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Decomposition and informational decentralization for
the computation of economic equilibrium

P. Mahey*
H.P.L. Lunaf

Abstract

We classify different approaches to compute multidivisional sectorial economic
equilibrium by decomposing the corresponding structured optimization model. We
analyze in particular the different levels of decentralization w.r.t. informational and
decisional flows between the central agency and the divisions. We stress the ad-
vantages of the optimization approach to solve real-life problems of spatial economic
equilibrium and show how mixed procedures based on prices and resource allocations
are the most flexible and able to reach complete decentralization. We conclude by a
critical analysis of parallel architectures to serve as a simulation tool for the central
decisor actions and the decentralized behavior of economic agents.

1 Introduction

The present paper analyzes the qualitative properties of informational decentralization
among the so-called decomposition methods used for solving large-scale optimization prob-
lems. The main motivation for such a study resides in the search for decentralized iterative
schemes to compute economic equilibrium which result from competition between firms (or
regions, markets, etc ...) sharing limited resources. Problems of this type arise in a variety
of fields like economics, regional science, transportation or production systems. We shall
focus on sectorial economic markets (or sectorial price equilibrium) in which commodities
are produced and consumed such that they can be represented by some optimization prob-
lem with a single criterion. Thus, we shall not include here more general situations where
no equivalent optimization problem can be formulated : neither the case of cross-effects
among commodities giving rise to non symmetric complementarity problems, nor the case
of institutional constraints on prices even if recent advances on the parallel computation
of the solution of variational inequalities seem to allow to extend the present discussion on
decentralized procedures (see Kim [30], Pang [49] or Nagurney [46]). We shall also focus

on the decentralization of sectorial equilibrium w.r.t. divisional processes and not w.r.t.
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regional submarkets, which means that the coupling between the local subsystems is done
through the commodities and not through the transportation flows of these commodities
from one region to another. Finally, we shall restrict ourselves to static models to avoid
multiperiodic formulations of these equilibrium.

What is meant by decentralized information is the capability of the procedure to avoid
the storage at a central decision level of the local data concerning each production sub-
system. That central level will treat only the coupling constraints or activities between
these subsystems, called the divisions hereafter. The divisional decisions are then based
on their own local data and objective and on some external parameters updated by the
central level, called the coordinator. An immediate consequence is that a decentralized
procedure should be able to recover in a decentralized manner the optimal solution when
it exists. That point induces a new level of the decentralization which we may call deci-
sional decentralization where each subsystem is able to compute its local optimal decision
coinciding with the global one.

On the other hand, decomposition methods may have different motivations : to reduce
the dimension by splitting the computation among independent subsystems, to partition
the difficulties brought in the model by some coupling variables or constraints, to parallelize
the computation among different processors or to decentralize the global optimal decisions.
In fact, all these motivations have common features and we shall discuss them along the
present paper.

We begin by presenting the general sectorial economic equilibrium as a structured math-
ematical program. This is followed by a classification of the bibliography w.r.t. the orga-
nizational structure of the iterative process,where we analyze the decentralization among
the so-called decomposition-coordination schemes. Then, we focus on the completely de-
centralized schemes where both information and decisions are treated locally until the final
‘optimal’ decision.

Finally, we comment on the discrepancies between decentralization and parallelization
in the context of decomposition methods. Indeed, common features of parallel algorithms
like redundancies and shared memory are not easily compatible with decentralization.

2 Decentralized planning

Decentralization is a well-known requirement in economics but the link with the conver-
gence of computational schemes to compute economic equilibrium have been first analyzed
in the seminal paper by Arrow and Hurwicz [1]. To define what is meant by decentral-
ization in a multidivisional economy, we may use their own definition first : ”"For a given
set of prices, a process manager need know only the prices and the technology of his own
process in order to arrive at the optimal level for his process.[...] the equilibrium on each
market may be checked separately; for any given market, the test requires knowing only
the net demand, which is an aggregate of many individual decisions, the initial supply, and
the price.” They observe that it is a severe requirement for applications as convergence of
such totally decentralized schemes needs in general strict concavity of the utility function
and convexity of the production functions, or in economic terms ”diminishing or constant



