN = −0.551nJ/Byte because more parallelism
in a cluster leads in general to more communication in this
cluster. However, the amount of communication in a cluster
is not fully correlated with the load balancing inside this
cluster, leading to errors. The per-quantum cost of ICC
αICC = 1.018nJ/Byte is positive but, as a token flowing
through ICC also flows through A7CN and A15CN , each
inter-cluster exchanged quantum finally costs 1.018−1.322−
0.551 = −0.855nJ/Byte. As a consequence, the energy gain
obtained by parallelizing over the whole processor dominates
the energy cost of the communication.

The LSLA model from Fig. 14 does not model the mere
hardware. Instead, it represents hardware together with its
operating system, the PREESM scheduler and the commu-
nication and synchronization library. For example, PREESM
tends to favor A15 cores because PREESM optimizes the
schedule for latency and, because A15 cores are much faster
than Cortex-A7 cores, the demand placed on them is greater.
An A15 core is less energy efficient than a Cortex-A7 so the
scheduling choices will tend to raise the consumed dynamic
energy.

While the average error of the model is substantial, the built
LSLA model is characterized by an extreme simplicity, the
implementation of the cost computation being reduced to 22
multiplications and 21 additions. Moreover, neither application
code nor architecture hardware with low-level representation
are needed to compute this model cost. Only a MoC and an
MoA are needed, as well as a well defined activity inference
method.
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TABLE IV: Average and standard deviation of trained LSLA
parameters αn and βn when the training set is varied.

PE/CN PE1 PE2 PE3 PE4 PE5 PE6
αn 0.246 0.230 0.230 0.238 1.239 1.238

σ(αn) 2.9% 3.0% 2.7% 3.0% 0.7% 0.7%
βn 0.027 0.048 0.046 0.012 0.119 0.107

σ(βn) 45.7% 27.3% 23.9% 82.2% 7.1% 6.8%
PE/CN PE7 PE8 A7CN A15CN ICC
αn 1.213 1.258 −1.324 −0.552 1.018

σ(αn) 0.8% 0.6% 1.8% 7.7% 4.6%
βn 0.083 0.068 −0.018 0.010 0.038

σ(βn) 9.2% 13.1% 27.9% 63.1% 16.8%

4) Discussion on the Trained LSLA Model Stability: In this
section, the stability of the trained LSLA model is tested to
account for outliers in training data. To this end, 100 training
sets of size 1224 samples are randomly chosen among avail-
able data, the rest serving as test set. The standard deviations
of parameters σ(αn) and σ(βn) in the LSLA model, caused
by training set modifications, are reported in Tab. IV. They
show that, by far, not all parameters are equivalent in stability.
While parameters αn (applied to quanta) all have moderate
standard deviations under 5% (except for A15CN with 7.7%),
showing a rather precise determination, parameters βn (applied
to tokens) have in average standard deviations of 30%. This
difference shows that the most stable information relevant for
energy estimation lies in the number of quanta (in this case, in
the execution time of actors). The number of tokens (number
of executed actors) is less reliably related to energy.

5) Discussion on the Trained LSLA Model Accuracy:
The RMSte prediction error of 16% is provoked by a vast
amount of non-modeled factors, including the variable per-
actor average power, the application specific scheduling gaps,
the memory management, etc. As an example of a non-
modeled factor, by using LSLA with time quanta to predict
energy, the present analysis assumes the power consumed by
a core to be equivalent for each executed actor. However, it is
not the case in reality. From low-power (memory-intensive) to
high-power (compute-intensive) actors in the stereo matching
application, the difference of power consumption is +55% on
A7 cores and +102% on A15 cores.

As a consequence of non-modeled factors, the learned
model presents two weaknesses:

1) Within the presented experimental setup, the model loses
its accuracy on applications and configurations that do
not appear at all in the training set. The model thus
strongly depends on the application and configurations
used for its training.

2) One can also observe on Fig. 15 that the local energy
variations within a configuration are not precisely cap-
tured by the model that has been chosen to cover several
application configurations.

As a first solution to these two limitations, a different
LSLA model could be learnt for each application type and
configuration and the model could be switched at runtime
based on application type and configuration. Experiments
show that such a strategy improves the accuracy. A tradeoff is
then possible between a compact but imprecise unique model

and a more precise model set based on configuration- and
application-related switching.

Another solution to these limitations consists of creating
a new MoA, feeding the activity with more information on
actors and communication, and feeding the MoA with more
information on hardware. For instance, as the instantaneous
power consumption of cores is highly dependent on the current
actor, labelling activity tokens with actor types would make
it possible for the new MoA to apply different scaling factors
based on actor type, making the same MoA applicable to more
applicative cases.

The fidelity of an LSLA model is certainly more important
than its average error. The next section discusses the fidelity
of the inferred LSLA energy model.

6) Fidelity of the LSLA Energy Model: Model fidelity, as
presented in [38], refers to the probability, for a couple of data
di and dj , that the order of the simulated costs dLSLAi and
dLSLAj matches the order of the measured costs. The fidelity
f of the LSLA energy model is formally defined by

f =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

fij , (11)

where M is the number of measurements and

fij =

{
1 if sgn(dLSLAi − dLSLAj ) = sgn(di − dj)
0 otherwise

,

(12)
with dLSLAi and di respectively the ith LSLA-evaluated and
measured energy, and

sgn(x) =


(−1) if (x < 0)

0 if x = 0

1 if x > 0

. (13)

The fidelity of the inferred LSLA model for the considered
problem is of more than 86%, suggesting that the model can
be used for taking energy-based decisions at a system level.
As for accuracy, a good fidelity is obtained on condition that
the application types and configurations are sufficiently similar
between the training and the test set. Solutions, already dis-
cussed in Section VI-D5, constitute future research directions.

