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Abstract. Relations between the occurrence of road accidents, traffic and rain-
fall conditions are valuable in setting safety objectives for traffic management, 
and in assessing the safety impacts of new traffic management systems, prior to 
their implementation. Based on traffic, road accidents and rain data collected 
over one year, on a French urban motorway network, a set of safety perform-
ance functions were estimated; each of them provides the accident risk per ve-
hicle- kilometer for a certain type of accident, according to the occurrence of 
rain, and to the level of a traffic variable (average speed, occupancy, percentage 
of tailgating...). Analyses were carried out separately by lane and for two types 
of accidents: single-vehicle accidents and multiple-vehicle accidents.The rela-
tionships, although statistically significant, have yet to be validated by the 
treatment of another set of accidents.  
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1 Introduction 

In order to assess a new traffic management, before its implementation, it is necessary 
to assess the impact of the future values of the traffic variables on accidents. The aim 
of this paper is to establish the relationships which quantified this impact. For safety 
reasons, drivers adapt their speed, relative speed, time gap and lane, according to the 
infrastructure (bends, slopes, intersections), traffic conditions (speed of the vehicle 
ahead or on the adjacent lane, density) and weather conditions. It must be remem-
bered that the performance of vehicles and drivers decreases on slopes and bends, and 
some danger may come from close vehicles. Despite this adjustment, the accident rate 
remains related to infrastructure, [1], weather [2,3], and traffic conditions [4]. 

Relations between traffic conditions, infrastructure elements and accidents are dis-
crete or continuous. In discrete relationships, the risk per vehicle-km is computed by 
traffic flow regime, a traffic flow regime being a homogeneous group of traffic flow 



conditions, for different weather and infrastructure conditions. Golob et al. [4] found 
different accident rates according to the type of crash and traffic conditions, to the 
temporal variations in volume and speed; Abdel-Aty et al. [5] used traffic conditions 
and rain occurrence as accident precursors; [6] highlighted the impact of speed varia-
tion on accidents. 

In continuous relationships, the rate of accident is a continuous function of the traf-
fic variable. According to Nilsson or Elvik, the risk is a continuous power function of 
the speed [7,8]; Hauer and Elvik also proposed an exponential function [9, 10]. When 
appropriate, continuous relationships give a quick understanding of the risk and might 
be included in simulations or in traffic management algorithms. 

The objective of this paper is to model the relationship between the risk of acci-
dents and the traffic, according to the findings of Golob et al. [4] or Abdel-Aty et al. 
[5], who identified, among other things, the ways in which congestion affects road 
safety. Our approach is also in the continuity of Nilsonn, Elvik, Hauer [7,8,9,10], 
focusing on continuous relationships, and aims to demonstrate how speed, density and 
some other traffic variables are related to the occurrence of accidents.  

The role of speed in road safety has been demonstrated. "Speed" refers to different 
quantities: the speed limit at a national level, on a network, on a particular section; 
speeds of individual drivers recorded at particular points, or their distribution on a 
route; average speed on a spatial range; temporal average at a given point, by lane, or 
for all lanes. Depending on what "speed" is, the analytical pattern, the numerical val-
ues, and the relevance of models vary. In this paper, we consider the 6-minute average 
speed observed. Nilsonn as well as Elvik and Hauer models have been tested on some 
French interurban motorways; they have been adapted to take into account the differ-
ent motorway lanes and rain. Other models have also been considered. 

In the following, we present the data in section 2, followed by some continuous 
models, which relate the risk to different traffic indicators, in section 3. Section 4 
describes the relationships which have proved to be significant, while their limits are 
discussed in section 5. In section 6, the relationships between the obtained risk models 
are developed further. Section 7 contains the conclusion and perspectives; main nu-
merical results are to be found in the Appendix. 

2 Traffic, Accident and Meteorological Data 

Meteorological Data. The occurrence of rain, at the time and place of the accident, is 
recorded in the accident database; in the case of no-accident, the rain occurrence is 
provided, every six minutes, at the meteorological station of Marignane, Marseille 
airport, less than 30 km from all points of the network. This station is managed by 
Météo-France, the French Agency in charge of weather forecasts. During rain, the 
percentage of injury accidents or fatalities (13%) is greater than the percentage of 
vehicle-kilometers travelled (5.3%); this confirms the danger due to rain. 

Traffic Data. Between June 2009 and May 2010, the French centre for studies on 
risk, mobility and environment, CEREMA, collected traffic data (vehicle lengths, 



speeds) on the "Marius" network. This network is 150km long and is made up of the 
urban parts of motorways A7, A50, A51 and A55 around Marseille. 

 

  

The sections have either two lanes per 
direction (here called middle and slow lanes) 
or three lanes (fast, middle and slow lanes); 
104 available traffic stations by direction, (one 
station every 750 meters) are available on the 
main carriageway and on the ramps. Data are 
recorded every six minutes; the whole one-
year database was used for calibrating the 
traffic-safety relationships. Given that there is 
not much missing data, the traffic pattern 
based on available data is assumed to be 
representative. A weather station is located in 
Marignane airport, in the North-West. 
                                                     

Fig. 1. The Marius urban motorway network, near Marseille (France) 

The traffic counts and the distance between sensors lead to an estimated 1.5 billion 
vehicle-kilometers. 5.3% vehicles travel during rain, and 15% travel at night. Alt-
hough defining night as being from sunset to sunrise would be a more accurate reflec-
tion of the contribution of darkness to the occurrence of accidents, here night is al-
ways defined as being from 8pm to 6am, which brings some homogeneity for the 
types of travel and driver, and for their tiredness. 

Accident data. The French police collect the characteristics of all road fatalities and 
injury accidents. A few characteristics are used here: date, hour, minute, precise loca-
tion, number of vehicles involved, rain information. 

Over one year, 292 injury accidents or fatalities were recorded on the Marius net-
work. Missing data affects 18 accidents for which the direction of the accident is 
missing, or its location, or the traffic data shortly before. Table 1 gives the distribu-
tions of the remaining 274 accidents, according to rain and presence of a PTW. 

Table 1. Distribution of accidents, according to the presence of rain and PTW 

 
Rain No_Rain Total PTW No PTW 

Total 36 238 274 52 222 
Nighttime 9 47 56 8 48 
Daytime 27 191 218 44 174 
Daytime, rain confirmed (*) 16 187 203 42 161 
Daytime, rain not confimed(*) 11 4 15 2 13 

(*) the rain information considered here comes from the police report; however, the 
meteorological station does not confirm rain information in 11 cases by rain, and in 4 
cases by no-rain (daytime). 