returns in production and diminishing marginal utility for the consumption of final de-
mands”. In the general case, one must distinguish between informational decentralization
which guarantees that each process manager only need know its own local data with ad-
ditional information about prices or quotas, and decisional decentralization where each
manager is able to compute and recognize its own local globally optimal decision. Beside
that, many authors have focussed on the hierarchical aspects of the effective planning re-
lying on the concept of coordinability. It supposes (see Mesarovic et al [45]) that a global
decision problem (P) is decomposed in local decision subproblems (P;(v),7 = 1,...,m) de-
pending on a coordination input vector v and a supremal decision process (MP) yielding a
two-level hierarchical procedure. We assume there exists a mapping Il which associates to
any bundle of local decisions (z1, ..., x,,) a global decision for (P). Then, the subproblems
are said to be coordinable if :

a) There exists at least one 7 satisfying some coordinating conditions (op-
timality conditions for (MP)) such that each local manager computes a local
optimal decision (z1(7), ..., 2m(7Y))-

b) For any coordinating input + satisfying a), and for any optimal local solu-
tion (z1(7),..., (7)) the corresponding global solution II(z1(¥),. .., xm(7))
is optimal for (P).

As observed by Jennergren [28], the point is that, in many practical cases, there are local
alternative solutions for an optimal 4 which do not yield an optimal solution and the
mapping [T must rely on some global information to reconstitute global optimality. Then,
decentralization is not complete. This is what happens in the linear case with the classical
coordination schemes and it has been observed very early (see e.g. [5]). Coordinability is
indeed a particular case for the present analysis as some procedures may avoid the use of
a coordination level. We resume the conditions for a given process to be decentralized in
three parts :

1. Informational Decentralization : The local managers may compute local decisions by
solving subproblems depending on local information and on a few number of external
parameters, the coordination input ~.

2. Coordinability : There exists some coordination input such that any optimal global
decision corresponds to an optimal local solution in the subproblems.

3. Complete Decentralization : There exists some coordination input such that any
local optimal solution corresponds (via the mapping II) to a global optimal solution.

Of course, when unicity of the solutions of the subproblems is guaranteed, coordinability

implies complete decentralization. More implications about decentralization may be found
in Malinvaud [41], Bensoussan et al [7], Atkins [2], Luna [35], Van de Panne [57] or Dirickx

and Jennergren [15].



3 The sectorial economic equilibrium

Following Arrow and Hurwicz [1], we define a general nonlinear model of resource allocation
among m different processes (or regions) producing and consuming n commodities for which
initial availabilities are supposed kwown quantities. Let z; be the mj-vector of scales
(or activity levels) of the jth process and ¢; be the final demand of the ith commodity
(z = (21,...,2,) and ¢ = (q1,...,q,) are the corresponding vectors in IRM and IR"
respectively, M = )~ m;). Then, the search for an economic equilibrium for that particular
sector of the economy should be represented by the following mathematical program :

Minimize ¢(z) — f(q)
subject to ¢ — g(z) < b (P)
q>0, z;€5,5=1,....m

Here, the cost function is the balance between the production cost of the processes ¢(x)

and the utility function of the sector f(g¢). The production cost is supposed to be separable
w.r.t. the m processes, i.e.

e(z) = ¢z
7=1
The n constraints
¢ — gi(z) < b; (1)

represent the feasibility of the productive sector for each commodity. We do not distinguish
here between external commodities for which a final demand ¢; has to be computed and
primary commodities which enter in the production of the external commodities directly or
indirectly (for these latter commodities the demand should be forced to zero). We suppose
too that the total output for commodity 2, is given by a separable function ¢g;,2 =1,...,n
w.r.t. the processes, i.e. that :

M@‘i?%@ﬁ

and that b; is the known available quantity of the ith commodity.

Finally, S; is a subset of the jth activity space which represent the technological con-
straints of the jth process (for instance S; = {z; € [R™|h;(x;) <0,z; > 0}).

The economic equilibrium of the sector, when it exists, should be written using the
Kuhn-Tucker optimality conditions for (P), assuming that all functions are smooth and
that the constraints satisfy some appropriate constraint qualification. They are, for the
optimal vector of multipliers p € IR" :

Vilg) = p (2)
V%@ﬂ—E:meA%)+VhN%fM‘= 0,j=1,....m (3)
plg—g(x)—b) = 0 (4)
pihi(z) = 0,5=1,....m
p=>0 =0



q—g(x) < b
ijS]' j: NN
q=0

Observations :
e (2) expresses the multipliers p; as the marginal prices for each external commodity.

o (3) expresses the marginal equilibrium for each process. Vh; stands for the Jacobian
matrix of the multiapplication h;.

e (4) is the complementarity slackness condition which says that offer in excess yields
null prices.

