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This paper addresses formal verification of intermittent fault diagnosability in Discrete Event Systems (DESs).
The system is modeled by a Finite State Automaton and intermittent faults are defined as faults that can
automatically recover once they have occurred. Two definitions of diagnosability, regarding the detection of fault
occurrences within a finite delay and the detection of fault occurrences before their recovery, are discussed. The
diagnosability is analyzed on the basis of the twin-plant structure, which is formally modeled as a Kripke structure,
while diagnosability conditions are formulated using LTL temporal logic. We focus on a practical application of
this approach, namely a case-study from the railway control field, will serve as a benchmark to illustrate the
various developed mechanisms and to assess the scalability of the technique.

Discrete Event Systems, Formal verification, Diagnosability analysis, Intermittent faults, Model-Checking.

1. INTRODUCTION

Fault diagnosis is a crucial and challenging task in large
and complex dynamic systems. This problem has been
extensively studied by both Artificial Intelligence (AI)
and Control Engineering communities. In particular, an
increasing amount of work has been devoted to fault
diagnosis of DES over the last two decades as witnessed
by the survey work in (Zaytoon and Lafortune 2013).

One of the main issues in fault diagnosis of DES, is
diagnosability analysis. In simple terms, diagnosability
refers to the ability to infer accurately, from partially
observed executions, about the faulty behavior within a
finite delay after a possible occurrence of a fault. The
formal definition of diagnosability was first introduced
in the seminal work (Sampath et al. 1995), where a
systematic method to check diagnosability based on
a diagnoser construction in an event-based context
was developed. A similar work based on a diagnoser
construction in a state-based context was proposed in
(Zad et al. 2003).

Improvements in terms of complexity, based on the
verifier and the twin-plant structures have been
introduced in (Jiang et al. 2001; Schumann and Pencolé
2007; Yoo and Lafortune 2002), where the basis idea
was to build an intermediate structure by performing
a parallel composition of the system model with itself.
Then diagnosability problem can be addressed by

analyzing every pair of executions that share the same
observation.

Model-Checking techniques (Clarke et al. 1999), which
have been developed for efficiently verifying complex
dynamic systems, have been exploited to deal with
diagnosis issues. For instance, (Cimatti et al. 2003)
addressed the formal verification of diagnosability using
CTL symbolic Model-Checking. In this work, verifying
diagnosability is reduced to a reachability analysis
problem in the twin-plant structure where the condition
of diagnosability is expressed as a CTL formula. Some
further reformulations were also given in (Bourgne et al.
2009; Boussif and Ghazel 2015). Several algorithms
based on symbolic techniques, have been proposed
in (Grastien 2009) to test diagnosability with fairness
properties. In (Peres and Ghazel 2014) a novel approach
to deal with diagnosability using a µ-calculus logical
framework was proposed. The Boolean Satisfiability
Problem (SAT), which is a dual technique of Model-
Checking has been also used to deal with some fault
diagnosis issues (Grastien and Anbulagan 2007; Grastien
2008).

All the DES framework discussed above assume that
the failures are permanent, which means once a fault
occurs, the system remains indefinitely faulty; hence the
terminology ”failure” is often used for permanent faults.

In many systems, faulty behavior often occurs
intermittently, which can be depicted as a failure
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event followed by its corresponding ”reset” event,
followed by new occurrences of failure events, and so
forth (Contant 2005). Indeed, intermittent faults are
defined as faults that can automatically recover once
they have occurred. Such faults are predominant in
many real life systems, like, for example, electrical
contacts, overheating of chips, noise measurements in
hardware systems, exceptions, interrupts, and bugs in
software systems.

The methodologies referenced above for permanent
faults are no longer adequate in the context of
intermittent faults. Since the case of intermittent faults
shows some subtle configurations compared to the case
of permanent failures. Consequently, some DES based
frameworks have been proposed to handle intermittent
faults. One of the first contributions was made by
(Jiang et al. 2003), where a state-based DES modeling
for the so-called ”repeated faults” was introduced.
Various notions of diagnsability were discussed and
polynomial algorithms for checking these properties were
provided. Some improvements have been introduced
in (Yoo and Garcia 2004; Zhou and Kumar 2009).
These works focus on determining how many times a
failure has occurred, but do not address the system
status determination. Dealing with diagnosability of
intermittent faults in this sense was first discussed in
series of works (Contant 2002, 2005). In these studies,
an FSA event-based approach is used, i.e. the faults and
their recovering are considered as unobservable events.
The purpose of these works is to determine which
failures are present in the system and which failures
have occurred and been recovered, This work represents
an extension of the seminal work on diagnosability of
permanent failures (Sampath et al. 1995) with some
modifications regarding the failure modeling and the
diagnoser construction in order to cater for intermittent
failures. A similar work is reported in (Correcher et al.
2003) with an illustration through an industrial process.

In (Soldani et al. 2007), intermittent fault diagnosis in
an FSA framework was reported. Particularly, only the
normal behavior of the system is considered and failure
are modeled as the occurrence of an extra event or as the
lack of a specific event. A diagnoser is then established
for each event type. An extension to Petri Net framework
was given in (Soldani et al. 2006).

An extension of the state-based DES framework,
introduced in (Zad et al. 2003), was proposed in (Biswas
2012) to deal with intermittent failures. Two notions
of diagnosability were introduced, one for detecting the
occurrence of a fault, and the other for detecting its
recovery. The diagnoser is constructed in the same way
as in (Zad et al. 2003) with the same time-complexity.
Necessary and sufficient conditions for each notion
have been developed, and an algorithm to verify the
diagnosability conditions has been provided.

