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Abstract This paper provides a coherent framework for study-
ing longitudinal manifold-valued data. We introduce a Bayesian
mixed effects model which allows to estimate both a group-
representative piecewise-geodesic trajectory in the Rieman-
nian space of shape and inter-individual variability. We prove
the existence of the maximum a posteriori estimate and its
asymptotic consistency under reasonable assumptions. Due
to the non-linearity of the proposed model, we use a stochas-
tic version of the expectation maximization algorithm to es-
timate the model parameters. Our simulations show that our
model is not noise-sensitive and succeed in explaining vari-
ous paths of progression.

Keywords Bayesian estimation · EM like algorithm ·
Longitudinal data · MCMC methods · Nonlinear mixed-
effects model · Spatiotemporal analysis

1 Introduction

Longitudinal studies are powerful tools to achieve a better
understanding of temporal progressions of biological or nat-
ural phenomenons. For instance, longitudinal psychometric
data are often used to explore differences in the progression
of Alzheimer’s and more generally neurodegenerative dis-
eases. Other important applications such as pattern recogni-
tion, disease and treatment monitoring, study of face expres-
sion dynamics, etc. come also from longitudinal studies.

Moreover, efforts in medicine and medical follow-up rely
more and more on the understanding of the global disease
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progression and not only on punctual states of health, often
with the help of medical images. In order to provide every-
one the best possible treatment, there is a need for prediction
methods that allow to grasp quickly the efficiency of a possi-
ble treatment without doing invasive measures, such as biop-
sies. Hence, designing models that deal with medical images
and more generally extracted features and shapes from this
images is very important for application-related uses.

Reaction-diffusion based tumor growth models have demon-
strated their efficiency for cancer monitoring [17, 25]. How-
ever, such methods cover images but not shapes or whatever
else type of data, e.g. scores. Moreover, even for images, as
these models rely on reaction-diffusion equations, they can
only apply for situations in which the observed phenomenon
is linked to diffusion dynamics. As a consequence, these
models can apply to untreated cancer but not to treated-one
nor to multiple sclerosis monitoring, neurodegenerative dis-
ease follow-up, like Alzheimer’s or Parkinson’s diseases, or
more complicated framework. Likewise, coupling nonlinear
partial differential equation (PDE) models and optimization
is efficient to make prediction when patients are only under
monitoring, i.e. without treatment [9, 30]. The idea of these
methods is to model the tumor growth with a ”simple” PDE
model, involving few parameters which are estimated from
series of CT-scan or MRI. For therapy planing purpose, such
methods can reinforce the decision to wait without specific
treatment, in case of slow progression of the tumor, thus pre-
venting heavy treatment. However, they cannot predict the
response to a given molecule and so help in the choice of
the appropriate one, nor in the choice of an appropriate se-
quence of molecules.

Anatomical data – and most of structured data – have
been successfully modeled as points on a Riemannian man-
ifold, i.e. as points on a smooth manifold equipped with
a Riemannian metric tensor. These spaces are often called
shape spaces. The choice of the shape space and its metric
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tensor is driven by the type of data in the study [6, 7, 16, 36,
37]. Geometrical properties of shape manifolds have been
properly defined over the last decades. Moreover, according
to the Whitney embedding theorem [13], as the shape spaces
are second-countable, they are always embedded in a real d-
dimensional Euclidean space, the space of measurements,
which leads us to consider the shape manifold as a submani-
fold of this Euclidean space. Therefore, the temporal evolu-
tion of empirical data may be modeled as a parametric curve
in the space of measurements and more precisely as a noisy
version of an underlying parametric curve living on the Rie-
mannian shape submanifold. Given a cohort of individuals
followed over a time period, we thus observe discreet sam-
ples of such a curve for each subject. We call this set of
observations a longitudinal data set. Figure 1 illustrates this
understanding of the data.

Mixed effects models have proved their efficiency in the
study of longitudinal data sets [20], especially for medi-
cal purposes [24, 26]. Indeed, mixed effects models pro-
vide a general and flexible framework to study complex data
which depends on unobserved variables, such as longitudi-
nal data sets. They consist of two parts: fixed effects which
describe the data at the population level and random effects
which are associated with individual experimental units. In
the framework of longitudinal analysis, through mixed ef-
fects models, one can explain in two steps, both a repre-
sentative path of the evolution of the whole population and
individual-specific progressions. Given a longitudinal data
set, a representative trajectory and its variability are first es-
timated. Then, we can define subject-specific trajectories ac-
cording to global progression.

The temporal alignment in longitudinal data analysis is
an efficient way to compare trajectories [33, 34]. Here, the
authors propose to use the temporal registration to align the
different trajectories. Despite good results for comparing tra-
jectories, the interpretation of the temporal parameteriza-
tion is lost. However, within medical applications, the time
parametrization reveals information on the data patient’s state
of health and has to be considered.

The recent generic approach of Schiratti et al. [31, 32]
to align patients takes all this into account. This model was
built with the aim of granting temporal and spatial inter-
subject variability through individual variations of a com-
mon time-line and parallel shifting of a representative tra-
jectory. Each individual trajectory has its own intrinsic ge-
ometric pattern through spacial variability and its own time
parametrization through time variability. In term of model-
ing, the time variability allows some individuals to follow
the same progression path but at a different age and with
possibly a different pace. Schiratti et al. [31, 32] have made
a strong hypothesis to build their model as they assume the
characteristic evolution to be geodesic, i.e. that the char-
acteristic trajectory is the shortest path between the initial

representative state and the final one. This hypothesis helps
for the parametrization of the model which becomes both
generic, i.e. allowing for many different types of data, and
numerically estimable. However, such an assumption sig-
nificantly reduces the effective framework of their model.
Like the described-above PDEs based models, such a model
can be applied to situation with a unique dynamic like neu-
rodegenerative disease, but not to situations in which the
dynamic can fluctuate. For instance, this model cannot be
used for multiple sclerosis monitoring in which the disease
progression is accompanied by recession nor for monitoring
tumor regression or recurrence in response to treatments.

In this paper, we will relax this assumption to make the
model applicable to a wider variety of situations and data
sets: we address each situation in which the evolution can
fluctuate several times.

We propose in this paper a coherent and generic statis-
tical framework which includes the model of Schiratti et al.
[31, 32]. Following their approach, we define a nonlinear
mixed effects model for the definition and estimation of spa-
tiotemporal piecewise geodesic trajectories from longitudi-
nal manifold-valued data. We estimate a representative piece-
wise geodesic trajectory of the global progression and to-
gether with spacial and temporal inter-individual variability.
Particular attention is paid to estimation of the correlation
between the different phases of the evolution.

Estimation is formulated as a well-defined Maximum A
Posteriori (MAP) problem which we prove to be consis-
tent under mild assumptions. Numerically, the MAP estima-
tion of the parameters is performed through the expectation-
maximization (EM) algorithm [11]. However, as our model
is strongly nonlinear and we have to use a stochastic version
of the the EM algorithm, namely the Markov chain Monte
Carlo stochastic approximation expectation maximization (MCMC-
SAEM) algorithm [21]. Theoretical results regarding its con-
vergence have been proved by Delyon et al. [10] and Al-
lassonnière et al. [2] and its numerical efficiency has been
demonstrated for these types of models ([31, 32], MONO-
LIX – http://lixoft.com/).

Due to the versatility of the Riemannian geometry, the
proposed model provides a comprehensive support for a wide
range of practical situations, from unidimensional data to
shape analysis. Moreover, the same algorithm can be used
in all these situations.