Another more restrictive way to traduce that equilibrium is to associate to it an even-
tual saddle-point of the Lagrangian function L(g,z,p), defined for ¢ > 0,2, € 5;,5 =
1,....om,p>0:

L(q,z,p) = c(x) = f(q) + p" (¢ — g(x) = )

Of course, it is well known that strong additional conditions on problem (P) should be
added to ensure the existence of saddle-points. These are for example :

- Convex production costs and concave utility function

- Concave production rates for each process

- Convex subsystems feasible sets 5;

- Slater constraint qualification for (1)

In the following sections, we shall analyze some decomposition schemes to solve (P).
These schemes treat the coupling constraints (1) in order to build the divisional subprob-
lems w.r.t. the partition of the variables, i.e. the divisional scales z;,7 =1,...,m and the
final demands variables ¢. As the decentralization is mainly concerned with the splitting
among the divisions, the demand subproblem will be omitted hereafter, the corresponding
computations being performed in general by the central level itself.

4 Classification of the literature

In order to classify the literature on decomposition methods which are candidate to solve
the general equilibrium problem (P), we have focussed on the kind of information that
flow between the coordination level and the divisional processes. Typically, we distinguish
between price-directive schemes where the upper level fix the prices of the commodities,
resource-directive schemes where the upper level fixes resource quotas for each process and
mixed schemes. Inside these three classes, we comment on the following features concerning
decentralization and convergence of the iterative schemes :

a) Conditions for convergence and applications of the decomposition strat-
egy



b) Computational complexity and rate of convergence of the coordination
task

¢) Computational complexity and exigence of accurate solutions in the sub-
problems

d) Feasibility of the resource constraints at each cycle
e) Rate of convergence

f) Complete decentralization

In order to organize the answers in tables, the algorithms have been grouped in families
which depend on the solution strategy used to solve the coordination problem. To the clas-
sical classification of the different manipulation/strategy pairs proposed early by Geoffrion
[20], we have preferred the equivalent but simpler partition based on the mathematical
programming strategy to solve the corresponding coordination problem. This is addressed
in the following sections.

5 Price Coordination

The classical price-directive scheme has been formalized early by Koopmans [31] and
Arrow-Hurwicz [1]. It is based on an iterative search for the saddle-point of the La-
grangian where the prices of the commodities are adjusted by a coordination level (the
Central Agency of the Walrasian tatonnement procedure). These prices are then sent
to the subsystems which compute their activity levels according to the following price-
directive subproblems :

Minimize ¢;(z;) — p'g;(x;)

T; € S]‘ (PPj)

Many algorithms use these subproblems and they differ only on the coordination strat-
egy where the possibly nonsmooth dual function %(p) defined below has to be maximized
over all non negative price vectors p .

m

h(p) = hi(p) +p" (¢ —b)

i=1

where h; are the optimal value functions for PP;.

The most popular, designed originally for the linear case, is the Dantzig-Wolfe decom-
position method [14]. The principle is the following : the subproblems PP; send the scales
zj(p),7 =1,...,m, to the coordinator who computes the global balance :

Y(p) = q—g(z(p)) — b

which is a subgradient of the dual function k. As that function is in general nonsmooth
(smoothness relies on the strict convexity of the objective function in (P)), the coordinator
needs to store the old subgradients to compute a feasible solution and test optimality. As



Baumol and Fabian did observe early [5], decentralization is not complete at least in the
linear case, because the subproblems are unable to compute their own part of the optimal
global solution.

Within this general coordination framework, what makes the differences between the
various approaches proposed in the literature is the solution strategy to solve the dual
problem and we may classify them (we propose a representative rather than exhaustive
list of algorithms) in the following way :

1. Gradient methods: in the strictly convex case, Arrow and Hurwicz [1] proved the
convergence of a fixed-step gradient method to maximize the dual function, as the
latter is indeed concave and smooth. The divisional subproblems need not be solved
to optimality, but the scales are updated w.r.t. the directional derivative of the
Lagrangian function. In the general case, they propose two distinct modifications
: first, a nonlinear price-adjustment where the prices p; are substituted by p; =
(14 n)pi(1 — gi(x))". The second modification is a price speculation mechanism
where prices are substituted by p! = p; + 2X\(¢; — gi(x) — b;)T. The latter case may
be seen as a linearization procedure for an Augmented Lagrangian method.