A new way for modeling failures, which includes
permanent and intermittent faults, was proposed in

(Guanqian et al.). Diagnosability of both permanent and
intermittent failures were revisited, and an approach to
discriminate between these fault types was discussed.
Illustrative examples to demonstrate the proposed
approach and analysis results were presented.

In this paper, we propose an approach for diagnosability
analysis of intermittent fault using model-checking
techniques. The approach is based on the twin-plant
structure (Jiang et al. 2001), and the reformulation of
the diagnosability issues as temporal logic formulas that
are workable with Model-Checking.

We first discuss two definitions of diagnosability of
intermittent faults, regarding the detection of fault
occurrences within a finite delay and the detection of
fault occurrences before their recovery. Then, necessary
and sufficient conditions for each notion are developed
based on the twin-plant construction, and reformulated
as linear temporal logic (LTL) formulas in order to use
model-checking for actual verification. A railway case-
study is used to illustrate the various concepts discussed
and also to assess the efficiency and the scalability of the
approach.

The paper is organized as follows: Section 2 introduces
the considered system model and the modeling of
intermittent faults as well as some related notions
and notations. In section 3, different definitions of
diagnosability are discussed. Section 4 discusses the
twin-plant construction and gives the necessary and
sufficient conditions for each definition. Formulation of
diagnosability of intermittent faults as a model-checking
issue, and necessary and sufficient conditions as LTL
formulas are established in Section 5. We illustrate the
discussed concepts through a railway case-study (a level
crossing benchmark) in Section 6. Finally, Section 7
draws some concluding remarks and points some future
directions.

2. PRELIMINARIES

2.1. System Model

Discrete models are quite convenient to perform safety
analysis of industrial systems in a sufficiently high
abstraction level (Cassandras and Lafortune 2008).
When systems are abstracted as DESs for diagnosis
purposes, the model used is often a finite state
automaton (FSA) G = 〈X,Σ, δ, x0〉 where, X is a finite
set of states, Σ is a finite set of events, δ : X×Σ→ 2X

is the partial transition function, and x0 ∈ X is the
initial state. A triple (x, σ, x′) ∈ X × Σ × X is called
a transition if x′ ∈ δ(x, σ). The model G accounts
for the normal and faulty behaviors of the system.
The system behaviors are then described by the prefix-
closed language L ⊆ Σ∗ generated by G, where Σ∗

denotes the Kleene-closure of set Σ.

Partial observability is a key issue in fault diagnosis.
In this regard, some events in Σ are observable, i.e.,



their occurrence can be observed, while the others are
unobservable. Thus, event set Σ can be partitioned as
Σ = Σo

⊎
Σu, where Σo denotes the set of observable

events and Σu the set of unobservable events.

In the context of diagnosis of intermittent faults, let
Σf ⊆ Σu denotes the set of fault events and let
Σr ⊆ Σu denotes the set of fault reset events.
Failures and their recovery are basically represented
using unobservable events, since their detection and
diagnosis would be trivial if they were observable.
Thus, the set of fault events (resp. the set of
reset events) can be partitioned as disjoint failure
classes Σf = Σf1

⊎
Σf2

⊎
· · ·

⊎
Σfm , where Σfi(i =

1, 2, . . . ,m) denotes the ith fault class (resp. Σr =
Σr1

⊎
Σr2

⊎
· · ·

⊎
Σrm , where Σri(i = 1, 2, . . . ,m)

denotes the recovering class of faults in Σfi).

An event-trace s = (σ1, σ2, . . . , σn) is said to be
associated with state-trace π = (x1, x2, . . . , xn+1) if
∀1 ≤ i ≤ n, xi+1 ∈ δ(xi, σi). We write si to indicate the
ith event in s and sf the last event in s (i.e., sf = s|s|).
We denote by L/s the post-language of L upon s, i.e.,
L/s := {t ∈ Σ∗ |s.t ∈ L}. We write s ≤ t to denote the
fact that s is a prefix of t.

For convenience, we introduce the following particular
sets of event-traces:

• ψ(Σfi) = {s = (σ1, σ2, . . . , σn) ∈ L | σn ∈ Σfi} is
the set of event-traces in L that end with a faulty
event in Σfi .

• ψ(Σri) = {s = (σ1, σ2, . . . , σn) ∈ L | σn ∈ Σri}
is the set of event-traces in L that end with a reset
event in Σri .

• ψ(Σfi) = {s = (σ1, σ2, . . . , σn) ∈ L | ∀1 ≤ i < n :
σi /∈ Σfi ∧ σn ∈ Σfi} is the set of event-traces in L
that have only the last event in Σfi .

• ψ(Σri) = {s = (σ1, σ2, . . . , σn) ∈ L | ∀1 ≤ i < n :
σi /∈ Σri ∧ σn ∈ Σri} is the set of event-traces in L
that have only the last event in Σri .

Let us consider σ ∈ Σ and s ∈ Σ∗, we write σ ∈ s to
denote the fact that ∃ 1 ≤ i ≤ |s| such that si = σ.
By abuse of notation, we write Σf ∈ s to denote that
a fault event from Σf is an event in event-trace s (i.e.,
∃f ∈ Σfi such that f ∈ s).

To capture the observed behavior of the system, we
define the projection operator as a mapping P : Σ∗ →
Σ∗o. In the usual manner, P (σ) = σ for σ ∈ Σo; P (σ) =
ε for σ ∈ Σu, and P (sσ) = P (s)P (σ), where s ∈ Σ∗

and σ ∈ Σ. That is, P simply erases the unobservable
events in any event-trace. The inverse projection P−1

L

is defined by P−1
L (y) = {s ∈ L(G) : P (s) = y}. The

projection operator can then be extended to language L
by applying the projection to all traces of L. Therefore, if
L ⊆ Σ∗, then P (L) = {t ∈ Σ∗o : (∃ s ∈ L) [P (s) = t]}.