 
Relationships have been estimated by lane because averaging the traffic indicators 

between lanes may hide certain phenomena such as heterogeneous speeds or densities 
between lanes. Although the lane where an accident begins is generally unknown, the 
accidents occurring when inserting from or to a ramp are mentioned in the database. 
These accidents are not included in the estimations of the relationships for the middle 
and fast lanes. For every accident, traffic data from the first upstream sensor, when 
available, are considered; when unavailable, traffic data at the first downstream sen-
sor, or at the second upstream or downstream sensors, are considered. Traffic condi-
tions may change at the moment of the accident; also it is mandatory, when estimating 
a relationship between accidents and traffic conditions, to use traffic conditions before 
the accident. As accident times are only estimated by the police on their arrival on site 
afterwards, for every accident we examined the series of speeds recorded at the up-
stream sensor for forty minutes until the time estimated by the police. When traffic 
conditions did not change, we considered the 6-minute period ending before the acci-
dent time (taking into account a time offset equal to the average travel time between 
the sensor and the accident location); when one single drop in speed occurred, we 
considered the 6-minute period ending before the drop; when several drops were rec-
orded, we selected the period ending eighteen minutes before the accident (eighteen 
minutes was found to be the time-lag for which the sensitivity analysis conducted in 
[11] provides the highest correlation between speed and single vehicle accidents). 

It is at night that 20% of all accidents occur, but for only 15% of the vehicle-kms 
traveled. This means an increase in risk at night  

Types of accident. Relationships between traffic and accidents have been calibrated 
by type of accident. Two types of accident have been considered: accidents implying 
a single vehicle, and accidents implying multiple vehicles.  

25 out of the 218 daytime accidents are linked either to a breakdown of a vehicle, 
or to the driver (drowsiness, alcohol...) or to the presence of a pedestrian; these acci-
dents are probably not linked to the traffic conditions, so they have been discarded 
from the analysis. The distribution of the 193 remaining accidents according to the 
type of accident is given in Table 2. 

Table 2. Number of accidents with available traffic data by lane and type of accident 

 Single Vehicle Multiple Vehicles Total 
Slow Lane 46 147 193 
Slow Lane (*) 46 137 183 
Middle Lane (**) 44 128 172 
Fast Lane (***) 39 117 156 

(*) Excluding accidents on ramps 
(**)There are fewer accidents on the middle lane because of missing traffic data 
(***)There are fewer accidents counted on the fast lane because there is no "fast" 
lane for accidents occurring on a two-lane motorway section. 



3 Statistical Models and Traffic Indicators 

Safety Performance Indicators are generally based on negative binomial models, or on 
distributions like the Poisson-Maxwell-Conway distribution which better fit the dis-
persion [12]. The risk "R" of accident by vehicle-kilometer is related in our approach 
to different variables within a logistic regression. Six types of relationships have been 
tested on thirteen variables (traffic indicators).  

3.1 Six models 

The name of a model is constituted by a part indicating its pattern ("POW" for the 
power function, "EXP" for the exponential function,..) and by subscripts indicating, if 
relevant, that the sets of accidents and traffic conditions have been restricted for the 
estimation of the model: The subscript "N" (for no-rain) indicates that accidents and 
traffic conditions during rain have been excluded. The subscript "R" (for "Ramp") 
indicates, when the model is estimated on the slow lane, that accidents occurring near 
a ramp have been included. The subscript "*" indicates that accidents implying a 
PTW have been excluded. 

For a given weather condition (rain or no-rain), and a given type of accident, the 
six-minute periods are grouped by average speed intervals: the speed interval for a 
group "i" of periods is such that there is at least one accident of the given type occur-
ring during the six-minute periods associated to this group. 

1. In the power model, which is generally applied to speed only, risk is proportional 
to an exponent of the traffic indicator.  

 (𝑃𝑂𝑊𝐸𝑅):  𝑅𝑖 = 𝛼𝑉𝑉𝑖
𝛽+𝛾𝑅𝑎𝑖𝑛.𝑅𝑎𝑖𝑛𝑖 + 𝜀𝑖 .   for 𝑖 = 1 …𝑛  (1) 

εi is the deviation, assumed to be Gaussian-distributed. 
Ri is the risk by vehicle-km, Vi is the average speed for the group i of periods; 

Raini=1 if rain occurs during each period of this group (0 otherwise); the number of 
accidents (for a given type of accident) and the number of vehicle-kms are associated 
to this group. 

αV, β and γRain are deterministic parameters to be estimated. n is the number of 
groups of periods. This type of model applies also to other relationships, where Vi is 
replaced by the traffic indicator of another variable, with an analogous process for 
forming the groups of periods.  

2. We introduce "logistic" power models, linking the logit of the risk Log[Ri /(1- Ri)] 
to the indicator (V) and to the occurrence of rain. Computing confidence intervals 
on parameters requires an assumption on the distribution of deviations - here as-
sumed to be Gaussian. The second model is written as follows, using α as the loga-
rithm of αV: 

  (POW): Log[Ri /(1- Ri) = α + β.Log(Vi)+ γRain.Rain i + εi.   (2) 



The number of accidents during rain being low, we have also proposed a simplified 
model, noted (POWN), without the rain coefficient. 

3. Hauer [9] and Elvik [10] proposed an exponential model; we add to this model a 
term which models the rain impact: 

 (𝐸𝑋𝑃𝑂):𝑅𝑖 = 𝑒𝛼+𝛽𝑉𝑖+𝛾𝑅𝑎𝑖𝑛.𝑅𝑎𝑖𝑛𝑖 + 𝜀i  (3) 

4. The associated logistic model reads: 

 (EXP):Log[Ri /(1- Ri)]= α + β. Vi + γ Rain .Rain i + εi.  (4) 

5. (Vi ) being positive, its square is an increasing function, and replaces (Vi ) without 
changing the sign of β in model (EXP2):  

 (EXP2): Log[Ri /(1- Ri)]= α + β. 𝑉𝑖2 + γ Rain Rain i + εi.  (5) 

6. The function Log2(Vi) has been successfully tested for some indicators (the per-
centages); it is a decreasing function when Vi is less than 1; this would imply a 
change of interpretation of the sign of β, unless considering (- Log2(Vi)) as follows: 

 (𝐿𝑂𝐺2): Log � 𝑅𝑖
1− 𝑅𝑖

� =  α −  β. 𝐿𝑜𝑔2(𝑉𝑖) + γ𝑅𝑎𝑖𝑛  .𝑅𝑎𝑖𝑛𝑖  +  𝜀𝑖     (6) 

7.  Parabolic models (excluding rainy conditions): When risk is not monotonous with 
the traffic indicator, modeling requires one more parameter. However, due to an 
insufficient number of accidents, it was not possible to estimate four parameters; 
models are therefore estimated here on datasets excluding rain, so the rain coeffi-
cient can be removed; "γ" designs the new coefficient – the coefficient of the 
square of the indicator in parabolic models, which takes into account the traffic in-
dicator and its square; the direction of variation of the risk depends on whether the 
traffic indicator V is below/above the value -β /(2. γ). 
The (EXPNP) model comes from the exponential model:  

 (EXPNP):Log[Ri /(1- Ri)]= α + β. Vi +γ 𝑉𝑖2 + εi (7) 

where the subscript "P" (for Parabolic) indicates a parabolic term.  
8. The (MIX) model combines a part coming from a power model, and a parabolic 

part coming from an exponential model:  

 (MIXNP):Log[Ri /(1- Ri)]= α + β.Log(Vi) +γ 𝑉𝑖2 + εi.  (8) 

3.2 Statistical analysis 

The traffic and accident databases were separated into different cases, according to 
the time of day (night time/daytime), lane, weather (rain or not). Independent analyses 
were performed for every combination of cases. 