The paper is organized as follows: in Section 2 we de-
fine our generic nonlinear mixed effects model for piece-
wise geodesically distributed data. Riemannian geometry al-
lows us to derive a method that makes light assumptions
about the data and applications we are able to deal with.
In Section 3, we explain how to use the MCMC-SAEM al-
gorithm to produce MAP estimates of the parameters. We
also prove a consistency theorem, whose proof is postponed
in appendix A. We then make the generic formulation ex-



A Coherent Framework for Learning Spatiotemporal Piecewise-Geodesic Trajectories from Longitudinal Manifold-Valued Data 3

plicit for one-dimension manifolds and piecewise logisti-
cally distributed data in Section 4.1 and for shape analysis
in Section 4.2. These two particular cases are built in the tar-
get of chemotherapy monitoring. In Section 5, some exper-
iments are performed for the piecewise logistic model and
for the piecewise geodesic shape model: both on synthetic
and on real data from the Hôpital Européen Georges Pompi-
dou (HEGP, Georges Pompidou European Hospital) for the
piecewise logistic model. These experiments highlight the
robustness of our model to noise and its performance in un-
derstanding individual paths of progression.

2 Generic mixed effects Model for
Piecewise-Geodesically Distributed Data on a
Riemannian Manifold

In the following, we describe a generic method to build mixed
effects models for piecewise-geodesically distributed data.
This leads us to a large variety of possible situations that we
will be able to deal with within the same framework. This
model has been first introduced in Chevallier et al. [8].

We consider a longitudinal data set yyy obtained by re-
peating multivariate measurements of n ∈ N∗ individuals.
Each individual i ∈ J1,nK is observed ki ∈ N∗ times, at the
time points ttt i = (ti, j) j∈J1,kiK, and we denote yyyi = (yi, j) j∈J1,kiK
the sequence of observations for this individual. We also
denote k = ∑

n
i=1 ki the total numbers of observations and

assume that each observation yi, j is a point of Rd , where
d ∈ N can be considered as the dimension of the problem.
Thus, our observed data consists in a sequence in Rkd , yyy =

(yi, j)(i, j)∈J1,nK×J1,kiK, where J1,nK× J1,kiK denotes for com-
pactness the set {(i, j)|i ∈ J1,nK∧ j ∈ J1,kiK}.

We generalize the idea of Schiratti et al. [31, 32] and
build our model in a hierarchical way. Our data points are
seen as noisy samples along trajectories and we suppose that
each individual trajectory derives from a group-representative
scenario through spatiotemporal transformations. Key to our
model is that the group-representative trajectory in no longer
assumed to be geodesic but piecewise-geodesic. Thus, the
characteristic trajectory is no more the shortest path between
the initial and the final representative states but a concatena-
tion of shortest paths between several intermediate states. In
particular, this allows us to consider situations in which the
evolution can fluctuate. We present at Figure 1 an example
of situation our generic model can address.

To ensure that the optimization of those trajectories can
be computationally performed in a reasonable amount of
time, we build a parametric model. That is to say that the
trajectories depend on a finite number of variables. In the
following (see Subsection 2.3), we will denote zzzpop the vari-
ables driving the group-representative scenario and zzzi those
associated to the individual i∈ J1,nK. For the sake of clarity,
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Fig. 1 The generic piecewise geodesic curve model. The observed data
(crosses) consist in noisy samples along manifold-valued trajectories.
Each individual path γi (solid colored lines) is a spatiotemporal vari-
ation of a piecewise geodesic representative trajectory γ0 (bold black
line). In particular, the individual trajectories are not necessarily piece-
wise geodesic.

we first detail the construction of the trajectories from a geo-
metrical point of view. Then, we state our generative model
in a statistical perspective.

2.1 The Group-Representative Trajectory

Let m ∈ N∗ and tttRRR =
(
−∞ < t1

R < .. . < tm−1
R <+∞

)
a sub-

division of R, called the breaking-up times sequence. In or-
der the representative trajectory γ0 to be geodesic on each of
the m sub-intervals of tttRRR, we build γ0 component by compo-
nent.

2.1.1 A Piecewise-Geodesic Curve

In this context, let M0 be a geodesically complete subman-
ifold of Rd ,

(
γ̄`0
)
`∈J1,mK a family of geodesics on M0 and(

φ `
0
)
`∈J1,mK a family of isometries defined on M0. For all

` ∈ J1,mK, we set M`
0 = φ `

0(M0) and γ`0 = φ `
0 ◦ γ̄0

`. The iso-
metric nature of the mapping φ `

0 ensures that the manifolds
(M`

0)`∈J1,mK remain Riemannian and that the curves γ`0 : R→
M`

0 remain geodesic. In particular, each γ`0 remains parametriz-
able [13]. We define the representative trajectory γ0 by

∀t ∈ R, γ0(t) = γ
1
0 (t)1]−∞,t1

R]
(t)

+
m−1

∑
`=2

γ
`
0(t)1]t`−1

R ,t`R]
(t) + γ

m
0 (t)1]tm−1

R ,+∞[(t) .

In other words, given a manifold-template of the geodesic
components M0, we build γ0 so that the restriction of γ0
to each sub-interval of tttRRR is the deformation of a geodesic
curve γ̄`0 living on M0 by the corresponding isometry φ `

0 . In
practice, M0 is chosen in order to catch the geometric na-
ture of the observed data : if we are studying a score as in
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Section 4.1, M0 will be the standard finite segment ]0,1[ for
instance. The choice of the isometries φ `

0 and the geodesics
γ̄`0 have to be done with the aim of having an ”as regular
as possible” (at least continuous) curve γ0 at the breaking-
up time points t`R. In the following section, we propose a
way to meet this criterion in one dimension and in the shape
framework. However, the freedoms in the choice of φ `

0 and
γ̄`0 induce a wide panel of models.

2.1.2 Boundary Conditions

Because of the piecewise nature of our representative trajec-
tory γ0, constraints have to be formulated on each interval
of the subdivision tttRRR. Following the formulation of the lo-
cal existence and uniqueness theorem [13], constraints on
geodesics are generally formulated by forcing a value and
a tangent vector at a given time-point. However, as soon as
there is more that one geodesic component, i.e. m > 1, such
an approach cannot ensure the curve γ0 to be at least con-
tinuous. That is why we re-formulate these constraints in
our model as boundary conditions. Let ĀAA = (Ā0, . . . , Ām) ∈
(M0)

m+1. Let t0 ∈ R be a real value representing an initial
time and t1 ∈ R representing a final one. We impose that
γ̄1

0 (t0) = Ā0, γ̄m
0 (t1) = Ām and that

∀` ∈ J1,m−1K, γ̄
`
0(t

`
R) = Ā` and γ̄

`+1
0 (t`R) = Ā` .

Note that we can apply the constraints on γ`0 instead of γ̄`0 by
defining A` = φ `

0(Ā
`) for each `. Notably, the 2m constraints

are defined step by step. In the case where the geodesics
could be written explicitly, such constraints do not compli-
cate the model. In more complicated case, as the one shown
for shapes in Section 4.2, we use shooting or matching meth-
ods to enforce this constraints.

From this representative curve, we derive a modeling of
the individual trajectories that mimics the individual evolu-
tion of subjects and best fits the individual observations.

2.2 Individual Trajectories: Space and Time Warping

We want the individual trajectories to represent a wide va-
riety of behaviors and to derive from the group characteris-
tic path by spatiotemporal transformations. To do that, we
define for each component of the piecewise-geodesic curve
γ0 a couple of transformations: the diffeomorphic compo-
nent deformations and the time component reparametriza-
tions which characterize respectively the spatial and the tem-
poral variability of propagation among the population. More-
over, we decree as few constraints as possible in the con-
struction: at least continuity and control of the slopes at the
(individual) breaking-up points.

2.2.1 Time Component Reparametrizations

For compactness, we denote t0 by t0
R from now on.