Let G1 = 〈X1,Σ1, δG1
, x01
〉 and G2 =

〈X2,Σ2, δG2
, x02
〉 denote two finite state automata.

The strict synchronous composition of G1

and G2 produces an automaton GG1‖G2
=

〈X1 × X2,Σ1 ∩ Σ2, δG1‖G2
, (x01

, x02
)〉, where

δG1‖G2
⊆ (X1 × X2) × (Σ1 ∩ Σ2) × (X1 × X2)

and (x′1, x
′
2) ∈ δG1||G2

((x1, x2), σ) if x′1 ∈ δG1
(x1, σ)

and x′2 ∈ δG2
(x2, σ).

Finally, we define the non-deterministic automaton
G′ = 〈Xo,Σo, δG′ , x0〉 as the generator of language
L(G′) = P (L(G)). Thus, G′ is called “the constructed
generator.” of G. Elements Σo and x0 are as defined
before. Xo = {x0} ∪ {x ∈ X : ∃x′ ∈ X,∃σ ∈ Σo :
x ∈ δ(x′, σ)}. The transition relation of G′ is given
by δG′ ⊆ (Xo × Σo × Xo) and is defined as follows:
(x, σ, x′) ∈ δG′ if ∃s = (σ1, σ2, . . . , σn = σ) ∈ Σ∗ such
that x′ ∈ δ(x, s) and ∀1 ≤ i ≤ n−1, σi ∈ Σu, σn ∈ Σo.

In the remainder of this paper, we consider a finite state
automaton G = 〈X,Σ, δ, x0〉 as the model of the system
to be analyzed. For the sake of clarity, here only one class
of fault event Σf and its corresponding class Σr of reset
events will be considered.

2.2. Modeling of Intermittent Faults

In the literature pertaining to diagnosis of DES,
faults are said to be intermittent when they are non-
permanent, in the sense that each occurrence of fault
is followed by its reset to the recovery behavior of
the system within a finite delay. Such faults may be
activated or deactivated by some external disturbance.
Regarding the system status, an intermittent failure
takes the system from a normal state to a faulty
state (by the occurrence of the corresponding fault
event), and then the system is taken again to a recover
state within a finite delay (by the occurrence of the
corresponding reset event).

In order to capture these changes in the system status,
due to the various types of events, we use the supervision
pattern Ω (Carvalho et al. 2012), shown in Figure 1,
which is a label automaton that models the dynamic
behavior of the system regarding intermittent faults.
One can note that automaton Ω plays the role of the
label function, which is usually used in fault diagnosis
(Sampath et al. 1995).

Nstart F R
Σf

Σ \ Σf

Σr

Σ \ Σr

Σf

Σ \ Σf

Figure 1: The label automaton Ω

Actually, when label automaton Ω is in state N (N for
normal status), this means that the system executes a
normal behavior, which indicates that no event from Σf

has occurred yet. However, when a fault event occurs,



the label automaton Ω moves to state F (F for faulty
status), and remains in that state for as long as the
system executes a faulty behavior. When the fault is
recovered, by the occurrence of a reset event, Ω switches
to state R (for recovery status), where it stays as long as
the system continues to execute a non-faulty behavior.
As we deal with intermittent faults, the system can
execute again a fault event. Then the label automaton
Ω can return to state F .

In order to keep track of the occurrence of faults and
their corresponding resets along the system’s evolution,
we compute automaton G` as the parallel composition
of automata G and Ω (G` = G ‖ Ω). In fact, the states
of G` are the states of automaton G enriched with labels
N , F , or R. The following example illustrates these
notions.

Example 1 Consider automaton G, shown in Figure
2(a) and taken from (Contant et al. 2004). The sets of
observable and unobservable events are Σo = {a, b, c, d}
and Σu = {f, r}, respectively. In addition, Σf = {f}
and Σr = {r}. Automaton G` = G ‖ Ω is depicted in
Figure 2 (b).
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Figure 2: (a) Automaton G, (b) automaton G` of
Example 1.

Regarding the diagnosis of intermittent faults, one can
infer that the states of automaton G` can be partitioned
into three subsets: ‘Normal’, ‘Faulty’ and ‘Recovered’,
which can be identified using fault-assignment function:

Ψ : X → {N,F,R}.

3. DIAGNOSABILITY OF INTERMITTENT
FAULTS

3.1. Assumptions

Besides the well-known assumptions considered in the
diagnosis of permanent faults (Sampath et al. 1995),
i.e., that language L(G) is live and no cycle of
only unobservable events exists in G, the following
assumptions are considered:

1. Each fault event σf has its corresponding
reset event σr. Recall that both events are
unobservable.

2. At least, one observable event exists between
the occurrence of any fault event σf and its
corresponding reset event σr and between the
occurrence of any reset event σr and a new
occurrence of fault event σf .

3. Each occurrence of fault event σf is followed by
the occurrence of its corresponding reset event σr
within a finite delay, and each occurrence of a
reset event σr is followed by a new occurrence
of the fault event σf within a finite delay. This
assumption implies that fault and reset events
occur with some regularity (pseudo-periodicity).
These notions are called the Σf − recurrence
and Σr − recurrence, as introduced in (Contant
2005).