Three accident datasets were considered: the whole dataset, or all accidents except 
those during rainy conditions, (disregarding the traffic data when raining), or all acci-
dents except those involving Power-Two-Wheelers (PTW).  
The logistic regression Generalized Linear Model (GLM) was used with the software 
R ®; it processes the vectors of number of accidents (Acci,) and number of vehicle-
kilometers (Ni) by group of periods.  

3.3  Thirteen Traffic Indicators 

Even with individual data on upstream sensors, it is impossible to identify, among 
others, the driver responsible for the accident. What we wanted to know was whether 
the parameters of the whole set of drivers are different just before an accident. The 
thirteen indicators presented here are computed from the aggregation of traffic data 
over 6-minute periods: 

1. Average speed Vi, by 6-minute period in km/h. We use here the arithmetic speed 
average (time mean speed).  

2. Occupancy – it is the percentage obtained by summing the "occupancy times" (in 
seconds) of vehicles passing in a 360-second period, and then by dividing the sum 
by 360; the occupancy time of vehicle j of length Lj and speed Vj is equal to 
3.6(Lj+ λ)/Vj, λ being equal to 1 meter, the length of the inductive loop; the unit 
factor is "3.6".  

3. Relative speed in km/h ("RelSpeed") is the difference between the speeds of two 
consecutive vehicles on the same lane. The sum of relative speeds on a period is 
of no interest, because the speed of a vehicle generally appears twice in the sum 
with opposite signs, and thus disappears. Since negative relative speeds have no 
safety impact, they were disregarded. The indicator proposed here is the sum of 
relative speeds, when positive

4. Indicators 4,5,6, and 7: Time headway is here the difference between the arrival 
times at the sensor of the fronts of two successive vehicles. Indicator 4 is the 6-
minute average time headway ("Average TH"); indicators 5-7 are the percentages 
of tail-gating (less than 2 seconds, "%TH <2"), short (less than 1 second, "%TH 
<1") and very short headways (less than 0.5 seconds, "%TH <0.5").  

, divided by the traffic count.  

5. Indicators 8,9,10, and 11: Uno defined the "PICUD" (Potential Index for Colli-
sion with Urgent Deceleration) [13]. It is the estimated difference (in meters) be-
tween the stopping locations of vehicles "j" and "j-1", assuming that the leader j-1 
brakes at the very instant t j when the follower "j" passes the sensor. The leader is 
then located at V j-1

.(t j- t j-1) meters downstream the sensor; its rear end is located 
at V j-1

.(t j- t j-1) - L j-1 meters before, assuming that the traffic sensor records times 
of passage of the front of vehicles. When the PICUD is negative, there is a colli-
sion danger, which would have been avoided, if the follower had had a space gap 
greater by {-PICUD} before the braking of the leader. The follower brakes with 
the same deceleration (here the deceleration is Γ=6.25 m/s2) at time t j +T, after a 
reaction time T=1 second, when the vehicle is located at Vj.T meters downstream 
the sensor: 



 𝑃𝐼𝐶𝑈𝐷𝑗 = �𝑉𝑗−1�
2
−�𝑉𝑗�

2

2𝛤
− 𝑇.𝑉𝑗 + (𝑡𝑗 − 𝑡𝑗−1).𝑉𝑗−1 − 𝐿𝑗−1  (9) 

The length L j of the second vehicle replaces the length L j-1 of the leader in equa-
tion (9) when the sensor records times of passage of the rear end of vehicles. 

 
Indicator 8 is the absolute value of the sum of negative PICUD j, over the 6-
minute period, divided by the traffic count of the period.  

Indicators 9, 10, and 11 are the percentages of drivers for which the PICUD is be-
low a threshold (respectively 0 meters ("%PIC<0"), minus 10 meters ("%PIC<-
10"), minus 20 meters("%PIC<-20"). 

6. Indicators 12 and13: PICUD becomes "PICUDbis", by removing the reaction 
time in equation (9). 
 Indicator 12 ("PICUDBis") is the sum of negative PICUDbis j, divided by the 
traffic count.  
Indicator 13 is the percentage of negative PICUDbis ("%PICBis<0").  

4 Significant relationships 

The risk of single-vehicle and multi-vehicle accidents is related to average speed in 
section 4.1, to occupancy in section 4.2, to time headway in section 4.3, to relative 
speed in section 4.4 and to PICUD indicators in section 4.5. The logistic form of the 
models has been preferred. Results are presented by lane, with or without the impact 
of rain, only for daytime accidents and traffic. Numerical values of the parameters of 
logistic regressions are presented in the tables given in the Appendix. The lines of 
these tables are numbered for easy reference: the lines whose numbers end with the 
suffix "-1" represent the risk of single-vehicle accidents, while suffix "-2" is related to 
multiple-vehicle accidents. The relationships with a P-value lower than 5% are gener-
ally considered as significant. However, as the number of accidents in our database is 
not very large, and in the hope of identifying useful relationships, we also considered 
relationships with a P-value threshold of 10%; these relationships will have to be 
confirmed on a larger database. In the tables, for each relationship, the first line gives 
the number of the relationship, the type of model, the values of the two or three pa-
rameters, the Null deviance D0, and the AIC criterion; the second line gives the name 
of the traffic indicator, the standard deviations "(σ)" of the coefficients, the P value 
(P%) rounded to zero when less than 0.1; the residual deviance DR and the degree of 
freedom #Fre. 

4.1 Risk and 6-minute average speed (daytime) 

In normal weather conditions, there are relationships between single-vehicle accidents 
and speed (see the first subsection), between multiple-vehicle accidents and speed 
(the second subsection); for the whole set of weather conditions, there are relation-
ships between single-vehicle accidents, speed and rain (the third subsection), We did 
not find any significant relationship between multiple-vehicle accidents, speed and 



rain, likely because, during rain, there is a concomitant (slight) decrease in speed and 
an increase in risk. 

Models with a rain term, single-vehicle accidents. The risk of single-vehicle acci-
dents (daytime) is significantly related to the 6-minute average speed of the fast lane 
by power and exponential relationships. Rain is a significant contributing factor. 
When Power Two Wheeler accidents are excluded (model POW*), the exponent β is 
very high (β =7.86, σβ =2.2) with 52% of the deviance explained. The rain coefficient 
γrain=1.88 (its standard deviation σγ being 0.37); this corresponds to multiply the risk, 
in case of rain, by e1.88 =6.5. When including PTW, the speed exponent decreases to 
β=2.66 (σβ =1.3) with 38% of deviance explained, see Table 4 in the Appendix, lines 
2-1 and 6-1; the decrease of β means that PTW accidents are not particularly correlat-
ed to a high observed average speed. We imagine that when the average speed is low 
or moderate, some PTW drive between the lanes with a higher speed, but this speed 
has no impact on the average speed because the magnetic loop of the traffic sensor is 
not implemented too close to the adjacent lane. 

The exponential model (EXP) gives a speed exponent β=0.03 (σβ =0.014) which 
passes to 0.073 (σβ =0.020) when PTW accidents are excluded (model EXP*), see 
Table 4 in the Appendix, lines 1-1 and 7-1.  