2. Cutting planes methods : here, all past subgradients are kept to build a piecewise
linear approximation of the dual function. Solving that approximate problem for
the new prices is equivalent to substitute to the divisional constraints some inner
linearization of their constraint set (forming the so-called Master Program). This
is the Dantzig-Wolfe decomposition [14] in the linear case. The main difficulties
reported with that method are :

i) Accumulation of the cutting planes (column generation in the master program);
ii) Non unique solutions in the subproblems turning the decentralization incomplete;
iii) Large jumps in the price adjustment turning the process numerically unstable.

To cope with these difficulties, some variants have been proposed : In the Boxstep
method, Marsten et al [42] add some 'move limits’ in the divisional subproblems to
regularize the erratic convergence of the cutting plane approach. Mahey [39] combines
a subgradient approach with Dantzig-Wolfe algorithm to accelerate the convergence.

3. Simplex-like procedures : in the linear case, the basic structure of the subproblems
may be used to build some variants of the Dantzig-Wolfe algorithm : in Balas [4], a
parametric representation of the alternative solutions in the subproblems is substi-
tuted to the convex combination of extreme points used in the Dantzig-Wolfe master.
Thus, the divisions must transfer more information to the upper level, indeed, all sim-
plex tableau columns with a zero reduced cost. In compensation, no effort is made in
the restricted master to get feasibility and no accumulation of columns (i.e. cutting
planes) occur turning the coordination task lighter. In the same spirit, a primal-dual
steepest-ascent decomposition has been proposed by Grinold [24]. It results in a
procedure where part of the divisions have to be solved twice to get all extreme-
point solutions, and it is indeed a high price to pay for decentralization. Abadie and



Properties Classes
Arrow-Hurwicz | Dantzig-Wolfe | Others
a. Conditions of convergence | Strict convexity | Linearity Convexity
b. Easy coordination task yes no [4],[24]
c. Easy divisional task yes yes [17], [39], [43], [56]
d. Feasibility no yes [4]
e. Fast convergence yes yes [22], [39], [43], [42]
f. Decentralization yes no [52], [4], [17], [24]

Table 1: Price-directive schemes

Williams proposed to solve the master by the dual simplex method and Bell used the
primal-dual simplex, but both need some specific fractional programming routine at
the upper level (see [34]). Very few attempts to adapt the Dantzig-Wolfe method to
non convex objective have been made. We can cite Phan [50] who has considered a
specific class of min concave cost flow problems with a hierarchical structure.

4. Bundle methods : the way to limit the number of subgradients in the approximation
of the dual function is to generate e-subgradients until a descent direction is found.
This leads to bundle methods for nonsmooth optimization and the idea has been
applied to block-angular linear programs by Medhi [43]. The dual steps correspond
to a proximal regularization of the cutting plane method (see Ruszczynski [52]).
Furthermore, it is possible to add directly some coercion functions in the divisional
subproblems to force unicity and yield complete decentralization (see Feinberg [17] ).

5. Interior-point methods : Goffin et al [22] have proposed an interior-point based de-
composition where the prices are obtained by computing the analytic center of the
relaxed dual master. No decentralized version of that computationally efficient tech-
nique has been proposed to our knowledge. Todd [56] has given an interesting eco-
nomic interpretation of the price adjustment of a special version of Karmarkar’s
method where the local constraints are also affected by the prices.

The evaluation of the relevant properties of these decomposition methods are resumed in
Table 1. The two first columns correspond to the basic algorithms of Arrow-Hurwicz and
Dantzig-Wolfe, and the third one is dedicated to their variants and other above discussed
schemes.

6 Resource-directive decomposition schemes

In the resource-directive scheme, quantities rather than prices are transferred to the divi-
sions. The latter may propose marginal prices or feasible solutions, depending on whether
they take in account explicitly the variable resource constraints in their constraint set or
not. In many aspects, this scheme is dual to the former price-directive coordination and
the solution strategies to solve the coordination problem are similar to the ones presented



before (see Lasdon [34] for a complete description of that relationship). As a specific differ-
ence between both schemes, we may stress the point that the divisional resource allocations
yi,J = 1,...,m (which represent the a priori participation of the division in the production
of the ith commodity (1)) must be forced to feasibility at the upper level, i.e. they must
satisty :