3.2. Diagnosability Definitions

Intermittent failures are dynamic (Contant 2005), that
is, they can repeatedly occur and reset, and thus, the
fault status evolves along with the system evolution.
Consequently, several notions of diagnosability can
be introduced, according to the properties and the
specifications one may need to investigate. For example,
one may want to ensure the detection of any fault
occurrence or its corresponding recovery. Another
definition would require checking the presence of each
fault before its recovery or checking the recovery
of any fault before a new occurrence of this fault.
Determining accurately the finite delays in which the
fault or its recovery can be diagnosed can also be
of interest in practice. Obviously, the choice between
these considerations greatly depends on the application
nature of the system and the objectives assigned to the
diagnosis activity.

In this section, we discuss two definitions of
diagnosability: F -diagnosability, which ensures the
detection of fault occurrence within a finite delay after
its occurrence, and Fr-diagnosability, which ensures the
detection of fault occurrences before their recovery. Note
that, these definitions do not take into account the
identification of the system status (i.e., whether the
faulty status of the system is precisely known or not,
when the fault is diagnosed).



Definition 1 (F -diagnosability)

An FSA G is said to be F -diagnosable w.r.t. projection
function P , fault class Σf and reset event class Σr, if
the following holds:

(∃ n ∈ N) [∀s ∈ ψ(Σf )] (∀t ∈ L/s) [‖ t ‖≥ n⇒ DF ]

where diagnosability condition DF is:

∀ω ∈ [P−1
L (P (s.t))]⇒ (Σf ∈ ω)

F -diagnosability, where ‘F ’ stands for fault
occurrences, has the following meaning: for any
event-trace s ending with a fault event in Σf ,
and t any continuation of s, then, n ∈ N exists such
that, after the occurrence of at most n events, it
is possible to detect the occurrence of the fault
based on the captured observation. This implies that
all the event-traces indistinguishable from s.t have
experimented, at least one fault from Σf .

Example 2 Let us take automaton G of Example 1
(Figure 2). G contains one fault event f with its
corresponding reset event r. Let us consider execution
ρ = 1, f, 2, a, 3, r, 4, b (5, f, 6, c, 7, r, 8, d, 9, e)∗, the
infinite event-trace, corresponding to this execution, is
noted s.t with, s = farbf (one can see that s ∈
ψ(Σf )), and t = (crdef)∗. The resulting observed
event-trace is then P (s.t) = ab(cde)∗. The only event-
trace in G which shares the same observable event-trace
with ρ is ω = fab(rcdfe)∗. One can see that 4 events
after executing the faulty event-trace s (2 observable
events), it is possible to infer accurately the occurrence
of fault f (since f occurs in all the event-traces which
share the same observation with s.t). Thus, according
to Definition 1, G is F -diagnosable (for n ≥ 4).

The above-mentioned definition ensures the detection
of intermittent fault occurrence within a finite delay.
However, it does take into account the detection of
each occurrence of the intermittent fault before its
recovery. Hereafter, we introduce a strong version of
diagnosability that deals with this property.

Definition 2 (Fr-diagnosability)
An FSA G is said to be Fr-diagnosable w.r.t. projection
function P , fault class Σf and reset event class Σr, if
the following holds:
[∀s ∈ ψ(Σf )] (∀t ∈ L/s ∧ t ∈ ψ(Σr))⇒ DFr

where diagnosability condition DFr is:

(∀ωω′ω′′ ∈ L : ωω′ ∈ [P−1
L (P (s))] ∧ ω′′ ∈ [P−1

L (P (t))])
⇒ [ω ∈ ψ(Σf ) ∧ Σr /∈ ω′] ∨ [Σf ∈ ω′′]

with F stands for ‘fault occurrences’, and (r) for
‘detection before the fault recovery’.

The above definition means the following: let s be any
finite event-trace in L that ends with a faulty event,
t be any finite continuation that ends with a reset

event. Condition DFr then requires that any finite event-
trace that shares the same observation with s.t, shall
experiment a faulty behavior between the moment of
the fault occurrence (at the end of s) and its recovery
(at the end of t), which ensures the fault detection.

Example 3 Consider again, automaton G of Example
1 (Figure 2). Let us take the finite event-trace
s = farbf associated with finite execution ρ =
1, f, 2, a, 3, r, 4, b, 5, f . It is clear that s ends with faulty
event f . Let event-trace t = crd, be the continuation
of s until the reset of f . There exists, in automaton G,
one event-trace ω = fabrcd associated to the finite
execution ρ′ = 1, f, 2, a, 3, b, 10, r, 11, c, 12, d which
shares the same observed event-trace with s.t, i.e.,
P (ω) = P (s.t) = ab(cd). However, according to
Definition 2, the occurrence of f cannot be detected,
in this case, before its recovery (i.e., no faulty state in
ρ′ is reached, between the occurrence of f and its reset
r). Therefore, G is non-Fr-diagnosable.

It should be noticed that Fr-diagnosability is stronger
than F -diagnosability. Indeed, Fr-diagnosability requires
the detection of any fault before its reset. However,
F -diagnosability only requires the detection of the
fault within a finite delay, without considering the
different occurrences or resets of the fault. Thereby, it
is straightforward to infer the following,

Proposition 1 (Relation between definitions)

• Fr-diagnosability ⇒ F -diagnosability

• non-F -diagnosability ⇒ non-Fr-diagnosability

Remark:
As we deal with intermittent faults, each fault
occurrence is followed later on by its corresponding
reset event. Then, it is also interesting to discuss the
diagnosability of the recovery occurrence. Namely, this
consists in checking whether we can detect that the
system has moved to its recovery behavior after the fault
has been recovered (and before a new occurrence of a
fault event). These properties will not be discussed in
this paper.