To allow different paces in the progression and different
rupture times for each individual, we introduce some tempo-
ral transformations ψ`

i : R→ R, called time-warp, that are
defined for the subject i ∈ J1,nK and for the geodesic com-
ponent ` ∈ J1,mK by

ψ
`
i (t) = ψ

`
i (α`

i ,τ
`
i )
(t) = α

`
i (t− t`−1

R − τ
`
i )+ t`−1

R ,

where (α`
i ,τ

`
i ) ∈ R+×R. The parameters τ`i correspond to

the time-shifts between the representative and the individual
progression onset ; the α`

i are the acceleration factors that
describe the pace of individuals, being faster or slower than
the population characteristic. For all individuals i ∈ J1,nK,
let tttRRR,i = (t`R,i)`∈J1,m−1K denote the individual sequence of
rupture times which is the subdivision of R such that for all
` ∈ J1,m−1K, ψ`

i (t
`
R,i) = t`R i.e. such that

t`R,i = t`R,i(α`
i ,τ

`
i )
= t`−1

R + τ
`
i +

t`R− t`−1
R

α`
i

.

To ensure good adjunction at the rupture times, we de-
mand that for all `∈ J1,mK, ψ`

i (t
`−1
R,i ) = t`−1

R . Hence the time
reparametrizations are constrained and only the acceleration
factors α`

i and the first time shift τ1
i are free: all other time

shift, ` ∈ J2,mK, are defined by τ`i = t`−1
R,i − t`−1

R .
In the following, we will sometimes refer to the individ-

ual initial and final times which are defined, for all i∈ J1,nK,

by t i
0 = t0 + τ1 and t i

1 = tm−1
R + τm

i +
t1−tm−1

R
αm

i
.

2.2.2 Diffeomorphic Component Deformations

Concerning the space variability, we introduce m diffeomor-
phisms φ `

i : M`
0 → φ `

i (M
`
0) to enable the different compo-

nents of the individual trajectories to vary irrespectively of
each other. We enforce the adjunctions to be at least contin-
uous and therefore the mappings φ `

i to satisfy

∀` ∈ J1,m−1K, φ
`
i ◦ γ

`
0(t

`
R) = φ

`+1
i ◦ γ

`+1
0 (t`R) .

Note that, as the individual paths are no longer required to
be geodesic, the mappings φ `

i do not need to be isometric.
For all individuals i∈ J1,nK and all component `∈ J1,mK,

we set γ`i = φ `
i ◦ γ`0 ◦ψ`

i and define the corresponding indi-
vidual curve γi by

∀t ∈ R, γi(t) = γ
1
i (t)1]−∞,t1

R,i]
(t)

+
m−1

∑
`=2

γ
`
i (t)1]t`−1

R,i ,t`R,i]
(t) + γ

m
i (t)1]tm−1

R,i ,+∞[(t) .
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Finally, the observations yyyi = (yi, j) j∈J1,kiK are assumed to be
distributed along the curve γi and perturbed by an additive
Gaussian noise εεε i ∼N (0,σ2Ikid) where σ ∈ R+:

∀(i, j) ∈ J1,nK× J1,kiK, yi, j = γi(ti, j) + εi, j ,

where εi, j ∼N (0,σ2Id). By construction, for each (i, j) ∈
J1,nK× J1,kiK, there exist ` ∈ J1,mK such that γi(ti, j) lies on
the submanifold φ `

i (M
`
0) of Rd . Thus, the previous sum is

well-defined. In particular, we do not assume that the noisy-
observation remain on the manifold.

The choice of the isometries φ `
0 and the diffeomorphisms

φ `
i induces a large range of piecewise-geodesic models. For

example, if m = 1, φ 1
0 = Id and if φ 1

i denotes the application
that maps a curve onto its parallel curve for a given non-
zero tangent vector wwwi, we feature the model proposed by
Schiratti et al. [31, 32]. In Section 4, we propose two other
specific models which can be used for chemotherapy moni-
toring, as a first example of fluctuate dynamic.

2.3 Toward a Coherent and Tractable Statistical Generative
Model

Now that we have presented the geometrical objects we will
deal with, we set up a comprehensive statistical framework
in order to estimate the different parameters that control the
trajectories.

We first introduce some notations in order to clearly state
our statistical generative model. Let zzzψ

i = (α`
i ,τ

`
i )`∈J1,mK de-

note the individual temporal variables and similarly zzzφ

i de-
note the individual spatial variables, i.e. the variables asso-
ciated to the variation of the m diffeomorphic deformations
φ `

i . Likewise, let zzzpop denote the population variable, i.e. the
variable associated to the variation of the m isometric map-
pings φ `

0 .
Let pind ∈N be the dimension of each vector zzzi =(zzzψ

i ,zzz
φ

i )

such that ∀i∈ J1,nK, Zi⊂Rpind denotes the space of random
effects. Similarly, let ppop ∈ N be the dimension of zzzpop and
Zpop ⊂ Rppop denotes the space of fixed effects.

To cover many situations, we do not explicit here the
individual spatial variables zzzφ

i . However, for examples, we
propose an instantiation of this generic model for one di-
mension manifolds and piecewise logistically distributed data
at Section 4.1 and for shape analysis at Section 4.2. More-
over, our generic approach encompass a large variety of mod-
els as such proposed by Schiratti et al. [32], Bône et al. [5]
and Koval et al. [18].

2.3.1 Modeling Constraints...

In a modeling perspective, we are interested in understand-
ing the individual behaviors with respect to the characteris-
tic one. Thus, we focus on the variance of the random ef-
fects zzzi = (zzzψ

i ,zzz
φ

i ) rather than their distributions. Moreover,

as we want the representative path to characterize the pat-
tern of behavior of the individual trajectories, we have to
slightly modify the individual parameters zzzi in such a way
that for all i, E(zzzi) = 0. In particular, if our model were lin-
ear, this would have ensure the representative trajectory to be
the mean (in the statistical meaning) of the individual ones.
Concerning the individual temporal variables for instance,
the acceleration parameters (α`

i )`∈J1,mK have to be positive
and equal to one on average while the time shifts (τ`i )`∈J1,mK
are of any signs and must be zero on average. For these rea-
sons, we set α`

i = eξ `
i and consider the ”new” temporal vari-

able, still denoted zzzψ

i for compactness, zzzψ

i = (ξ `
i ,τ

`
i )`∈J1,mK.

We proceed in the same way for the individual spatial vari-
ables zφ

i , when required (for centered or positive variables).
To sum up, we assume that there exists a symmetric pos-

itive definite matrix Σ ∈S +
pind

(R) such that zzzi ∼N (0,Σ),
and now want to estimate Σ . Hence, the parameters we are
interested in are θ = (zzzpop,Σ ,σ) ∈Zpop×S +

pind
(R)×R+.

2.3.2 ...and Computational Feasibility

Given a n-sample, we target θ̂n an estimation of our param-
eters. Following the classical approach for maximum likeli-
hood estimation in nonlinear mixed effects models, we use
the MCMC-SAEM algorithm. However, the theoretical con-
vergence of this algorithm is proved only if the model be-
longs to the curved exponential family [2, 10]. This frame-
work is also important for numerical performances. With-
out further hypothesis, our model does not satisfy this con-
straint. Therefore, we proceed as in Kuhn and Lavielle [19]:
we assume that zzzpop is the realization of independent Gaus-
sian random variables with fixed small variances and esti-
mate the means of those variables. So, the parameters we
want to estimate are θ =

(
zpop,Σ ,σ

)
and we define the set

of admissible parameters by Θ = Rppop ×S +
pind

(R)×R+.
The fixed and random effects zzz=(zzzpop,zzzi)i∈J1,nK are con-

sidered as latent variables, i.e. as hidden variables that are
not directly observed but can be inferred by the observa-
tions. Our model writes in a hierarchical way as

y |z,θ ∼
n⊗

i=1

ki⊗
j=1

N
(

γi(ti, j) , σ
2 ) ,

z |θ ∼ N
(

zpop , D−1
pop
) n⊗

i=1

N (0,Σ) ,

where σσσpop ∈ Rppop
+ is an hyperparameter of the model and

Dpop = σσσ2
popIppop ∈Mppop(R) is the diagonal matrix of size

ppop whose diagonal entries are given by the vector σσσ2
pop.