On the middle lane, no logistic model appears significant. However, the second 
lane (from the right) of both two-lane sections and three-lane sections are grouped in 
this work as the "middle" lane, which brings some heterogeneity. 

 On the slow lane, no significant relationship was found. Speed is less homogene-
ous on this lane, due to the presence of trucks and ramps. The speed average, an aver-
age of inhomogeneous quantities, is not a good indicator. 

Normal weather conditions, single-vehicle accidents. In normal weather conditions, 
i.e. when excluding traffic and accidents during rain, the percentage of explained 
deviance is only due to the traffic indicator, and is generally smaller than when the 
rain impact is added.  

On the fast lane the model, the power model remains significant only when PTW 
are excluded (POWN*), with a percentage of explained deviance of 26%, instead of 
52% in (POW*), and a slightly smaller exponent β, (Table 4, line 3_1). 

Exponential models are also significant with smaller β, as well as with and without 
PTW (Models (EXPN) and (EXPN*) lines 5-1 & 8-1. Since many PTW postpone their 
trip when it rains, which decreases their risk exposure during rain, the comparison of 
risks between rainy and non-rainy conditions is fully justified only when excluding 
PTW.  

Multi-vehicle accidents are related to the speed with negative β coefficients (Table 
4, lines 9-2 to 14-2). This might mean that the presence of a high number of low-
speed vehicles (trucks, entering vehicles) brings some danger. But it might just mean 
that, when speed decreases, accidents are more likely to result from crashes between 
vehicles than to be single-vehicle accidents.  



Three tentative conclusions. First, the average speed is a better indicator when ex-
cluding PTW. Second, exponential models are robust. Third, speed must be estimated 
on the fast lane. 

4.2 Risk and 6-minute occupancy, daytime, multiple-vehicle accidents.  

Positive coefficient β are obtained, which means that the higher the occupancy, the 
higher the rate of multiple-vehicle accidents. 

Including accidents related to a ramp, on the slow lane, model (EXP2), with a rain 
coefficient γrain= 0.5 explains a limited percentage (20%) of the deviance of the logit 
of the risk of multiple-vehicle accidents (Table 5, line 26-2 in the Appendix).  

Excluding rainy conditions, model (POWN) explains 36% of the deviance on the 
middle and slow lanes, and 10% only on the fast lane; on the fast lane, excluding 
rainy conditions and PTW, model (EXPN*) explains 23% of the deviance (Table 5, 
lines 25-2, 27-2, 28-2) - see also the comparison of the models, Figure 5. 

However, the parabolic model EXPNP (with β>0 and γ<0) indicates that when oc-
cupancy is very high (greater than 32%), the risk decreases on the slow lane (relation 
29-2, Table 5); it is the same for the middle lane (relation not included in Table 5). 

4.3 Average time headway and percentages of short time headway. 

Average time headway (TH). Average time headway is proportional to the inverse 
of the traffic count; thus a high TH (a low traffic flow) occurs either when there is a 
low traffic demand, or when there is congestion. The first case, which is the most 
frequent, implies that, for a high TH, when vehicles are far from each other, the high-
er the TH, the lower the rate of multi-vehicle accidents. Negative β and positive γrain 
have effectively been obtained on the middle lane, with a very limited percentage of 
explained deviance (Table 6, lines 31-2 and 32-2). At the same time, the rate of sin-
gle-vehicle accidents is higher. A positive β explaining the single-vehicle accidents is 
thus expected and obtained on the three lanes for all models. Table 6, line 30-1 gives 
the results of the model (POW) for the slow lane; the coefficients are similar for other 
lanes and the percentage of explained deviance varies from 39% to 50% according to 
the lane. 

Percentage of short time headway. The higher the percentage of short headway, the 
lower the single-vehicle accident rate. β exponents are negative (Table 6, line 33-1); 
when including rain, 38% to 68% of the deviance, according to the lane, are ex-
plained. 

Relationships between risk of multiple-vehicle accidents and the three percentages 
of time headway are either insignificant, or explain a very small part of the deviance, 
except when a parabolic term is added. Excluding rainy conditions, parabolic models 
such as (EXPNP) or (MIXNP) (with β <0 and γ>0) indicate, for all lanes and for the 
three percentages, that the risk of multiple-vehicle accidents is high, both for low and 
high percentages of short time headway, (Table 6, lines 34-2 to 42-2). 



4.4 Risk and sum of positive relative speeds (divided by the traffic count) 

Abdel-Aty et al .found that the speed variance (obtained from a series of ten consecu-
tive 30" average speeds) was a relevant accident precursor [14,15]. This means that 
changes in 30" traffic conditions are correlated to accident occurrence. This does not 
mean that heterogeneous speeds (between two consecutive vehicles on the same lane) 
are correlated to accidents and that more homogeneous speeds (as obtained with an 
adaptive speed control device) would be safer; although we tried to check this point 
with our relative speed indicator, which measures this speed heterogeneity, on our 
limited dataset we found little evidence on this point. 

The risk of single-vehicle accidents increases with the sum of positive relative 
speeds (divided by the traffic count). In all lanes the β coefficients of the power model 
are positive: 27% to 64% of the deviance is explained, depending on the lane. The 
numerical values of the parameters are given here only for the fast lane (Table 6, line 
43-1). This might come from correlations between relative speed and traffic density, 
and between traffic density and accident type. Symmetrically, with the model (POW), 
the risk of multiple-vehicle crashes seems to decrease (β negative) when the indicator 
increases; 33.6% and 45% of the deviance of the multiple-vehicle accident risk are 
explained on the middle and the slow lanes (Table 6, lines 44-2 and 45-2. However, 
with parabolic models MIXNP or EXPNP, the parabolic coefficients γ are positive, im-
plying an increase in risk on the middle and slow lanes when the relative speed indi-
cator is sufficiently high (above 1.5 km/h) (Table 6, lines 46-2 and 47-2). 

4.5  PICUD-based indicators 

Single-vehicle accident occurrence is related, with positive γRain and β coefficients, to 
PICUD-based indicators:  

• the absolute value of the average of negative PICUDbis on the fast lane (line 48-1), 
•  the percentage of PICUD less than minus 20 meters (fast lane, without Power–

Two- Wheelers, line 49-1),  
•  the percentages of negative PICUDbis on the fast and middle lane (lines 50-1 and 

51-1). 

Multi-vehicle accident occurrence is related to rain with a positive coefficient and, 
with a negative β, to the percentages of PICUD less than minus 10 or 20 meters (Ta-
ble 6, lines 52-2 and 53-2); however these relationships are obtained only when in-
cluding accidents related to the ramp entrance/exit (which was tested on the slow lane 
only); no significant relationship appears between multi-vehicle accident occurrence 
and the averages of negative PICUD or PICUDbis. 

When rain is excluded, the rate of multi-vehicle accidents is related to the percent-
ages of PICUD less than minus 10 meters or minus 20 meters. However, these rela-
tionships are obtained: 

•  on the fast lane when excluding PTW (model LOG2
N*),with a small percentage of 

deviance explained (line 54-2); the risk increases with the percentage (β>0), 



•  on the slow and the middle lanes, when adding a parabolic term (EXPNP, lines 55-
2 and 56-2); the risk increases with high percentages (γ >0). 