4. VERIFICATION OF DIAGNOSABILITY OF
INTERMITTENT FAULTS

The procedure we suggest for analyzing diagnosability of
intermittent failures will be carried out by combining the
twin-plant construction method (Jiang et al. 2001), and
some extensions, we develop, of the Model-Checking
reformulation of diagnosability in the case of permanent
failures as in (Cimatti et al. 2003; Boussif and Ghazel
2015). In this section, we first recall the twin-plant
construction, and later we develop the necessary and
sufficient conditions for each notion of diagnosability
introduced in the previous section.



4.1. Twin-Plant Construction

The twin-plant, firstly introduced in (Jiang et al. 2001),
simply consists of two synchronized copies of generator
G′ of system model G, while the synchronization
is performed. Thus, any event-trace in the twin-
plant corresponds to a pair of event-traces in the
system model that share the same observation. More
precisely, a path in the twin-plant corresponds to two
indistinguishable traces in the system model.

To preserve the label tracking, we use the constructed
generator G′`, instead of the constructed generator
G′. Then, in order to generate a reduced state-space
of twin-plant (by generating only the behavior of
interest for fault diagnosis) we perform the synchronous
composition G′`||G′`F , which is different from that in
(Jiang et al. 2001). In fact, G′`F depicts only the co-
accessible part of generator G′` from faulty states, i.e.
it only contains the faulty event-traces. Thus, G′`F =
(XoF ,Σo, δoF , x0), where XoF is the set of states in
G′` that are reachable by event-traces which contain at
least one fault event. For more details about generating
G′`F , the reader can refer to (Moreira et al. 2011).

Definition 3 (The reduced twin-plant)

A reduced twin-plant of model G is an FSA
P = 〈Q,Σo,Γ, q0〉, where:

• Q ⊆ {(x, x′) |x ∈ Xo, x
′ ∈ XoF } is the set of states.

• Σo the set of the (observable) events.

• Γ ⊆ Q×Σo×Q is the partial transition relation s.t.
(q, σ, q′) ∈ Γ, with q = (x1, x2), and q′ = (x′1, x

′
2) if

and only if (x1, σ, x
′
1), (x2, σ, x

′
2) ∈ δoF .

• q0 = (x0 × x0) ∈ Q is the initial state.

It is worthwhile recalling that constructing the twin-
plant can be performed in (O(|X|4×|Σo|)) (Jiang et al.
2001).

As the reduced twin-plant is performed directly on
constructed generator G′`, then label tracking is
preserved and therefore, the fault-assignment function
is extended as follows:

Ψ : (Xo, Xo)→ ({N,F,R} × {N,F,R})

Hence, different types of states can be distinguished
in the reduced twin-plant. Hereafter, only state types,
which will be used in the sequel, for developing necessary
and sufficient conditions for diagnosability, are defined.

In order to simplify the notations, we introduce labels
N,F and R which mean respectively that the label is
different from N (i.e., it can be F or R), different from
F (i.e., it can be N or R) and different from R (i.e., it
can be N or F ).

Definition 4 (Twin-plant state types)

We define the following state types,

• N -state (resp. F -state, R-state): is a state q = (x, x′)
∈ Q, such that Ψ(q) = (N,N) (resp. Ψ(q) = (F, F ),
Ψ(q) = (R,R)).

• NF -state (resp: is a state q = (x, x′) ∈ Q, such that
Ψ(q) = (N,F ). FN -state is defined similarly.

• FF -state: is a state q = (x, x′) ∈ Q, such that
Ψ(q) = (F, F ).

• F1-state (resp. R1-state, N1-state): is a state q =
(x, x′) ∈ Q, such that Ψ(q) = (F,4) (resp. Ψ(q) =
(R,4), Ψ(q) = (N,4)),with 4 ∈ {N,F,R}.

• F1-state: is a state q = (x, x′) ∈ Q, such that
Ψ(q) = (F ,4).

One can underline that the twin-plant has an interesting
feature, which is the symmetric property. It means that
each path in the twin-plant has its symmetric path
(e.g., a path containing FF -states has its symmetric
path which contains the symmetric FF -states, and vice
versa). In the following section, we take into account
this property for developing the necessary and sufficient
conditions.

4.2. Necessary and sufficient conditions for
F -diagnosability

In a previous work (Boussif and Ghazel 2015), we
have dealt with diagnosability of permanent faults
using a twin-plant-based structure in model-checking
framework. The necessary and sufficient condition for
diagnosability was the absence of “infinite critical pairs”
in the constructed twin-plant. This means the absence of
cycles which are composed only of FN(or NF )-states.
In the same way, we formalize a necessary and sufficient
condition for the diagnosability of intermittent faults.
In order to do so, we need to introduce the following
definition,

Definition 5 (F -confused cycle)

It is a cycle π = (q1, q2, . . . , qn, qn+1 = q1), in the
twin-plant, s.t. ∀ 1 ≤ i ≤ n, qi is an N1-state, and
∃ 1 ≤ j ≤ n, s.t. qj is an NF -state.

An F -confused cycle in twin-plant corresponds to two
cycles on the system model (automaton G) which
generate the same observed event-trace, such that the
first one has no fault event (a fault-free cycle) and the
second one contains, at least, one fault event (which is
depicted by the existence of an NF -state).

Figure 3 shows a path that contains a configuration of
an F -confused cycle represented by states q2, q3, q4, q5.

After having set up the necessary notions, we now
establish the necessary and sufficient conditions for F -
diagnosability.



Figure 3: An F -confused cycle

Theorem 1 (F -diagnosability)

A system model G is F -diagnosable, w.r.t projection
function P , class of fault events Σf and its
corresponding class of reset events Σr, if and only if no
F -confused cycle exists in its corresponding twin-plant.