The products⊗mean that the corresponding entries are con-
sidered to be independent. In other words, we assume that
each of the measurement noises is independent of all the
others. Of course, it may not be the case in practice. But, as
all the observations for a given subject come from a single
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curve, this assumption is reasonable in our context. More-
over, this assumption leads us to a more computationally
tractable algorithm.

3 Parameters Estimation

As said just above, we want to estimate θ = (zpop,Σ ,σ) ∈
Rppop ×S +

pind
(R)×R+. As we want our model to be con-

sistent with low sample size high-dimensional data analysis,
we consider a Bayesian framework, i.e. we assume the fol-
lowing priors

(Σ ,σ) ∼ W −1 (V,mΣ )⊗W −1 (v,mσ ) ,

where V ∈S +
pind

(R), v,mΣ ,mσ ∈R and where W −1 (V,mΣ )

denotes the inverse Wishart distribution with scale matrix
V and degrees of freedom mΣ . Regularization has indeed
proven its fruitfulness in this context [14]. In order for the
inverse Wishart to be non-degenerate, the degrees mΣ and
mσ must satisfy mΣ > 2pind and mσ > 2. In practice, we yet
use degenerate priors but with well-defined posteriors. In the
spirit of the one-dimension inverse Wishart distribution, we
define the density function distribution of higher dimension
as

fW −1(V,mΣ )
(Σ) =

1
Γpind

(mΣ

2

) ( √
|V |

2
pind

2
√
|Σ |

exp
(
−1

2
tr
(
V Σ
−1)))mΣ

,

where Γpind is the multivariate gamma function and, for all
matrices A, |A| denotes the determinant of the matrix A.

The estimates are obtained by maximizing the posterior den-
sity on θ conditionally on the observations yyy=(yi, j)(i, j)∈J1,nK×J1,kiK.

In the following paragraphs, we first show that the model
is well-posed i.e. that for any finite sample the maximum we
are looking for exists. We then prove a consistency theo-
rem which ensures that the set of parameters which well-
explain the observations is non-empty and that the MAP es-
timator converges to this set. Last, we explain how to use the
MCMC-SAEM algorithm to produce MAP estimates.

3.1 Existence of the Maximum a Posteriori Estimator

The inverse Wishart priors on the variances not only regu-
larize the log-likelihood of the model, they also ensure the
existence of the MAP estimator.

Theorem 1 (Existence of the MAP estimator) Given a piece-
wise geodesic model and the choice of probability distribu-
tions for the parameters and latent variables of the model,
for any data set (ti, j,yi, j)(i, j)∈J1,nK×J1,kiK, there exists

θ̂MAP ∈ argmax
θ∈Θ

q
(
θ |yyy
)
.

The demonstration of the theorem uses the following
lemma.

Lemma 1 Given a piecewise geodesic model and the choice
of a probability distribution for the parameters and latent
variables of the model, the posterior θ 7→ q

(
θ |yyy
)

is contin-
uous on the parameter space Θ .

Proof Let Z = Zpop×∏
n
i=1 Zi denote the space of latent

variables. Using Bayes rule, for all θ ∈Θ ,

q
(

θ |yyy
)
=

1
q(yyy)

(∫
Z

q
(

yyy |zzz,θ
)

q
(

zzz |θ
)

dzzz
)

qprior(θ) .

The density functions θ 7→ qprior(θ) and θ 7→ q
(
yyy|zzz,θ

)
q
(
zzz|θ
)

are continuous on Θ for all zzz ∈Z . Moreover, for all θ ∈Θ

and all zzz ∈Z ,

q
(

yyy |z,θ
)
=

1
(σ
√

2π)k
exp
(
− 1

2σ2

n

∑
i=1

ki

∑
j=1

(
yi, j−γi(ti, j)

)2
)

and so, for all θ ∈Θ and zzz ∈Z ,

q
(
yyy|zzz,θ

)
q
(
zzz|θ
)
6

1
(σ
√

2π)k
q
(
zzz|θ
)

which is positive and integrable as a probability distribution.
As a consequence, zzz 7→ q

(
yyy|zzz,θ

)
q
(
zzz|θ
)

is integrable – and
positive – on Z for all θ ∈Θ and θ 7→ q

(
yyy|θ
)

is continuous.
ut

Proof (Theorem 1 – Existence of the MAP) We use the Alexan-
drov one-point compactification Θ =Θ ∪{∞} of the param-
eters space Θ , where a sequence (θn)n∈N converges toward
the point ∞ if and only if it eventually steps out of every
compact subset of Θ . Thus, given the result of Lemma 1,
it suffices to prove that limθ→∞ log q

(
θ |yyy
)
= −∞. We keep

the notation of the previous proof and proceed similarly. In
particular, for all θ ∈Θ ,

log q
(
θ |yyy
)
6 − log q(yyy)− k log(

√
2π)

− k log(σ)+ log qprior(θ) .

By computing the prior distribution qprior, we remark that
there exists λ which does not depend on the parameter θ

such as

log q
(
θ |yyy
)
6 λ (yyy)− (k+mσ ) log(σ)− mσ

2

( v
σ

)2

− mΣ

2

[
log(|Σ |)+ mΣ

2
tr
(
V Σ
−1)] .

Let µ(V ) denote the smallest eigenvalue of V , ρ(Σ−1)

the largest eigenvalue of Σ−1, which is also its operator norm,
and

〈
Σ
∣∣ V
〉

F the Frobenius inner product of Σ with V . As

log(|Σ−1|)− tr
(
V Σ
−1) 6 pind log

(
‖Σ−1‖

)
−µ(V )‖Σ−1‖
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it comes that

lim
‖Σ‖+‖Σ−1‖→+∞

{mΣ

2
[
log(|Σ−1|)− tr

(
V Σ
−1)]}=−∞ .

Likewise,

lim
σ+σ−1→+∞

{
−(k+mσ ) log(σ)− mσ

2

( v
σ

)2
}
=−∞

hence the result. ut

We have detailed the previous proof in order to empha-
size the necessity of prior distribution on the variances Σ

and σ to ensure the existence of the maximum a posteriori.

3.2 Consistency of the Maximum a Posteriori Estimator

We are now interested in the consistency of the MAP estima-
tor without making strong assumptions on the distribution of
the observations yyy. In particular, we do not assume that the
observations are generated by the model.

We denote P(dyyy) the distribution governing the obser-
vations and Θ∗ the set of admissible parameters inducing a
model distribution close to P(dyyy):

Θ∗ =
{

θ∗ ∈Θ
∣∣ EP(dyyy) [ logq(yyy|θ∗) ]

= sup
θ∈Θ ω

EP(dyyy) [ logq(yyy|θ) ]
}
.

The MAP estimator is said consistent if it converges to the
set Θ∗ (on every compact of Θ possibly). Classical results
of consistency assume that the space Θ∗ is non-empty (see
the Wald’s consistency theorem [38]). However, such an hy-
pothesis is not entirely satisfactory: we have no guarantee
that Θ∗ is actually non-empty. We propose below a reason-
able framework in which the convergence of the MAP esti-
mator toward the corresponding non-empty set Θ∗ is guar-
anteed.

3.2.1 Two Kinds of Latent Variables

To this end and for any ω ∈ R+, we define the space Θ ω of
admissible parameters such that on average, the fixed effects
are bounded by ω:

Θ
ω =

{
θ =

(
zpop,Σ ,σ

)
∈Θ | ‖zpop‖2 6 ω

}
,

where Θ = Rppop ×S +
pind

(R)×R+. As the assumption only
concern the average behavior of the population variable zzzpop,
it is not restrictive. Moreover, fixed effects are most of the
time bounded (but potentially with high bounds) in applica-
tions. In this new framework, for all ω ∈ R+, we consider

Θ
ω
∗ =

{
θ ∈Θ

ω
∣∣ EP(dyyy) [ logq(yyy|θ) ] = E∗(ω)

}
,

where

E∗(ω) = sup
θ∈Θ ω

EP(dyyy) [ logq(yyy|θ) ] .