The percentage of negative PICUD, when excluding rainy conditions, is related to the 
risk of multiple-vehicle accidents by the parabolic model EXPNP, with a positive coef-
ficient γ, which shows that risk increases with high percentages of negative PICUD. 
However, the percentage of explained deviance (26%) is limited (Table 6 line 57-2). 

5  Discussion 

Accidents are due to an inappropriate speed, relative speed or lane change at an in-
dividual level; however, at an aggregated level, a correlation between risk and an 
aggregated traffic variable might come via another correlated variable. Different in-
terpretations/misinterpretations have to be considered. They are discussed here only in 
the case of speed: 

1. Continuity between individual and aggregated traffic values: a high average speed 
results from many risky drivers with high individual speeds: it is likely, but not 
certain, that a high average speed results in a higher risk.  

2. A good correlation does not mean causality. An accident due to a high density also 
appears with a low speed, because high density is correlated to a low speed, but 
this is misleading. 

3. Misinterpretation. "A low speed" can be inappropriate if speed is not sufficiently 
low. During rain, the speed decreases, but too little, hence the risk increases. If the 
presence of rain is not identified, a misleading negative correlation between risk 
and speed would appear. All contributing factors have to be identified, and then in-
troduced. 

4. Accounting for the many contributing factors is difficult, with only a limited num-
ber of accidents. Accidents occur due to multiple factors: presence of rain, of a 
curve, of an access ramp, etc. Using the speed average may be inadequate, due to 
the sensitivity of the extremes ends of the distribution (the risky drivers). If all but 
the risky drivers respect the speed limit, this will imply a negative correlation be-
tween average speed and risk. 

5. Classifying accidents as single or multiple-vehicle accidents: even if speed had no 
effect on risk, speed would have a positive correlation with single-vehicle accident 
risk and a negative one with multiple-vehicle accident risk: this is due to the nega-
tive correlation between speed and density, combined with the correlation between 
density and type of accident. When traffic density is low, few vehicles are close to 
another vehicle, and so more accidents are in fact "single-vehicle" accidents. 

6. Non monotonous relationships. Multiple-vehicle accidents increase with traffic 
density, but for very high density, some crashes only lead to material damage (ex-
cluded here). The pattern of the relationship linking the risk to the traffic indicator 
is not monotonous when several basic phenomena occur. Progress on that topic 
should be possible by refining the analysis on the basis of more accident data, thus 
allowing a more disaggregated level. 



A lack of correlation may come from the absence of any relationship, from con-
founding various opposite effects, or from insufficient data; a lack of linear correla-
tion may also come from a non linear relationship. 

6 Deepening the relations between the relationships 

In order better to understand the relevance of the models, the occurrence of accidents 
and the quality of data and data processing, three points need to be highlighted: 

•  Both the power and the exponential functions model the relationships between 
accident risk and speed or occupancy. How is this possible, given that the functions 
are different?  

• What are the relationships between the total accident risk (sum of risks for single- 
and multiple-vehicle accidents) and speed?  

• Combining the relationship between speed and risk with the relationship between 
risk and occupancy gives a speed-occupancy relationship. How credible is this new 
relationship, which comes under the category of speed-density relationships? The 
more incredible the new relationship, the more incredible the two risk models 
which have been combined. 

6.1 Models relating the accident risk and speed 

In the exponential model, the risk "R" is linked to the speed by a negative exponential 
function; this implies that the logarithm of the risk is a linear function of the speed.  

Here, a linear relationship between the logit of the risk, defined as Log[R/(1-R)], 
and the speed has been calibrated within a logistic regression. As (1-R) is very close 
to 1, the logit of the risk is numerically very close to the logarithm of the risk. Also, in 
Figures 2, 3, 4 and 5, the Y-axis, instead of being entitled "logit of the risk" has been 
entitled "Logarithm of the risk" for the sake of readability. In these figures, the expo-
nential model appears as a straight line, whereas the power model appears as a loga-
rithm function.  

Daytime accident risk and single-vehicle accidents. Figure 2 gives the modeled 
risks for single-vehicle accidents related to speed (daytime, fast lane, average 6-
minute speeds between 60 and 130 km/h). The power model (represented by a dia-
mond without any solid line, (parameters from Table 4, relation 2-1) is impressively 
close to the exponential model (the solid line) (parameters from Table 4, relation 1-1).  

 



 
Fig. 2. Daytime risk of single-vehicle accident related to speed: Power & exponential models 
(fast lane)  

In the case of rain - not displayed here - both models remain very close together: 
1.6886 or 1.69669 need to be added to the logit of the risk for the power model and 
for the exponential model, respectively.  

The curves "exponential +Standard Deviation (Single)" and "power+Std_Dev 
(Single)" have been built by adding one standard deviation to parameters α and β of 
the models; the first of these two curves is closer to the curve displaying the risk than 
the curve "power+ Std_Dev (Single)". This shows that the exponential model has a 
lower standard deviation than the power model and indicates that the exponential 
model should be chosen. 

Accident risk and multiple-vehicle accidents. As already stated in section 4.1, the 
relationship between the average speed and risk is closer when excluding accidents 
implying PTW, perhaps because the speed of some PTW, which weave in and out 
between two lanes, is broadly independent of the recorded average speed; in addition, 
as the number of accidents in our database is limited, excluding rain decreases the 
number of parameters of the models and in turn makes the relationship easier to iden-
tify. 

In the cases where there is no rain and no Power-Two-Wheelers are involved, Fig-
ure 3 gives the logit of the modeled risk for single-vehicle accidents and for multiple-
vehicle accidents, assuming either a power model or an exponential model. 
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Fig. 3. Daytime risk related to the speed on the fast lane for single and multiple-vehicle acci-
dents, power and exponential models; rain and PTW excluded.  

These curves are based on relations 3-1, 8-1,13-2,14-2 of Table 4, Appendix. 
The exponential model (dashed straight line) and the power model (stars) also co-

incide when considering the multiple-vehicle accidents. Both risks decrease with 
speed. Although we have no real proof, this decrease is probably not really due to 
speed, but to the combination of two factors: 

1.  Correlations between high speed and low density,  

2.  With low density traffic there are few vehicles on the road; accidents generally 
concern a single vehicle thus decreasing the occurrence of multiple-vehicle crashes.  

Total accident risk and speed. The total daytime risk of accidents (single- or multi-
ple-vehicle) is less sensitive to speed, because of a balance between the increase and 
decrease described previously.  
 

 
Fig. 4. Total daytime risk (single- and multiple-vehicle accident) related to the speed on the fast 
lane, power and exponential models; rain and PTW excluded. 
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The total risk at low speeds is high, probably due to congestion. The total risk de-
creases while speed increases up to 110 km/h and then increases for higher speeds. By 
definition, at least two vehicles are involved in a multiple-vehicle accident, whereas 
just one vehicle is involved in a single-vehicle accident1

6.2 Models relating the accident risk and occupancy 

. It would be interesting to 
consider the risk by vehicle, which would be obtained by weighting each accident by 
the number of vehicles involved in the accident. Multiple-vehicle accidents would be 
weighted by a weight of at least two and would have a greater impact on the total risk.  

The power and exponential models have also been used to model the relationship 
between accident risk and occupancy. 