Proof 1 (⇒) Assume that L(G) is F -diagnosable
but there exists an F -confused cycle in its
corresponding twin-plant: q1, σ1, q2, . . . , qn, σn, q1,
n ≥ 1. Such a cycle corresponds to two
cycles in G′`: c` = x1

1, σ1x
1
2, . . . , x

1
n, σn, x

1
1

and c`′ = x2
1, σ1, x

2
2, . . . , x

2
n, σn, x

2
1. Let

t = v1, σ1, v2, σ2, . . . , vn, σn and t′ =
v′1, σ1, v

′
2, σ2, . . . , v

′
n, σn be the event-traces

that correspond to cyclic executions c` and
c`′ in G s.t. ∀ i ≤ n, vi, v

′
i ∈ Σ∗u. (i.e.,

P (t) = P (t′) = σ1, σ2, . . . , σn).

By construction of the twin-plant, ∃ s0, s
′
0 ∈ L(G), s.t.

[P (s0) = P (s′0)] ∧ [δ(x0, s0) = x1
1] ∧ [δ(x0, s

′
0) =

x2
1] ∧ [Σf /∈ s0].

(the last condition Σf /∈ s0 is due to the fact that
x1
i is an N -state ∀1 ≤ i ≤ n). Also, according to

Definition 5, Σf ∈ t′ and Σf /∈ t. Thus, one can

consider t′ = t′1.t
′
2 such that t

′|t′1|
1 ∈ Σf (i.e., t′1 ends

with a fault event). Now, let us consider s = s′0.t
′
1,

then s ∈ ψ(Σf ). Thus, for any n ∈ N let us take
t′′n = t′2t

′n ∈ L/s, then (|t′′n| ≥ n) and (∃ωn = s0.t
n+1)

such that [ωn ∈ P−1P (st′′n)] ∧ [Σf /∈ ωn].

Therefore, F -diagnosability definition is violated.

(⇐) Assume that twin-plant P is F -confused-cycle-free
and suppose that automaton G is non-F -diagnosable.
Then,
(∀n ∈ N)(∃ s ∈ ψ(Σf )) (∃ t ∈ L(G)/s) such that:

[‖ t ‖≥ n] ∧ [(∃ ω ∈ P−1P (s.t)) ∧ [Σf /∈ ω]]
Let us pick any n ≥ |X|2, and ω ∈ L(G) such
that P (ω) = P (s.t) = σ1, σ2, . . . , σk, with k ∈ N.
By constructing twin-plant P of G, we have a path
π = q0, σ1, q1, . . . , σk, qk+1, k ≤ |s.t| that corresponds
to executions ω and s.t.

As |t| ≥ n ≥ |X|2, it is clear that executions
corresponding to s.t and ω contain cycles (Jiang et al.
2001). Thus, ∃0 ≤ i ≤ k′, with k′ ≤ k such that c` ∈ π,
with c` = qi, σi+1, qi, . . . , qk′−1, σk′ , qi (i.e., a cycle c`
exists in π).

Since Σf /∈ ω, then ∀q ∈ c`, q is an N1-state.
Moreover, Σf ∈ s (since s ∈ ψ(Σf )). According to
assumption 3, the fault event occurs and reset regularly.
Then, ∃ i ≤ k′ s.t. qi is an NF -state. Thus, c` is
an F -confused cycle, according to Definition 3, which
contradicts our assumption. �

4.3. Necessary and Sufficient Conditions for
Fr-diagnosability

It should be noticed that, as stated in Proposition 1, the
non-F -diagnosability implies the non-Fr-diagnosability.
Then, it is straightforward that the necessary and
sufficient condition for F -diagnosability (i.e, the absence
of an F -confused cycle in the twin-plant) is also a
necessary condition for Fr-diagnosability. Hereafter, the
notion of F -indicating sequence is introduced, such
a notion will be used for stating the necessary and
sufficient condition of Fr-diagnosability.

Definition 6 (F -indicating sequence)

It is a finite path π = (q1, q2, . . . , qn), such that q1 is an
F1-state, ∀ 1 < i < n, qi is FF -state, and qn (n > 2)
is an R1-state.

Figure 4 shows a path that contains a configuration of an
F -indicating sequence represented by states q1, q2, q3,
and q4.

Figure 4: An F -indicating sequence

Theorem 2 (Fr-diagnosability)
A system model G is Fr-diagnosable, w.r.t a projection
function P , a class of fault events Σf and its
corresponding class of reset events Σr, if and only if no
F -indicating sequence exists in its corresponding twin-
plant.

Proof 2 The proof of Theorem 2 is not given, but it is
developed in the same manner as for F -diagnosability
by adopting an absurd reasoning.

5. DIAGNOSABILITY VERIFICATION USING
MODEL-CHECKING

5.1. Model-Checking

Model-Checking is an automatic formal verification
technique that is widely applied for the design of
complex dynamic systems (Clarke et al. 1999). It allows
for verifying whether the system behavior (modeled by
a Kripke Structure) satisfies a given property expressed
as a temporal logic formula or not, using efficient
algorithms based on exhaustive exploration of the



system state-space. A counter-example is generated if
the system does not satisfy the property, which is an
interesting feature namely for debugging.

In order to use Model-Checking for verifying diagnosabil-
ity of permanent faults, (Cimatti et al. 2003) proposed a
method to formulate the diagnosability issue as a Model-
Checking problem using a CTL/LTL temporal logic
formulas and the Kripke structure that corresponds to
the twin-plant of the system. Hereafter, we reformulate
the necessary and sufficient conditions for the different
definitions in the same way as in (Cimatti et al. 2003).