To state the consistency of the MAP estimator, we first
have to give some notations. For all i ∈ J1,nK, we assume
the existence of two subsets of Zi, Z

reg
i and Z crit

i , such that
Zi = Z reg

i ×Z crit
i . In other words, we assume that each

component of each individual latent variable zzzi may be of
two sorts: regular or critical. We will respectively denote
zzzreg

i and zzzcrit
i this sub-variables leading to write, up to permu-

tations, zzzi = (zzzreg
i ,zzzcrit

i ). Likewise, we assume that the com-
ponents of the population latent variables can be regular or
critical, i.e. that there exists Z reg

pop ,Z
crit

pop ⊂ Zpop such that
zzzpop = (zzzreg

pop,zzzcrit
pop) ∈ Z reg

pop ×Z crit
pop . To stay consistent with

the previous notations, we denote preg
ind, pcrit

ind , preg
pop and pcrit

pop
the dimension of the ambient space of the matching sets:
Z reg

i ⊂ Rpreg
ind and so on.

3.2.2 Consistency of the Maximum a Posteriori Estimator

In the following, we want to study the effect of the vari-
ables (zzzpop,zzzi) on the trajectories. To this end, we intro-
duce for all i the notation γ i(zzzpop,zzzi) = (γi(ti, j)) j∈J1,kiK

∈
Rki and more generally the functions γ i : Zpop×Zi→ Rki .
Let ` ∈ J1,nK, consider a `-tuple of individuals and denote
by k` = ∑

`
i=1 ki the total number of measures for this `-

tuple. Let yyy` = (yi)i∈J1,`K ∈ Rk` and zzz` = (zzzpop,zzzi)i∈J1,`K ∈
Rppop+` pind be the vectors made up of the ` corresponding
vectors. As in the one-by-one case, we define by γ` : Zpop×
Z `

i → Rk` the function which maps the vector zzz` to the one(
γ i(zzzpop,zzzi)

)
i∈J1,`K.

For all vectors of the form (aaa,bbb) ∈ Rpa ×Rpb , where
pa and pb are any integer number and for all indices v ∈
J1, pa + pbK, (aaa,bbb)v and (aaa,bbb)−v refer respectively to

(aaa,bbb)v =
(
(a1, . . . ,apa) , (b1, . . . ,bpb)

)
v =

{
av if v 6 pa

bv−pa else

and

(aaa,bbb)−v =

{(
(a1, . . . ,av−1,av+1, . . . ,apa), bbb

)
if v 6 pa(

aaa , (b1, . . . ,bv−pa−1,bv−pa+1, . . . ,bpb)
)

else
.

Last, for all k ∈ N, Lk refers to the Lebesgue measure on
Rk.

Theorem 2 (Consistency of the MAP estimator) Assume that
there exists an integer ` ∈ J1,nK such that:

(H 1) The number of observations is bigger than the one
of latent variables: p` < k`, where k` = ∑

`
i=1 ki and

p` = ppop + ` pind ;
(H 2) The times of acquisition ttt i = (ti, j) j∈J1,kiK are indepen-

dent and identically distributed;
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(H 3) The density P(dyyy`) is continuous with polynomial tail
decay of degree bigger than the dimension of the trun-
cated space of latent variables, i.e. bigger than p`+1,
apart from a compact subset K of Rk`;

(H 4) The individual trajectories grow super-linearly with
respect to the regular variables: for all individuals
i ∈ J1,nK and for all v ∈ J1, preg

pop + preg
indK, there exists

two functions ai,v,bi,v : Rpreg
pop+preg

ind−1 → R which de-
pend only on (zzzreg

pop,zzz
reg
i )−v and such that

∀(zzzpop,zzzi) ∈Zpop×Zi, ai,v

(
(zzzreg

pop,zzz
reg
i )−v

)
> 0 ,

where

ai,v

(
(zzzreg

pop,zzz
reg
i )−v

)
= 0 iff (zzzreg

pop,zzz
reg
i )−v = 0 ,

and∥∥γ iii(zzzpop,zzzi)
∥∥

∞
> ai,v

(
(zzzreg

pop,zzz
reg
i )−v

)∣∣∣(zzzreg
pop,zzz

reg
i )v

∣∣∣
+bi,v

(
(zzzreg

pop,zzz
reg
i )−v

)
;

(H 5) Critical variables induce critical trajectories: for all
individuals i ∈ J1,nK and for all v ∈ J1, pcrit

pop + pcrit
ind K,

there exists a critical trajectory γcrit
i,v such that

lim
|(zzzcrit

pop,zzz
crit
i )v|→+∞

γ i(zzzpop,zzzi) = γ
crit
i,v

and Lki({yi = γcrit
i,v }) = 0.

Let (θ̂n)n∈N denote any MAP estimator. Then Θ ω
∗ 6= ∅ and

for any ε ∈ R∗+,

lim
n→∞

P
[
δ (θ̂n,Θ

ω
∗ )> ε

]
= 0 ,

where δ in any metric compatible with the topology on Θ ω .

The proof is postponed in Appendix A.
If the times of observations ttt i are identically distributed,

the individual numbers of measurements ki are in particu-
lar all equal. Thus, under (H 2), Assumption (H 1) writes
in a more concise manner as p` < `k1. However, as (H 2)
is not required for all intermediate results (see the proof
in Appendix A), we keep the more general statement for
(H 1). The condition (H 2) is for instance met if we assume
that the times ttt i are regularly spaced, that is to say that for
all individuals i ∈ J1,nK and all measurements j ∈ J1,k1K,
ti, j follows the uniform distribution U

(
[Tj−1,Tj]

)
, where

T is a maximum of the set
{

ti, j|i ∈ J1,nK, j ∈ J1,k1K
}

and
(T0 = 0 < T1 < .. . < Tk1 = T ) is a subdivision of [0,T ].

The condition p` < k` means that without enough obser-
vations for at least some individuals, we cannot build a con-
sistent model. Such an assumption is quite reasonable as we
have no chance to catch the trajectories behavior with certi-
tude with less observations than the constraints over them.

The assumption on the distribution P(dyyy) is really weak and
always fulfilled in practice. Moreover, as the theorem holds
for all ω ∈ R+, the boundary over the average of the popu-
lation latent variable zpop is not really restrictive.

For compactness, we have stated the theorem by consid-
ering that a latent variable may be of only one kind: reg-
ular or critical. Actually, a single latent variable can be of
two kinds: critical in the neighbourhood of +∞ and regular
around −∞, and vice-versa (see the proof for details). This
remark is all the more important in view of some applica-
tions and Section 4 but is treated by our proof.

3.3 Estimation with the MCMC-SAEM Algorithm

As explain at the paragraph 2.3.2, a stochastic version of the
EM algorithm is adopted, namely the SAEM algorithm. As
the conditional distribution q(zzz|yyy,θ) involves he renormal-
ization constant which is our target function, the simulation
step is replaced using a sampling algorithm, leading to con-
sider the MCMC-SAEM algorithm [2, 19]. It alternates be-
tween simulation, stochastic approximation and maximiza-
tion steps until convergence. The simulation step is achieved
using a symmetric random walk Hasting-Metropolis within
Gibbs sampler [27].

The complete log-likelihood of our model writes

logq
(
yyy,zzz,θ

)
= − 1

2σ2

n

∑
i=1

ki

∑
j=1

(
yi, j− γi(ti, j)

)2− k log(σ)

− 1
2

n

∑
i=1

( tzzzi Σ
−1 zzzi

)
− n

2
log(|Σ |)− 1

2
tr
(
V Σ
−1)

− 1
2

t(zzzpop− zpop
)
D−1(zzzpop− zpop

)
− 1

2
log(|D|)

+
mΣ

2
(

log(|V |)− log(|Σ |)
)
+mσ log

( v
σ

)
− mσ

2

( v
σ

)2
+ csts .