In the case of no rain, both the power and exponential models relate significantly 
both risks (single- and multiple-vehicle accidents) and occupancy on every lane. Their 
numerical parameters are given in Table 5; these models are displayed for the fast 
lane on Figure 5, from the relations given Table 5 lines 17-2, 18-2, 21-1, 23-1) . 

 

 

Fig. 5. Risks of single- and multiple-vehicle accidents, and total risk related to the occupancy of 
the fast lane, power and exponential models, daytime, no rain. 

The risk of single-vehicle accidents decreases when occupancy increases, since 
with a high occupancy rate there are many vehicles on the road, and accidents gener-
ally concern multiple vehicles. 

The power and the exponential models are close together in the case of multiple- 
vehicle accidents; however, they differ in the single-vehicle case. Remember that the 
number of single-vehicle accidents used to calibrate the models is rather low (23). For 

                                                           
1 However, a number of drivers involved in a single-vehicle accident claim that the accident is 

due to a runaway vehicle. 
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single-vehicle accidents, the exponential model must be preferred to the power model 
because of the lower values of two criteria (Residual Deviance and AIC-Akaike In-
formation).  

The total risk is minimal (exponential model) when occupancy is 8%; for this oc-
cupancy, there are too few vehicles on the road to cause multiple-vehicle accidents, 
and average speed is generally not high enough to cause single-vehicle accidents. 
When occupancy is higher, there is a strong increase in the total risk. 

 
6.3 Consistency analysis: the case of speed and occupancy risks. 

 
There is a relationship between density ρ and occupancy O, assuming that all vehicles 
have the same constant speed during a period. Let L be the average length of the vehi-
cles and  l  be the length of the traffic sensor (in meters); ρ =1000 .O /(L+ l ) or: 

 O = (L+ l). ρ /1000   (10) 

In France, the values of L and l are 4.2 meters and 1 meter. 
 Let us now consider a model giving the risk related to speed, and a model giving 

the risk related to occupancy. If these models are consistent, their combination should 
be credible. 

 As the risk model of single-vehicle accidents related to speed is monotonous (in-
creasing), it is possible to invert it and to produce a monotonous (increasing) "speed 
related to risk" model; combining this new model with the (decreasing) "risk related 
to occupancy" model results in a new "speed related to occupancy" model which is 
decreasing. Then, using the occupancy-density relationship, a speed-density relation-
ship is obtained: 

Another speed-occupancy or speed-density relationship is obtained when inverting 
the monotonous (decreasing), model giving the risk of multiple-vehicle accidents in 
function of speed, with the increasing model giving the risk of multiple-vehicle acci-
dents in function of occupancy.  

Our very aim is not to identify a speed-density relationship, but to analyze the rela-
tionship produced. The risk models will not be considered as credible if the speed-
density relationship. produced by their combination is not credible. 

Let us consider both exponential models for risk related to speed and risk related to 
occupancy; then the logarithm of the risk is linear related to speed and linear related 
to occupancy; it leads to a linear relation between speed and occupancy (or density) 
which is the relation proposed by Greenshields [17]. 

Considering both power models for risk related to speed and risk related to occu-
pancy leads to a power speed-density relationship: 

 V =μ. ρδ  with δ <0 (11) 

Considering the power model (Eq.2) for risk related to speed and the exponential 
model (Eq.4) for risk related to occupancy leads to the Underwood speed-density 
relationship: 

 𝐿𝑜𝑔 𝑅/(1−𝑅=𝛼𝑉+ 𝛽𝑉.𝐿𝑜𝑔(𝑉)=𝛼𝑂+ 𝛽𝑂.𝑂=𝛼𝑂+ 𝛽𝑂(𝐿+ 𝒍 ). 𝜌 /1000                 (12) 



where 𝛼𝑉 and 𝛽𝑉  are the parameters of the power model linking risk to speed; 
𝛼𝑂  and𝛽𝑂 are the parameters of the exponential model linking risk to occupancy. 

Rewriting Eq.(12): Log(V) = (αo - αV)/βV+ ρ. (βo/βV) (L+ l ). /1000  or: 

 V=𝑒(α0−α𝑉)/ β𝑉 . 𝑒β0/ β𝑉(L+𝒍 )ρ/1000    (13) 

This is the Underwood [16 ] fundamental diagram: 

    V=V𝑓 . 𝑒(−ρ/ρcr)/ with: Vf =𝑒(α0−α𝑉)/ β𝑉   and 1/ρcr = - (βo/βV. (L+ l ) /1000)         (14) 

where V and ρ are the variables (average speed and density); Vf, is the free-flow 
speed and ρcr  is the critical density at which the traffic flow is maximum.  

 
When a credible speed-density relationship is, as inquired, obtained, this does not 

prove that the risk models are good, because the risk has disappeared from Eq.(13). 
Let us imagine that 50% of accidents are missing; the risk would be divided by two, 
but this would be unnoticeable in Eq.(13). 

Fundamental diagrams which link speed to density are always using the space-
mean speed (i.e. the harmonic mean). It is then necessary, for passing from risks to 
fundamental diagrams, to express risks in function of the space-mean speed rather 
than the time-mean speed (i.e. the arithmetic speed). The coefficients α,  β, γRain of the 
power model (Eq.(2)) relating risk and speed are replaced by the coefficients αSpace, 

βSpace, γ'Rain  of model (15) : 

 Log[Ri /(1- Ri) = αSpace + βSpace.Log(Vs,i,)+ γ'Rain.Rain i + εi (15) 

where Vs,i is the harmonic mean speed at period i; αSpace ,  βSpace and γ'Rain are ob tained 
either by a direct calibration of model (15), or from the α, β and γRain parameters of 
model (2) by minimizing the sum of the square of the differences between the risk 
related to the time-mean and the space-mean speeds: 

� �𝛼𝑆𝑝𝑎𝑐𝑒 +  𝛽𝑆𝑝𝑎𝑐𝑒Log�𝑉𝑠,𝑖� + 𝛾′𝑅𝑎𝑖𝑛𝑅𝑎𝑖𝑛𝑖 − α −  βLog(𝑉𝑖) − 𝛾𝑅𝑎𝑖𝑛𝑅𝑎𝑖𝑛,𝑖�
2

𝑖
 (16) 

This second approach has been done here. For the case of {fast lane, no rain, day-
time}, three power models relating risk to space-mean speed have been calibrated: 

- risk for single vehicle accidents: (PTW excluded): Relation 3-1 is modified in Re-
lation 3-1Space 

- risk for multiple vehicle accidents: Relation 10-1 is modified in Relation 10-2 Space 
- risk for multiple vehicle accidents (PTW excluded); Relation 14-2 is modified in 

Relation 14-2Space 
The values of the parameters of these relationships are in the Appendix, Table 4. 

The inverse of these three power models have been combined with exponential mod-
els relating risk to occupancy (relations 24-1, 17-2, 25-2); three Underwood speed-
density relationships have been obtained; there parameters are in Table 3: 



Table 3. Values of the parameters of the Underwood speed-density relationships obtained by 
power and exponential models relating risks of single- or multiple-vehicle accidents to space-
mean speed and occupancy, daytime, no-rain, fast lane. 