5.2. The Kripke Structure

In simple terms, a Kripke structure is a non-
deterministic state/transition system with atomic
propositions assigned to the states (or the actions). Each
state of the Kripke structure represents some possible
configuration of the system, while a labeling function
associates with each state the properties holding in it.
Thus, in order to formulate a twin-plant as a Kripke
structure, one can simply encode states (of the two
copies of the system) and the observed events of the
twin-plant in the state space of the Kripke structure,
i.e., a state in the Kripke structure is defined as a vector
(x1, x2, σ), where x1, x2 are the states of the system
copies and σ is a feasible (observable) event from both
x1 and x2. The labeling function associated with each
state in the Kripke structure takes one proposition from
{N,F,R} × {N,F,R}.

5.3. Linear Temporal Logic (LTL)

Temporal logics allow one to formally express properties
to be satisfied by a model. LTL is a temporal logic that
reasons over linear traces of Kripke structure through
time. At each time instant, there is only one real future
timeline that is considered. Conventionally, that timeline
is defined as starting “now”, in the current time step,
and progressing infinitely in the future. LTL formulas
may contain a finite number of atomic propositions,
Boolean connectives ¬,∧,∨, and temporal connectives:
‘X’ that means ‘neXt’, ‘G: Globally’,‘R: Release’, ‘F :
in the Future’,’U : Until’.

5.4. Diagnosability Conditions as LTL Formulas

In order to formulate the two notions of diagnosability
as Model-Checking problems, we first formulate each
diagnosability condition as an LTL formula. For the sake
of simplicity, we introduce these atomic propositions:
N1, NF , F1, FF , and R1, which mean respectively:
the state q is an N1-state, NF -state, F1-state, FF -
state, and R1-state.

5.4.1. F -diagnosability as a Model-Checking problem:
The LTL formula which characterizes each state of an
F -confused cycle in the twin-plant is,

φ1 : G( N1 ∧ F NF )

The specification can be read as follows: “ for the
considered infinite path in the twin-plant, all states,
from the current state, are N1-states and at least one
state is an NF -state”. Therefore, F -diagnosability can
be expressed as follows:

KP , SP |= ¬ F G( N1 ∧ F NF )

where KP is the Kripke structure corresponding to the
twin-plant P of G, and SP is the initial state in KP .

5.4.2. Fr-diagnosability as a Model-Checking problem:
The LTL formula which characterizes the first state of
any F -indicating sequence in the twin-plant is,

φ1 : F1 ∧ X FF ∧ X [FF U R1]

The specification can be read as follows: “for the
considered path in the twin-plant, the current state is
an F1-state, the successor state is an FF -state and
the successors states are FF -states until an R1-state is
reached”.

The Model-Checking problem which expresses Fr-
diagnosability is:

KP , SP |= ¬ F ( F1 ∧ X FF ∧ X [FF U R1] )

where KP is the Kripke structure corresponding to the
twin-plant P of G, and SP is the initial state in KP .

6. A RAILWAY CASE-STUDY

In order to evaluate the efficiency and the scalability
of the proposed approach, we experiment a railway
case-study: a Level Crossing benchmark (Liu 2014).
For verification, we use the symbolic model-checker
nuXmv (version 1.0) (Bozzano et al. 2014), which is
a symbolic model-checker for analyzing of synchronous
finite-state and infinite-state systems. It is an extension
of the existing NuSMV model-checker with some new
interesting features. Both are originated from the re-
engineering, re-implementation and extension of the
CMU SMV Tool. Its main advantage is the integration of
techniques based on the ”Satisfiability Modulo Theory
(SMT)”, implemented through a tight integration with
MathSAT5.

6.1. Level Crossing Benchmark

A Level Crossing (LC) is an intersection where a railway
line intersects with a road or path at the same level.
It is composed of three subsystems: the railway traffic,
the LC controller and the barriers, these subsystems are
modeled by Labeled Petri Net (LPN). The global system
is established using some shared places and transitions
between these sub-models.

An interesting feature of this benchmark is that it can
be extended to n railway tracks in order to obtain



larger models and assess the scalability of the used
techniques. For more details about modeling, function
and the development of the benchmark, the reader can
refer to (Ghazel and Liu 2016).

The global single-line LC model is depicted in Figure 5.
Transitions in green squares are observable and the
others are unobservable, where the red one is a fault
event from the fault class Σf , the yellow one is a reset
event from Σr corresponding to fault class Σf , and
the grey one is a normal unobservable event. Actually,
the fault event is pertaining to train-sensors along the
track and may cause the arrival of the train into the LC
intersection zone before the barriers are ensured to be
lowered.

Faulty track

Normal track

p1,1 p1,2 p1,3

p′1,1 p′1,2 p′1,3 p′1,4

t′1,4 , ig

p1 p2 p3 p4

p5 p6

t1 , cr t2 , or

t1,1 , ap1

p9

t1,3 , lv1

t′1,1 , ap’1 t′1,3 , lv’1

p7 , up

p8 , down

p9

tu , ε
t1,2 , en1

t′1,2 , en’1

t4 , lwt3 , kd t5 , rs

railway traffic

LC controller

barriers

� observable transition � unobservable fault transition

Figure 5: Level Crossing Benchmark

As the LC system is modeled by an LPN, we first
generate its reachability graph with the help of TINA
Tool (which represents our input automaton G) and
then, perform our technique based on the generated
reachability graph. In order to assess the scalability, we
increase the number of railway track k progressively.