It is clear to see that this model belongs to the curved expo-
nential family: up to a multiple constant, the sufficient statis-
tics are defined as

SSS1(yyy,zzz) = zzzpop ∈ Rppop , S2(yyy,zzz) =
1
n

n

∑
i=1

tzzzizzzi ∈Mpind(R)

and S3(yyy,zzz) =
1
k

n

∑
i=1

ki

∑
j=1

(
yi, j− γi(ti, j)

)2 ∈ R .

By denoting iter the increment, zzz(iter) the current sam-
ple and S(iter)u the current approximation of the uth sufficient
statistics, u ∈ {1,2,3}, the stochastic approximation step is
defined as:

S(iter)u = S(iter)u + εiter

(
Su(yyy,zzz(iter))−S(iter)u

)
,
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Algorithm 1: Overview of the SAEM for the generic
piecewise geodesic model.

Input: θ ∗ =
(
zpop

∗,Σ ∗,σ∗
)
, (V,mΣ ), (v,mσ ), maxIter,

Nburnin.

Output: θ =
(
zpop,Σ ,σ

)
.

1 # Initialization: θ ← θ ∗ ; S← 0 ; (εiter)iter>0 ;
zpop← zpop ; (zzzi)i← 0 ;

2 for iter= 1 to maxIter do
3 # Simulation: (zzzpop,(zzzi)i)← sampler(zzzpop,(zzzi)i) ;

4 # Stochastic Approximation:

SSS1← SSS1 + εiter

(
zzzpop−SSS1

)
;

S2← S2 + εiter

(
1
n ∑

i

t zzzizzzi−S2

)
;

S3← S3 + εiter

(
1
k

n

∑
i=1

ki

∑
j=1

(yi, j− γi(ti, j))
2−S3

)
;

5 # Maximization: zpop← SSS1 ; Σ ← nS2+mΣ V
n+mΣ

;

σ ←
√

kS3+mσ v2

k+mσ
;

6 end

where (εiter) is a sequence positive step size (see below).
The maximization step is straightforward given the suf-

ficient statistics of our exponential model: we update the pa-
rameters by taking a barycentre between the corresponding
stochastic approximation and the prior (when they exist). In
other words:

zpop
(iter+1) = SSS1(yyy,zzz(iter)) ,

Σ
(iter+1) =

nS2(yyy,zzz(iter))+mΣV
n+mΣ

and σ
2(iter+1)

=
kS3(yyy,zzz(iter))+mσ v2

k+mσ

.

Finally, given an adapted sampler and the sequence (εiter)iter
defined by:

∀iter> 1, εiter = 1iter6Nburnin

+ (iter−Nburnin)−0.651iter>Nburnin

our algorithm writes as Algorithm 1 . Some experimental
results are presented in Section 5.

4 Application to Chemotherapy Monitoring

Understanding the global disease progression is the key of
chemotherapy monitoring. Indeed, physicians have to choose
the best possible treatment and sequence of molecules for
each of their patients, in the shortest possible time. Here, we
propose two instantiations of the generic piecewise geodesic

model, both in view of chemotherapy monitoring: the piece-
wise logistic curve model and the piecewise geodesic shape
model.

We recall that patients are treated and so the evolution
of the tumoral growth will fluctuate. Therefore, reaction-
diffusion based tumor growth models do not apply in this
context. Moreover, the two proposed models allow to bring
a representative of the whole population comportment out
for any kind of input data: scores, images, shapes, etc.

4.1 The Piecewise Logistic Curve Model: Chemotherapy
Monitoring through RECIST Score

In this section, we explicit the generic model with logistic
geodesics and M = ]0,1[. This is motivated by the study of
the RECIST score monitoring, which leads to consider one-
dimension manifold, with one rupture point. As this explicit
model is designed in view of our target application, we first
give a short description of RECIST score.

4.1.1 The RECIST Score

Patients suffering from the metastatic kidney cancer, take
a drug each day and regularly have to check their tumor
evolution. Indeed, during the past few years, the way renal
metastatic cancer are monitoring was profoundly changed:
a new class of anti-angiogenic therapies targeting the tumor
vessels instead of the tumor cells has emerged and drasti-
cally improved survival by a factor of three [12]. These new
drugs, however, do not cure the cancer, and only succeed
in delaying the tumor growth, requiring the use of succes-
sive therapies which have to be continued or interrupted at
the appropriate moment according to the patient’s response.
So, the new medicine process has also created a new scien-
tific challenge: how to choose the most efficient drug therapy
given he first monitoring times of the response profile of a
given patient.

The RECIST (Response Evaluation Criteria In Solid Tu-
mors) score [35] is a set of published rules that measures the
tumoral growth. Physicians select at most five lesions, with
a sufficient diameter, and sum the longest diameter for all
target lesions. This leads them to determine if the tumors in
cancer patients respond (completely or partially), stabilize
or progress during treatment.

The response to a given treatment has generally two dis-
tinct phases: first, tumor’s size reduces; then, the tumor grows
again. So, we have to build a model which allow to us to
catch this behaviors. Moreover, a practical question is to
quantify the correlation between both phases and to deter-
mine as accurately as possible the individual rupture times
t i
R which are related to an escape of the patient’s response to

treatment.
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4.1.2 The Piecewise Logistic Curve Model

Our observations consist of patient’s RECIST score over
time, i.e. of sequences of bounded one-dimension measures.
As explained above, we could make out two phases in the
evolution of RECIST scores: a decreasing and a growing
one. So, we set m = 2 and d = 1, which leads us to propose
a way to build models for chemotherapy monitoring. This
model has been designed after discussions with oncologists
of the HEGP.

The Group-Representative Trajectory. Let M0 be the open
interval ]0,1[, equipped with the logistic metric: ∀x ∈ M0,
∀ξ ,ζ ∈ TxM0 ' R,

gx(ξ ,ζ ) = ξ G (x)ζ with G (x) =
1

x2(1− x2)
.

Given three real numbers γ init
0 , γ

escap
0 and γfin

0 we define two
affine functions by setting down φ 1

0 : x 7→
(
γ init

0 − γ
escap
0

)
x+

γ
escap
0 and φ 2

0 : x 7→
(
γfin

0 − γ
escap
0

)
x+ γ

escap
0 . This allows us

to map M0 onto the intervals ]γescap
0 ,γ init

0 [ and ]γ
escap
0 ,γfin

0 [ re-
spectively: if γ̄0 refers to the sigmoid function, φ 1

0 ◦ γ̄0 will
be a logistic curve, growing from γ

escap
0 to γ init

0 . For compact-
ness, we note tR the single breaking-up time at the popula-
tion level and t i

R at the individual one. Moreover, due to our
target application, we force the first logistic to be decreasing
and the second one increasing (this condition may be easily
relaxed for other framework).

Logistics are defined on open intervals, with asymptotic
constraints. We want to formulate our constraints on some
non-infinite time-points, as explained in paragraph 2.1.2. So,
we set a positive threshold ν , close to zero, and demand the
logistics γ1

0 and γ2
0 to be ν-near from their corresponding

asymptotes. More precisely, we impose the trajectory γ0 to
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Fig. 2 The piecewise logistic curve model: Diversity of individual tra-
jectories. A typical representative trajectory in bold and several indi-
vidual ones, for different vectors zzzi. The rupture times are represented
by diamonds and the initial/final times by stars.