Yoyi=b—q
j=1

Let (y?,j = 1,...,m) be an initial feasible allocation of the resource among the divisions
and set y; = y? + 6y;,7 = 1,...,m. Then, the resource variations (dy1,..., 0y, ) must
lie in the subspace {(z1,...,2,)| 27, 2z; = 0} To understand the duality relation between
price- and resource- directive schemes, we can look at the orthogonal subspace :

{(Ur,. oy tup)|ur =+ = up}

Each u; is a copy of the price vector p used before. It is the price imputation by the j-th
division associated to the resource allocation y; it has been allocated to. The equilibrium
occurs when all divisions propose the same prices. These prices and the corresponding fea-
sible activity levels are given by the solution of the resource-directive subproblems (RP;) :

Minimize ¢;j(z;)
gi(zj) =y, (RP;)
r; €95

Observe that the resource allocation y; must be chosen such that (RP;) is non empty.

Let denote its optimal value, when finite, by v;(y;). An equivalent formulation for (P) is
then :

Minimize V(y1,....yn) = Y vi(y;)

_7:1

0 .
y?% y] +5y]:] 1,...,771 (V)
> 6y, =0
7=1
Y 61/]3‘7:173777'

where Y; is the set of the locally acceptable allocations for the j-th division. Again, the
objective function V' is convex and possibly nonsmooth, but collecting the dual imputed

prices (—uy, ..., —u;) we obtain a subgradient which should be used to update the resource
allocations.
The additional requirement of the feasibility of the resource allocations (y1,...,¥m)

which complicates somewise the coordination task turns the resource-directive approach
less attractive than the price-directive one. Anyway, the literature may be classified in a
similar way to the former classification. No equivalent decentralized procedure to the one
designed by Arrow-Hurwicz has been proposed in the literature, but feasible directions
methods proposed by Geoffrion are in the same spirit; on the other side, the method
corresponding to Dantzig-Wolfe decomposition is the well-known Benders decomposition :



1. Projected gradient methods : in the differentiable case (again, this is guaranteed
by unicity of the divisional solutions for any feasible allocations), projected gradient
methods can be applied to solve (V) as proposed by Geoffrion [21] and Silverman [54].
Note that the property of differentiability has been justified in the context of economic
planning (see Heal [25]). Under the name of parametric decomposition, Ermoliev
and Ermolieva [16] have proposed a subgradient approach in the nondifferentiable
case. Although the coordination task is relatively easy and the volume of transferred
information is low, two major problems must be faced : the difficulty to control the
convergence and the slow rate of convergence. Moreover, the divisions cannot be
decentralized as they present non unique dual solutions and they need the optimal
global dual solution to recognize optimality.

2. Clutting planes : the generation of affine cuts based on each computed subgradient
to build an outer linearization of V(y) leads to Benders decomposition algorithm
[6], indeed a dual version of Dantzig-Wolfe decomposition in the linear case. In
fact, the main interest for Benders decomposition lies in the fact that the coupling
variables in the dual problem may appear with non convex or even discrete functions
or sets. Thus, it permits the treatment of discontinuities and indivisibilities. This
is the case of some location models that, even with indivisibility can be solved with
the interesting property of feasibility with a reduced number of cycles; within that
context, one can consider the upper level as the operational or tactical leval, while
the lower level is the structural or strategical level (see Luna [36]). Other procedures
of the same class require convexity of the global problem (see the application to
economic planning by Weitzman [59]).

3. Simplez-based methods : In the linear case, Rosen has first proposed a partitioning
algorithm [51], guaranteeing feasibility and improvement of the cost function at each
cycle. Indeed, this is the right way to decentralize the information, even if complete
decentralization is not possible and the transmission of information is rather costly.

To complete that list, we must add the singular approach of Cremer [13] who has analyzed
a planning procedure without price adjustment where both levels transfer quantities. As
a rare decentralized version of these resource-directive schemes, we can cite Grinold [24],
already cited for the price-directive schemes.

Comments on the properties of the cited methods are resumed in Table 2.