The diagnosability verification will be then performed
on the obtained reachability graph. Before proceeding
with tests, we construct the twin-plant as a Kripke
structure. It is described as a synchronous composition
of two copies of a system modules instead of
enumerating the whole model. The verification task is
conducted as follows, we first check F -diagnosability.
If the specification is satisfied by the Kripke structure
corresponding to the twin-plant model (which means,
that an F -confused cycle exists in the twin-plant and will
be directly generated by the model-checker as a counter-
example), then the system is not F -diagnosable. In this
case, we can directly decide about the Fr-diagnosability
(the system is not Fr-diagnosable), without proceeding
to check its corresponding specifications, since the
non-F -diagnosability implies the non-Fr-diagnosability
as stated in proposition 1. In the other case, we
proceed by checking Fr-diagnosability as done with F -
diagnosability.

6.2. Results and Discussion

All experiments were conducted on a 64-bit PC, Ubuntu
14.04 operating system, an Intel Core i5, 2.5 GHz
Processor with 4 cores and 6 GB RAM.

Table 1 shows the obtained results. Columns from left
to right correspond to: n: the numbers of railway tracks,
GS : the obtained number of states in automaton G
(i.e., the reachability graph of the LPN model); GT :
the number of transitions in G; PS : the number of
obtained states in twin-plant G at the end of the
analysis; tP : the time needed to generate twin-plant
(as a Kripke structure); DiagF : the F -diagnosability
verdict; tDiagF : the time needed to conclude about
F -diagnosability; DiagFr : the Fr-diagnosability verdict
and finally, tDiagfr

: the time needed to conclude about
Fr-diagnosability.

The analysis of the different notions of diagnosability
shows that diagnosability properties are violated by the
model whatever the number of tracks, which means
that the LC benchmark is neither F -diagnosable nor Fr-
diagnosable. Based on the generated counter-examples,
one can conclude that this is due to the fact that two
scenarios exists in the model that generate the same
observation (i.e, the same subsequent firing sequence).
these two scenarios correspond to : (1) a train-sensing
failure occurs and then the train does never leave the
intersection zone, and (2) the train stops indefinitely
before reaching the intersection zone (See (Ghazel and
Liu 2016)).

n GS GT PS tP DiagF tDiagF DiagFr tdiagFr
1 26 39 123 0.1 s non 0.27 s non 0.17 s
2 271 683 3536 1.42 s non 5.80 s non 11.23 s
3 1938 6771 144210 28,63 s non 51.29 s non 83.50 s
4 2542 9293 3053060 40,29 s non 1274.59 s non 1846 s

Table 1: Experimental results for n-LC models.



Regarding the scalability of the approach, one can
observe that the size of the marking graph (GS and GT )
significantly increases with the dimension of the net,
namely with the number of tracks (n) in the benchmark.
It is not surprising that the number of the reachable
states (PS) of the Kripke structure highly increases
with the size of the reachability graph, since it is very
sensitive to combinatorial explosion. Indeed, as we use a
symbolic Model-Checker, it is difficult to conclude about
the evolution of the state-space since it depends on
variable and transition orderings and clustering (which
is not taken into account in our experiments). It should
be stressed that no reduction or optimization techniques
have been used to perform the analysis.

Finally, three remarks relatively to the elapsed times for
generating the twin plant and verifying diagnosability,
can be emphasized:

1. The Model-Checker spends more time in
verification than in generating the twin plant.

2. Elapsed times for generating the twin plant
and verifying diagnosability stay in the order
of seconds until 3-tracks, then it increases
significantly.

3. More time elapsed for verifying Fr-diagnosability
than F -diagnosability. This result is logical, since
the LTL formula that expresses Fr-diagnosability
contains more temporal connectives than the
LTL formula expressing F -diagnosability (i.e., the
model-checking techniques are sensitive to the
size of the properties).

7. CONCLUSION

In this paper, we propose an approach to analyze
diagnosability of intermittent faults in DESs using a
model-checking framework. System modeling, faults
modeling, and two notions of diagnosability with
their corresponding necessary and sufficient conditions
have been discussed. Diagnosability issues were then
formulated as LTL Model-Checking problems based
on the twin-plant construction. The effectiveness and
scalability of the proposed approach are experimentally
evaluated through a railway case-study.

This work falls within the scope of our activities on
reformulating issues related to fault diagnosis in a
model-checking framework. We have already studied
the case of permanent failures and we wish, on
one hand, to extend our study to deal with more
complex classes of faults such as repeated failures,
supervision patterns in untimed and timed domains. On
the other hand, we intend to evaluate the efficiency
of advanced formal verification techniques such as
abstraction techniques, SAT analysis, on-the-fly model-
checking and also develop optimization techniques for

the diagnosability analysis process, in such a way as to
be able to deal with large systems.

REFERENCES

J. Zaytoon and S. Lafortune. Overview of fault diagnosis
methods for discrete event systems. Annual Reviews
in Control, 37:308–320, 2013.

M. Sampath, R. Sengupta, and S. Lafortune.
Diagnosability of discrete-event systems. IEEE
Transactions on Automatic Control 40(9), pages
1555–1575, 1995.

S. H. Zad, R .H. Kwong, and W. M. Wonham. Fault
diagnosis in discrete-event systems: Framework and
model reduction. IEEE Transactions on Automatic
Control, 48(7):1199–1212, 2003.

S. Jiang, Z. Huang, V. Chandra, and R. Kumar.
A polynomial algorithm for testing diagnosability
of discrete-event systems. IEEE Transactions on
Automatic Control, 46(8):1318–1321, 2001.

A. Schumann and Y. Pencolé. Scalable diagnosability
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