γinit
0 − ν

γescap
0 + ν

γfin
0 − ν

r1i r2i

δi
τi

t0 tiR tR t1ti1

γ0

γi

Fig. 3 The piecewise logistic curve model: From representative to in-
dividual trajectory. Illustration of the non-standard constraints for γ0
and the transition from the representative trajectory to an individual
one: the trajectory γi is subject to a temporal and a spacial warp. In
other ”words”, γi = φ 1

i ◦ γ1
0 ◦ψ1

i 1]−∞,t i
R]
+ φ 2

i ◦ γ2
0 ◦ψ2

i 1]t i
R,+∞[.

be of the form γ0 = γ1
0 1]−∞,tR] + γ2

0 1]tR,+∞[, where, for all
times t ∈ R,

γ
1
0 (t) =

γ init
0 + γ

escap
0 e(at+b)

1+ e(at+b)
∈ ]γ

escap
0 ,γ init

0 [ ,

γ
2
0 (t) =

γfin
0 + γ

escap
0 e−(ct+d)

1+ e−(ct+d)
∈ ]γ

escap
0 ,γfin

0 [

and a, b, c and d are some positive numbers given by the
following constraints

γ
1
0 (t0) = γ

init
0 −ν , γ

1
0 (tR) = γ

2
0 (tR) = γ

escap
0 +ν

and γ
2
0 (t1) = γ

fin
0 −ν .

In order the previous logistics to be well-defined, we also
have to enforce γ

escap
0 + 2ν 6 γ init

0 and γ
escap
0 + 2ν 6 γfin

0 .
Thus, ppop = 5 and

Zpop =
{(

γ
init
0 ,γ

escap
0 ,γfin

0 , tR, t1
)
∈ R5

∣∣∣
γ

escap
0 +2ν 6 γ

init
0 ∧ γ

escap
0 +2ν 6 γ

fin
0

}
.

In our context, the initial time of the process is known:
it is the beginning of the treatment. So, we assume that the
representative initial time t0 is equal to zero.

Individual Trajectories. For each i∈ J1,nK, given (α1
i ,α

2
i ,τi)∈

R2
+×R, the time-warps (cf. 2.2.1) write

ψ
1
i (t)=α

1
i (t−t0−τi)+t0 and ψ

2
i (t)=α

2
i (t−tR−τ

2
i )+tR ,

where τ2
i = τi +

(
1−α1

i
α1

i

)
(tR− t0).

In the same way as the time-warp, the diffeomorphisms
φ 1

i and φ 2
i (cf. 2.2.2) are chosen to allow different amplitudes
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and rupture values: for each i ∈ J1,nK, given the two scaling
factors r1

i and r2
i and the space-shift δi, we define

∀` ∈ {1,2}, φ
`
i (x) = r`i (x− γ0(tR))+ γ0(tR)+δi .

Other choices are conceivable but in the context of our target
applications, this one is the most appropriate: as we want to
study the correlation between growth and decrease phase,
none of the portions of the curves have to be favoured and
affine functions allow us to put the same weight on the whole
curves. Mathematically, any regular and injective function
defined on ]γ

escap
0 ,γ init

0 [ (respectively ]γ
escap
0 ,γfin

0 [) works.
To sum up, each individual trajectory γi depends on the

representative curve γ0 through zzzpop =
(
γ init

0 ,γ
escap
0 ,γfin

0 , tR, t1
)

fixed and zzzi =
(
α1

i ,α
2
i ,τi,r1

i ,r
2
i ,δi
)

random effects. This leads
to a non-linear mixed effects model. More precisely, we set
for all individuals i ∈ J1,nK

∀` ∈ {1,2}, γ
`
i = φ

`
i ◦ γ

`
0 ◦ψ

`
i and t i

R = t0 + τi +
tR− t0

α1
i

,

which leads us to write for all measurements j ∈ J1,kiK,

yi, j = γ
1
i (ti, j)1]−∞,t i

R]
(ti, j) + γ

2
i (ti, j)1]t i

R,+∞[(ti, j) + εi, j .

Figures 2 and 3 provide illustrations of the model. On each
figure, the bold black curve represents the characteristic tra-
jectory γ0 and the color curves several individual trajecto-
ries.

We proceed as in the paragraph 2.3.1 and set α`
i = eξ `

i

for `∈ {1,2}. Likewise, the scaling parameters r`i have to be
positive and equal to one on average while the space shifts δi
can be of any signs and must be zero on average. So, we set
r`i = eρ`

i for ` ∈ {1,2} leading to zzzi =
(
ξ 1

i ,ξ
2
i ,τi,ρ

1
i ,ρ

2
i ,δi

)
.

In particular, pind = 6 and we assume that there exists Σ ∈
S +

pind
(R) such that zzzi ∼N (0,Σ) for all i ∈ J1,nK. In view

of our target application, this assumption is really important:
usually, the random effects are studied independently. Here,
we are interested in correlations between the two phases of
patient’s response to treatment in order to answer question
like: does a fast response induce a fast reprogression after
the rupture time, which would mean that a fast response
would decrease the susceptibility to this drug?

4.1.3 Theoretical Analysis of the Piecewise Logistic Curve
Model

Theorem 1 applies as is leading to a well-defined MAP esti-
mator for the piecewise logistic model. Moreover, at the risk
of assuming some restriction concerning the distribution of
our observations, the piecewise logistic model is consistent.

More precisely, let Θ PL be the space of the admissible
parameters for the piecewise logistic model, i.e.

Θ
PL =

{
(γ init

0 ,γ
escap
0 ,γfin

0 , tR, t1,Σ ,σ)

∈ Rppop ×S +
pind

(R)×R+
}
.

We define

Θ
ω,PL = {θ ∈Θ

PL | ‖(γ init
0 ,γ

escap
0 ,γfin

0 , tR, t1)‖6 ω }

the space of the parameters associated to bounded on aver-
age fixed effects, for the piecewise logistic model and, as in
the generic framework, the space

Θ
ω,PL
∗ = {θ ∈Θ

ω,PL | EP(dyyy`)

[
logq(yyy`|θ)

]
= E∗(ω)} ,

where E∗(ω) = supθ∈Θ ω,PL EP(dyyy`)
[
logq(yyy`|θ)

]
.

Theorem 3 (Consistency of the MAP, piecewise logistic)
Assume that

(H 1) The number of observations is bigger than the one
of latent variables: There exists ` ∈ J1,nK such that
p` < k`, where k` = ∑

`
i=1 ki and p` = ppop + ` pind ;

(H 2) The times of acquisition ti = (ti, j) j∈J1,kiK are indepen-
dent and identically distributed;

(H 3) The density P(dyyy`) is continuous with polynomial tail
decay of degree bigger p`+ 1 apart from a compact
subset K of Rk`;

Then, the piecewise logistic model satisfies the hypothesis of
Theorem 2. In particular, if (θ̂n)n∈N denote any MAP esti-
mator, Θ

ω,PL
∗ 6=∅ and for any ε ∈ R∗+,

lim
n→∞

P
[
δ (θ̂n,Θ

ω,PL
∗ )> ε

]
= 0 ,

where δ in any metric compatible with the topology on Θ ω,PL.

Proof We demonstrate that, for all i ∈ J1,nK, the variables(
γ init

0 , γ
escap
0 , γfin

0 , ρ1
i , ρ2

i , δi
)

are regular, that the variables(
tR, t1, ξ 1

i , ξ 2
i , τi

)
are critical, and that

(
ρ1

i , ρ2
i
)

are regular
in the neighbourhood of +∞ and critical near −∞. See the
remark after Theorem 2.

(H 4) Let i ∈ J1,nK. By definition of γ i,

‖γ i(zzzpop,zzzi)‖∞ = max
{
|γescap

0 +ν +δi | ;

|γescap
0 +ν +δi + eρ1

i (γ init
0 − γ

escap
0 −2ν) | ;

|γescap
0 +ν +δi + eρ2

i (γfin
0 − γ

escap
0 −2ν) |

}
.

And we can check that for γ init
0 , γ

escap
0 , γfin

0 , ρ1
i , ρ2

i
and δi and that for ρ1

i and ρ2
i as soon as |ρ1

i |, |ρ2
i |> 1

there exists two functions ai and bi as in [Theorem
2 (H 4)].