7 Mixed coordination schemes

In this section, we consider coordination schemes where both prices and quantities are
transferred to the divisions to modify their subproblems. The motivations for such an
increase in the volume of information transferred from one level to the other allow to
classify the algorithms in three classes :

1. Kornai-Liptak primal-dual game : we put apart Kornai and Liptak’s method [32], not
for its numerical efficiency but for its originality as a perfect balance between price-
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Properties Classes

Geoffrion Benders Others
a. Conditions of convergence | Strict convexity | Convex subproblems | Linearity
b. Easy coordination task yes no [16], [32], [54]
c. Easy divisional task yes yes [16], [32], [51]
d. Feasibility yes yes [51], [54]
e. Fast convergence yes no [51]
f. Decentralization yes no [24]

Table 2: Resource-directive schemes

and resource-directive schemes. There, prices and resource allocations are updated
by averaging the dual solutions of all past resource-directive subproblems and the
primal solutions of all past price-directive subproblems. It may then be seen as a
balanced mixture of Dantzig-Wolfe and Benders with no master programs. As it is
applicable to block-angular linear programs, it may be interpreted too (see Holmberg
[27]) as a particular case of Van Roy’s cross-decomposition [58] originally designed
for problems with both coupling variables and constraints. Convergence of Kornai-
Liptak algorithm is related to Brown-Robinson’s finite matrix game but it seems very
slow in practice.

. Variable decomposition methods : the motivation here is to give more flexibility to
the coordination scheme when dealing with heterogenous economies. As a general
idea, some divisions are treated by price-coordination while the others are treated
by resource-coordination. Obel [48] used this idea in the context of Dantzig-Wolfe
method and the economic implications are analyzed by Burton and Obel [9]. Het-
erogenous markets or decisional issues in a real company are the main motivation for
these approaches and some real cases have been simulated to compare the impact of
the various possibilities of mixed organizations on human decision-making ([11]). Fi-
nally, in Van de Panne local decomposition method for linear models [57], the choice
of the divisions which are allocated prices (respectively quantities) is dynamic and
depends on the basis structure of these divisions. Typically, when a division has alter-
native proposals, it receives resource allocations and send the imputed prices to the
remaining decentralized divisions. The procedure may be interpreted as a one-level
coordination but decentralization is unfortunately only limited to the independent
divisions (which number could as well be zero). On the other hand, primal-dual
schemes where two kinds of subproblems have to be solved for each division are
meant to reduce the number of iterations by strengthening the estimate of the opti-
mal value between two bounds. That idea could be of interest when implementing a

subgradient method (see [37] and [27]).

. Decomposition with mized subproblems : The motivation is now to compensate the
lack of decentralization of the pure price- or resource- directive schemes. In that
third type of mixed methods, prices and resource allocations are sent to the divisions

11



to form mixed subproblems. Decentralization is often the motivation for such a
complication of the divisional problem. The control of the production level of the
division can first be made by adding bounds or neihbourhood constraints in the
subproblem as in the above cited Boxstep method ([42]). This is the early approach
in Younes [60] and Charreton [10]. Now, we consider algorithms where some resource
allocations are forced in the price-directive subproblems : Maier and Vanderweide
[40] proposed to solve two different subproblems for each division : the first one is
the pure price-directive subproblem and the second one adds a resource allocation
constraint to the former. In Sengupta and Gruver [53], each division receives prices
and resource allocations and a local price imputation is obtained by adding the
central price to the local dual variable associated to the resource constraints. These
price imputations are needed to update the resource allocations maximizing the net
difference between central prices and local price imputations.

As a first subclass, we focus on some mixed algorithms that aim at the complete
decentralization of the divisions : first, Kydland [33] introduced a hierarchical allo-
cation of the coupling constraints in the price-directive subproblems. The allocated
resource are not charged by their price in the subproblem cost function. This has
been generalized by Mahey [38] for any structure in the coupling constraint yielding
the following mixed subproblems :

Let (/1,..., 1) be a partition of the resource index set {1,...,n}. Then the mixed
subproblems (MP;) are :

Minimize ¢;(x;) + > pigij(z;)
idl,

9ij(;) Z yij , Vi€ I

r; € S]‘

(MP;)

It is shown in [38] how to choose the partition of the resource in the linear case to
yield decentralization and how to derive a one-level procedure where the divisions
exchange prices and quantities without the help of a coordinator (see too Cohen [12]
for a theoretical study of the linear-quadratic case, Meijboom [44] and Nurminski
[47] for related methods).