 Vf ρcr  Capacity 
Single-vehicle accident without PTW 132,6 53.1 2589 
Multiple-vehicle accident 120.3 55.7 2465 
Multiple-vehicle accident without PTW 119.3 58.1 2550 

 
The free-flow speed is credible; the critical density and the capacity, although rather 
high, are not incredible, taking into account, first that it is a fast lane and second that a 
higher capacity appears when considering data aggregated on a 6-minute period rather 
than over one hour.  

The three corresponding speed-density curves are given in Figure 6: 
 . 

 

Fig. 6. Three Underwood Speed-Density relationships, no-rain, with and without (*) PTW, fast 
lane, daytime 

The star(*) in the legend indicates than PTW have been excluded. The three speed-density 
relationships appear very close together. 

7 Conclusion and perspectives 

Using significant relationships, it has been shown that some variables are significantly 
linked to accidents:  

─  for single-vehicle accidents, the 6-minute average speed on the fast lane; and the 
average time headway (on every lane), 

─  for multiple-vehicle accidents, the percentages of short time headway (for every 
lane); excluding rain; the power and the exponential models relate significantly ac-
cidents and occupancy on every lane - but the correlation is low on the fast lane; 
moreover, for the slow and middle lanes, risk increases with occupancy until a 
threshold, then decreases. 
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It is more difficult to understand other relationships linking accidents to relative 
speed or to the "PICUD", a variable based on the collision computation. These rela-
tionships might come from a correlation between relative speed or the PICUD with 
the traffic density, followed by a mechanical effect of the level of density on the type 
of accident.  

Moreover, the behavior of a single driver who is responsible for an accident does 
not systematically appear at an aggregated 6-minute level. 

Such relationships, if correctly validated and integrated in traffic management 
tools, should be useful to anticipate the safety impact of a new traffic management 
scheme. 

We also investigated the relationships between the risk relationships, and we think 
that this approach provides a better understanding of data, accidents and models. 

The perspectives of this work are three-fold: improving the data processing, vali-
dating and assessing the predictive power of such relationships as accident precursors, 
and integrating them into traffic management systems. 

Improving data processing is at three levels:  
(1) Improving data. The number of accidents considered is not sufficient to vali-

date the relationships; the time of the accident is not perfectly known; the distance 
between two successive traffic stations is too high to capture very local problems; 
data are static, and do not describe the beginning or the ending of a bottleneck; 
Ppwer-Two-Wheels are not counted. 

(2) Data processing. Some analyses must be disaggregated, according to the type of 
section and infrastructure. Various aggregation times should be tested. 

(3) Traffic indicators. Other relevant indicators should be added (Time to Colli-
sion, Post-Encroachment Time, etc.). Selected percentiles might replace the 6-minute 
average in the indicators. Inter-lane indicators, based on relative speed between lanes 
and on gap availability, and platoon indicators, should be introduced. Future research 
should also include the development of models that take into account the various con-
tributing variables in the same model, and that also take into account some interac-
tions between the variables. 

The perspective also is to go on to validation and to transferability. Validating the 
relationships on other periods is essential, as well as studying their transferability onto 
other sites. The power of such relationships as "accident precursors" should be as-
sessed first by analyzing the rates of false alarm and of "no detection" they imply 
(Abdel-Aty et al., 2005) and second by checking whether, beyond correlation, the 
traffic indicators really contribute to the risk. In the case where this power is sensitive, 
the final step would consist in integrating such relationships as safety criteria in traffic 
management algorithms.  
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8 Appendix. Significant relationships 

Table 4. Parameters of significant relationships relating risk to average speed and rain (day-
time) 

Num- Model Constant   'β 'γ       D0 AIC 
Ber Lane (σα) (P%) (σ β) (P%) (σγ) (P%) (DR) #Fre 
 1-1 EXP -20.205 0.030 1.697 59.9 131 

Speed Fast (1.44)(0%) (0.01)(2.5%) (0.33) (0%) (36.2) #41 
 2-1 POW -29.382 2.662 1.689 59.9 132 

Speed Fast (6.13)(0%) (1.31)(4.3%) (0.33) (0%) (37.0) #41 
 3-1 POWN* -48.158 6.609 

 
26.9 74 

     3-1Space       -43.282     5.562 
   Speed Fast (11.7)(0%) (2.51)(0.8%) 

 
(19.7) #23 

 4-1 PowN -27.399 2.235 
 

28.9 98 
Speed Fast (6.78)(0%) (1.45)(12%) 

 

(26.0) #31 

 5-1 EXPN -19.584 0.025 
 

28.9 97 
Speed Fast (1.58)(0%) (0.01)(10%) 

 
(25.8) #31 

 6-1 POW*  -54.0 7.86 1.88 56.6 102 
Speed Fast (10.3)(0%) (2.21)(0%) (0.37) (0%) (27.2) #33 
 7-1 EXP*  -25.1 0.07 1.88 56.6 103 

Speed Fast (2.2)(0%) (0.02)(0%) (0.37) (0%) (27.3) #33 
 8-1 EXPN*  -23.9 0.06 

 
26.9 75 

Speed Fast (2.5)(0%) (0.02)(0.8%) 
 

(19.9) #24 
 9-2 EXPN -12.828 -0.033 

 
109.4 224 

Speed Fast (0.35)(0%) (0.003)(%) 
 

(51.1) #72 
 10-2 PowN -5.149 -2.392 

 
109.4 229 

10-2Space 
 

-6.913 -2.015 
   Speed Fast (1.26)(0%) (0.28)(0%) 
 

(56.0) #72 
 11-2 Log2 -10.173 -0.283 

 
109.4 228 

Speed Fast (0.66)(0%) (0.03)(0%) 
 

(54.6) #72 
 12-2 EXP2

N -14.01 -2.109e-04  
 

109.4 222 
Speed Fast (0.22)(0%) (2.5e-05)(0%)   (49.0) #72 
 13-2 EXPN* -13.1543 -0.0321 

 
    89.4 197 

Speed Fast (0.40)(0%) (4.4e-3)(0%) 
 

    (46.9) #65 
 14-2 PowN*  -5.620      -2.337 

 
    89.4 200 

 14-2Space 
 

-7.344     -1.969 
   Speed Fast (1.43)(0%) (0.3)(0%) 
 

    (49.5) #65 
 



Table 5. Parameters of significant relationships relating risk, occupancy and rain (daytime) 

Num- Model 'α 'β 'γ D0   AIC   
ber Lane (σα) (P%) (σα) (P%) (σγ) (P%) (DRes) (#Fr) 

15-1 POW -18.751 -0.545 1.796 94.8 126 
Occup. Fast (0.31)(0%) (0.07)(0%) (0.33) (0%) (41.1) #34 

16-2 POWN* -15.238 0.352 
 

75.0 224 
Occup. Fast (0.42)(0%) (0.15)(2.4%) 

 
(69.3) #68 

17-2  EXPN -16.565 6.969 
 

97.2 256 
Occup. Fast (0.16)(0%) (1.32)(0%) 

 
(74.9) #78 

18-2 POWN -14.823 0.422 
 

97.2 269 
Occup. Fast (0.38)(0%) (0.14)(0.3%) 