Fidelity is illustrated by Fig. 16 where measurements have
been sorted in ascending order and are displayed together with
their LSLA prediction.

7) Simplifying a LSLA Model: As explained in Sec-
tion VI-B, different LSLA topologies can be used to represent
a single platform and metric, for example by merging PEs and
CNs. Each cluster of the Exynos 5422 processor having ho-
mogeneous cores, a simplified model of the platform has been
experimented where PEs of one cluster are undifferentiated. As
a consequence, only 2 PEs are retained that each fuse the 4 PEs
of one cluster. By doing so, we remove the cost of intra-cluster
communication because the new model does not differentiate
intra-core communication from intra-cluster communication.
The results on the same training and test sets of using the
simplified model instead of the original one show a limited
degratation of RMStr (1.32J instead of 1.21J) and RMSte
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(1.49J instead of 1.21J) and a very slight degradation of
fidelity (85.8% instead of 86.1%). Such a simplification is thus
adequate and reduces cost computation to 6 multiplications
and 5 additions.

energy(J)

validation set experiment index after reordering

Ordered energy measurements
Corresponding LSLA energy estimations
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Fig. 16: Test set sorted in ascending order and their corre-
sponding LSLA predictions.

VII. CONCLUSION

In this paper, a precise definition of a Model of Architecture
(MoA) has been proposed that makes cost abstraction and
computational reproducibility the main features of an MoA.
The Linear System-Level Architecture Model (LSLA) MoA
has then been defined, compared to the state of the art of
architecture models and studied both theoretically and on a use
case. LSLA is the first model fully complying the proposed
definition of an MoA. LSLA represents hardware performance
with a linear model, summing the influences of processing
and communication on system efficiency. LSLA has been
demonstrated on an example to predict the dynamic energy
of an MPSoC executing a complex SDF application with a
fidelity of 86%. Additionally, a method for learning the LSLA
parameters from hardware measurements has been introduced,
automating the creation of the model.

LSLA opens new perspectives in building system-level ar-
chitecture models that provide reproducible prediction fidelity
for a limited complexity. A vast amount of potential extensions
exist, including the study of other non-functional properties,
systems-of-systems models, and memory hierarchy models.
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[27] E. Raffin, C. Wolinski et al., “Scheduling, binding and routing system
for a run-time reconfigurable operator based multimedia architecture,”
in Proceedings of the DASIP Conference. IEEE, 2010.

[28] M. Pelcat, J.-F. Nezan et al., “A system-level architecture model for
rapid prototyping of heterogeneous multicore embedded systems,” in
Proceedings of the DASIP conference, 2009.

[29] A. Donlin, “Transaction level modeling: flows and use models,” in
Proceedings of the CODES+ISS Conference. ACM, 2004.

[30] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter estimation and
inverse problems. Academic Press, 2011, vol. 90.

[31] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear
regression analysis. John Wiley & Sons, 2015.

[32] A. D. Pimentel, “Exploring exploration: A tutorial introduction to
embedded systems design space exploration,” IEEE Design & Test, 2017.

[33] M. Pelcat, K. Desnos et al., “PREESM: A dataflow-based rapid pro-
totyping framework for simplifying multicore dsp programming,” in
Proceedings of the EDERC Conference, 2014.

[34] K. Desnos, M. Pelcat et al., “PiMM: Parameterized and interfaced
dataflow meta-model for MPSoCs runtime reconfiguration,” in Proceed-
ings of the SAMOS Workshop, 2013.

[35] Y.-K. Kwok, “High-performance algorithms for compile-time scheduling
of parallel processors,” Ph. D. thesis, 1997.

[36] A. Mercat, J.-F. Nezan et al., “Implementation of a stereo matching
algorithm onto a manycore embedded system,” in Proceedings of the
ISCAS Symposium. IEEE, 2014.

[37] K. Desnos and J. Zhang, “PREESM project - stereo matching -
svn://svn.code.sf.net/p/preesm/code/trunk/tests/stereo,” Dec. 2013.

[38] N. K. Bambha and S. S. Bhattacharyya, “A joint power/performance
optimization algorithm for multiprocessor systems using a period graph
construct,” in Proceedings of the 13th international symposium on
System synthesis. IEEE Computer Society, 2000.


	Introduction
	The Context of Model-Based Design
	Dataflow Models of Computation (MoCs)
	The Bulk Synchronous Parallel MoC
	Benefits Offered by MoCs

	Definition of an MoA and Related Work
	Definition of Models of Architecture (MoAs)
	Application Activity as an Interface between MoC and MoA
	Related Work on MoAs

	The LSLA Model of Architecture
	LSLA Definition
	Computing the cost of an application execution on an LSLA architecture
	Computing the cost of an SDF application execution on an LSLA architecture
	Computing the efficiency of a CFDF execution on an LSLA architecture
	Computing the efficiency of a BSP execution on an LSLA architecture
	Discussion on LSLA cost computation


	Learning an LSLA Model from Platform Measurements
	Algebraic Expression of costs in an LSLA Model
	Applying Parameter Estimation to LSLA Model Inference

	Experimental Evaluation with the LSLA MoA of the Energy Consumption in an MPSoC
	Objective of the Study and Modeled Hardware Architecture
	Choosing the LSLA topology
	Experimental Setup
	Software Tools
	Benchmarked Application
	Energy Measurements
	Application Activity

	Experimental Results
	Measuring Computational Dynamic Energy
	Learning the Energy Model with LSLA
	Discussion on the LSLA Model Parameters
	Discussion on the Trained LSLA Model Stability
	Discussion on the Trained LSLA Model Accuracy
	Fidelity of the LSLA Energy Model
	Simplifying a LSLA Model


	Conclusion
	References