Finally, decentralization may be obtained forcing unicity in the divisional subprob-
lems by adding a quadratic term in the objective function. Note that Arrow and
Hurwicz, as cited above, have mentioned that modification. In the linear case, that
idea appears in Jennergren [29] as a decentralized extension of Dantzig-Wolfe de-
composition method. When the quadratic term is updated by forcing feasibility of
the resource allocations, we obtain a procedure kindred to a separable augmented
Lagrangian method. This is what Spingarn has obtained [55] adapting the Proximal
Point method to design a decomposition method for block-angular convex programs
based on what he called the Partial Inverse operator. The subproblems are of the
following form :

12



Properties Classes
Kornai- | Variable Mized
Liptak decomposition decentralized
a. Conditions of convergence | Linearity | Linearity Linearity : [29], [33], [38], [47]
Convexity : [3], [19], [23], [55]
Quadratic : [12]
b. Easy coordination task yes no (23], [55]
c. Easy divisional task yes no [33], [38], [47]
d. Feasibility yes yes [29], [33], [38], [55]
e. Fast convergence no yes (3], [12], [23], [33], [38], [57]
f. Decentralization no ves but restricted | yes

Minimize ¢;(x;) + > (pijgi; (%) + gii(2)(Wi; — gi5(2i)) ")

CE]'ES]‘

Table 3: Mixed schemes

(QP;)

where (1) = Max{0,¢}. The subproblems receive prices and resource allocations
which are then updated and projected on their respective feasibility subspaces by
the coordinator. Observe that these subspaces have the following structure :

Primal subspace :

Dual subspace :

B = {(uu, .

=1

. 7unm)|ui1 =

A= {211y 2am)| Y2z =0,i=1,...,n}

: L
= Uim,t =1,...,n} = A

Related methods based on proximal techniques may be found in Golstein [23] and
Fukushima [19]. We may cite too a regularized version of Brown-Robinson matrix
game proposed by Auslender [3]. These regularization methods need convexity as-
sumptions and they offer many interesting features for parallelization purpose (see [8]
for general comments on the distributed computation of separable convex programs).

Again, some properties of the cited methods are resumes in Table 3. The third column is
limited to completely decentralized procedures.

8 Concluding remarks

We have surveyed the different schemes of hierarchical computation in the context of a
procedure for management or planning with decentralized information. We have consid-
ered both numerical behavior and informational flows, making a critical analysis of the
applicability of each class of algorithms.

Our synthesis do not obviously pretend to be exhaustive. In what concerns the appli-
cation models, our attention has been focussed on papers that are important for economic
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planning. Many applications in technology and some particular models of operations re-
search have not been taken in consideration. For instance, stochastic and dynamic aspects
have been left in the shade to give more emphasis on the structural aspects of organization.
Another important question that has been left apart refers to the stability of the coordina-
tion process when getting close to the optimum. Indeed, for a given environment (i.e. type
of functions and parameters that represent the preferences, the technologies and resource
availabilities), each mechanism must lie on an ’output rule’ that specifies the actions that
will be taken at the end of the dialogue. The concepts of transition between the dialogue
(iterative computation of the equilibrium) and the decision-making (optimal control) is
of particular importance for the theory and practice of decentralized planning (see Luna
[36]).

As an interesting conclusion of our synthesis, we may say that the optimization ap-
proach is a limited but convenient model to discuss global market mechanisms. It suggests
a nice balance between the advantages of informational decentralization and incentives
of the markets mechanisms on one hand, and the government actions to drive the so-
cial ’optimum’ in economic sectors with strong economies of scale, which seems easier
with state companies for such monopolistic sectors. Recent efforts in Regional Science
and Transportation Research are more devoted to the numerical solution of variational
inequalities to cope with more general situations than the ones considered here. As it is
shown in Nagurney [46], parallel decomposition algorithms are currently been investigated
to solve these equilibrium in a decentralized manner. But the mathematical background
on which these techniques rely seem curiously poorer than the one which has motivated
earlier the research on decomposition methods, mainly with linear programming. Relax-
ation and block-coordinate methods are the most popular to take full advantage of parallel
processing, but we observe that they are quite useless for the purpose of decentralized
information and decision-making as they suppose that the interactions between the divi-
sions are distributed on a low-connected grid of processors, turning the coordination very
hard to implement. We think that a good compromise between decentralized computation
(with a coordination level) and fine-grain distributed computation of equilibrium is given
by the proximal-like mixed coordination presented in the last section (subproblems (QP;))
as they offer nice features for distributed computation (see [8]) and retain most interesting
properties of complete decentralization.
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