 
(87.2) #78 

19-1 EXP -15.622 -24.474 1.993 94.8 117 
Occup. Fast (0.26)(0%) (4.75)(0%) (0.33) (0%) (32.9) #34 

20-1 POW* -18.676 -0.466 2.033 64.2   99 
Occup. Fast (0.39)(0%) (0.09)(0%) (0.36) (0%) (27.7) #29 

21-1 POWN -18.595 -0.503 
 

47.4   87 
Occup. Fast (0.36)(0%) (0.09)(0%) 

 
(27.3) #23 

22-1 EXP* -15.762 -28.054 2.115 77.1 231 
Occup. Fast (0.31)(0%) (6.1)(0%) (0.37) (0%) (59.9)    #73 

23-1 EXPN -15.727 -22.108 
 

 47.4    82 
Occup. Fast (0.30)(0%) (5.60)(0%) 

 
 (22.5) #23 

24-1 EXPN* -16.1008 -20.1865 
 

21.581    64 
 Occup Fast (0.37)(0%) (7.11)(0.4%) 

 
  (13.2)  #20 

25-2 EXPN* -16.7577 6.5275     75.0         213 
Occup. Fast (0.17)(0%) (1.48)(0.4%)               59.4     #68 

26-2 EXP2
R -16.117 14.423 0.482         144          351 

Occup. Slow (0.1)(0%) (2.26)(0%) (0.28)(9%)        (116)        #98 
27-2 POWN -13.069 1.182 

 
  128         182 

Occup. Slow (0.4)(0%) (0.16)(0%) 
 

       (81.6)         #82 
28-2 POWN -12.787 1.321   

 
  142           178 

Occup. Middle (0.4)(0%) (0.18)(0%) 
 

       (91)          #79 
29-2 EXPNP    -17.473  20.029 -31.340            127           283 

Occup. Slow (0.3)(0%) (4.17)(0%) (10.5)(0%)          (75)         #84 
 
 
 
 
 



Table 6. Significant relationships. relating  risk, various traffic indicators and rain (daytime) 

Number Model 'α 'β 'γ D0 AIC    
Variable Lane (σα)(P%) (σα) (P%) (σ γ) (P%) (DResi) #Fr 

30-1 POW -18.6 1.15 1.25 86 154 
Average TH Slow (0.3)(0%) (0.22)(0%) (0.35)(0%) (51) #46 

31-2 EXP* -15.8 -0.12 0.52 63 246 
Average TH Middle (0.2)(0%) (0.07)(6.5%) (0.3)(11% (56) #80 

32-2 MIXNP -15.2 -1.08 0.014 61 237 
Average TH Middle (0.3)(0%) (0.41)(0.8%) (0.007)6% (54) #75 

33-1 EXP -15.4 -3.58 1.67 69.3 133 
%TH<2s Middle (0.4)(0%) (0.85)(0%) (0.34)(0%) (30.5) #46 

34-2 EXPNP -14.0 -8.84  8.56  70.8 243 
%TH<2s Fast (0.4)(0%) (1.67)(0%) (1.7)(0%) (48.9) #85 

35-2 EXPNP -14.8 -7.44 8.60 70.7 253 
%TH<2s Middle (0.5)(0%) (2.0)(0%) (2.2)(0%) (57.5) #82 

36-2 EXPNP -15.4 -4.38 6.59  74.2 287 
%TH<2s Slow (0.4)(0%)  (2.24)(5%) (2.6)(1%) (64.4) #95 

37-2 EXPNP -14.36  -14.47  26.21 94.8 235 
%TH<1s Fast (0.2)(0%) (2.5)(0%) (5.5)(0.0) (62.1) #72 

38-2 MIXNP -17.2  -0.47 6.62  68.4 242 
%TH<1s Middle (0.4)(0%) (0.14)(0.1%) (4.1)(11%)     (59.7) 78 

39-2 MIXNPR -16.9  -0.34  6.87  59.3 247 
%TH<1s Slow (0.4)(0%) (0.13)(0.7%) (4.1)(9(%) (52.8) 78 

40-2 MIXNPR* -18.4 -0.47  168.5 56.9 145 
%TH<0.5s Fast (0.5)(0%) (0.11)(0%) (51.4)0.1% (40.8) 42 

41-2 EXPNP -15.7 -63.1 1565 36.1 131 
%TH<0.5s Slow (0.2)(0%) (37.6)(9.3%) (969)(10% (33.3) #37 

42-2 EXP2
N -16.0 -308.5   54.6 183 

%TH<0.5s Middle (0.1)(0%) (136)(2.4%)  (47.7) #56 
43-1 POW -17.0  1.95  1.59  57.2 111 

RelSpeed Fast (0.16)0% (0.45)(0%) (0.33)0%) (20.6) #36 
44-2 POWR* -16.2 -1.41 0.52 122 277 

RelSpeed Slow (0.1)(0%)  (0.2)(0%) (0.3)(9.8% (67) #85 
45-2 POWN -16.1      -1.58  106 228 

RelSpeed Slow (0.1)(0%)  (0.2)(0%)  (50) #71 
46-2 MIXNP -16.8 -2.00 0.42 100 225 

RelSpeed Middle (0.3)(0%)  (0.4)(0%) (0.2)(10%) (60) #66 
47-2 EXPNP -13.0 -4.60 1.42 106 228 

RelSpeed Slow (0.5)(0%)  (1.2)(0%) (0.66)(3%) (48) #71 
48-1 EXP -18.2 1.78 1.6  28 63 



PicudBis Fast (0.3)(0%)  (0.9)(3.9%) (0.5)(0.2% (18) #18 
49-1 EXP2* -17.7 60.66 1.9 40 94 

%PIC<-20 Fast (0.3)(0%) (36.8)(9.9%)  (0.4)(0%) (20) #33 
50-1 EXP2 -17.3 246.5 1.6   52 113 

%PiCbis<0 Middle (0.2)(0%) (140)(7.8%)  (0.3)(0%) ( 33) #35 
51-1 EXP2 -17.4 211.2 1.8 57 92 

%PiCbis<0 Fast (0.2)(0%)  (110)(5.5%)  (0.3)(0%) (33) #24 
52-2 POWR -17.3 -0.48 0.51 97 288 

%PIC <-10 Slow (0.3)(0%)  (0.08)(0%) (0.28)(7%) (62) #95 
53-2 POWR -18.4  -0.55  0.54 78 183 

%PIC <-20 Slow (0.5)(0%) (0.1)(0%) (0.28)(5%) (43) #54 
54-2 LOG2

N* -17.0 0.05  63 142 
%PIC <-20 Fast (0.2)(0%)  (.01)(0%)     (35) #44 

55-2 EXPNP -15.2 -41.30  238.09  67 177 
%PIC <-20 Middle (0.2)(0%) (8.0)(0%) (64)(0%) (31) #59 

56-2 EXPNP -15.2 -73.26 725.46 61 148 
%PIC <-20 Slow (0.2)(0%)  (17.4)(0%) (250)0% (28) #46 

57-2 EXPNP -14.2 -11.50 16.4 71 245 
%PIC <   0 Fast (0.4)(0%)  (2.6)(0%) (4.4)(0%) (63) #84 
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