(H 5) Let i ∈ J1,nK and j ∈ J1,kiK. By definition of γ i,

lim
tR→+∞

γ i(zzzpop,zzzi) j =
[

eρ1
i

(
γ

init
0 − γ

escap
0 −2ν

)
+ γ

escap
0 +ν +δi

]
1[t0,+∞[(ti, j) ,

where γ i(zzzpop,zzzi) j denotes the jth coordinate of the
vector γ i(zzzpop,zzzi) ∈ Rki . However, by construction,
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γ init
0 − γ

escap
0 and γ

escap
0 follow a normal distribution

so

Lki

({
yi, j = eρ1

i

(
γ

init
0 − γ

escap
0 −2ν

)
+ γ

escap
0 +ν +δi

})
= 0 .

Likewise for tR→−∞. The same argument holds when
t1, ξ 1

i , ξ 2
i or τi become infinite and when ρ1

i or ρ2
i go

to −∞.
ut

4.2 The Piecewise Geodesic Shape Model: Chemotherapy
Monitoring through 3D Anatomical Shape

A more precise way to follow-up cancer is to focus on the
evolution of the tumors as anatomical shape. For this pur-
pose, the tumors is segmented and transformed into a surface
mesh or a curvilinear paths depending on the type of data
we consider, typically depending on the number of layers in
scanner we have access to. Let d ∈ {2,3} be the dimension
of the ambient space.

Shape trajectories within the geodesic-framework devel-
oped by Schiratti et al. has already been addressed [5]. We
explain here quickly how to adapt this model to the piece-
wise geodesic framework. In particular, we use consistent
notations and admit the notion of exp-parallelism.

4.2.1 The Piecewise Geodesic Shape Model

In the same way as the piecewise logistic curve model, we
are targeting chemotherapy monitoring with two distinct phases
in the evolution of the tumoral growth and thus we set m= 2.
We keep the notation tR for the single breaking-up time at
the population level and t i

R at the individual one. We con-
sider only two geodesic components, so that an easy way to
enforce the representative path to be continuous is to define
the first component in the past and the second one in the fu-
ture, from the rupture time tR. Thus, provided that we follow
forward the first component, we can use exactly the same
construction that the one introduced by Bône et al.. As a
consequence, the following is applicable either for currents
[37] or varifolds [7], allowing to consider shapes without
any point correspondence.

The Group-Representative Trajectory. Let yR ∈M ⊂ Rd be
the rupture shape, i.e. the representative shape of the popula-
tion at the rupture time tR, and likewise cR ∈Rncpd be a set of
ncp rupture control points. Let m1

R ∈ Rncpd and m2
R ∈ Rncpd

be respectively the backward and the forward momenta at
the rupture time. We define the representative path by:

γ0 : t 7→ E xpcR,tR,−t(m1
R)◦ yR 1]−∞,tR](t)

+E xpcR,tR,t(m
2
R)◦ yR 1[tR,+∞[(t) ,

�R
d

ambient

space
M

shapes

space

γ0

•yR = γ0(tR)

v2R

v1R

�
Rncpd

control points’

space

m2
R

m1
R

•cR

Fig. 4 The piecewise geodesic shape model: Construction of the
group-representative trajectory. Let tR be the rupture time and yR ∈M
the rupture shape, i.e. the shape of the representative path at the rupture
time. We define the path γ0 as the concatenation of the two geodesics
starting at the rupture time tR and the point yR, in the directions asso-
ciated to m1

R the backward and m2
R the forward momenta respectively

and where the first one is followed backward.

where t 7→ E xpcR,tR,t(mR) denotes the exponential opera-
tor associated to the manifold of diffeomorphisms under-
lying the shape space (See [4, 5, 23] for details about the
construction of the shape space). In particular, the resulting
backward and forward velocity vectors at the rupture time
are respectively define by v1

R = cR ·m1
R = ∑

ncp
q=1 cR,q m1

R,q and
v2

R = cR ·m2
R. Figure 4 sums up this construction.

Individual Trajectories. At the individual level, as the initial
representative time is not explicitly defined in this frame-
work, we slightly modify the first time component reparametriza-
tion leading to ψ1

i (t) = eξ 1
i (t − tR − τi) + tR and ψ2

i (t) =
eξ 2

i (t − tR− τi)+ tR. The individual rupture time are given
by t i

R = tR + τi and we check that ψ1
i (t

i
R) = ψ2

i (t
i
R) = tR.

The diffeomorphic component deformations consist of
exp-parallelism of the representative path [31]. Given a vec-
tor w, to define the exp-parallel of a curve γ in the direction
of w, we first transport the vector w along the curve γ and
then compute the flow given by the transported vector. We
note Pt : Rncpd→Rncpd the parallel transport operator, which
transport any vector w∈Rncpd along the curve γ0 from γ0(tR)
to γ0(t) and we set: ηw : t 7→ E xpc(t),0,1 (Pt(w)), where c(t)
is the set of control points for γ0, at the time t:

c(t) = E xpcR,tR,−t(m1
R)◦ cR 1]−∞,tR](t)

+E xpcR,tR,t(m
2
R)◦ cR 1[tR,+∞[(t) .

Thus, given a space shift momenta wi for all individuals, the
space deformation of the curve γ0 is given by t 7→ηwi(t)◦yR.



A Coherent Framework for Learning Spatiotemporal Piecewise-Geodesic Trajectories from Longitudinal Manifold-Valued Data 13

Last, for all individuals i ∈ J1,nK, we define a subject-
specific trajectory by setting:

γi : t 7→ ηwi(ψ
1
i (t))◦ yR 1]−∞,t i

R]
(t)

+ηwi(ψ
2
i (t))◦ yR 1[t i

R,+∞[(t) .

Space-shift momenta and identifiability Following [5] and
in the spirit of Independent Component Analysis [15], we
assume that each space-shift momenta wi is a linear com-
bination of ns sources si ∈ Rns , i.e. that wi = Am⊥R

si, where
Am⊥R
∈Mncpd,ns(R) calls modulation matrix. As argued in

[5, 31], we have to ensure the orthogonality between mR and
wi in order to ensure the identifiability of the model. This
orthogonality condition prevents a confusion between the
space shifts and the acceleration factors and can be achieved
through projection techniques that we do not detail here.

To sum up, the population random effects are given by
zpop = (yR,cR,m1

R,m
2
R, tR,Am⊥R

) and the individual ones by

zi =(ξ 1
i ,ξ

2
i ,τi,si). To place ourselves in the hierachical frame-

work detailed at the paragraph 2.3.2, we assume that there
exists Σ ∈ S +

3 (R) such that zi ∼N (0,Σ)⊗N (0,1) and
that there exists small fixed variances such that the popula-
tion latent variable follow a tight Gaussian distribution.

4.2.2 Theoretical Analysis of the Piecewise Geodesic Shape
Model

As for the piecewise logistic curve model, Theorem 1 ap-
plies and the MAP estimator for the piecewise geodesic shape
model is well-defined. We therefore focus on the consistency
of this model.

Like previously, we define the space of admissible pa-
rameters associated to bounded on average fixed effects:

Θ
ω,PS = {θ ∈Θ

PS | ‖(γ init
0 ,γ

escap
0 ,γfin

0 , tR, t1)‖6 ω }

for all ω ∈ R, where

Θ
PS =

{
(yR,cR,m1

R,m
2
R, tR,Am⊥R

Σ ,σ)

∈ Rppop ×S +
pind

(R)×R+
}
.

As in the generic and piecewise-logistic framework, we also
define the space

Θ
ω,PS
∗ = {θ ∈Θ

ω,PS | EP(dyyy`)

[
logq(yyy`|θ)

]
= E∗(ω)} ,

where E∗(ω) = supθ∈Θ ω,PL EP(dyyy`)
[
logq(yyy`|θ)

]
.

Theorem 4 (Consistency of the MAP, piecewise shapes)
Assume that

(H 1) The number of observations is bigger than the one
of latent variables: There exists ` ∈ J1,nK such that
p` < k`, where k` = ∑

`
i=1 ki and p` = ppop + ` pind ;

(H 2) The times of acquisition ti = (ti, j) j∈J1,kiK are indepen-
dent and identically distributed;

(H 3) The density P(dyyy`) is continuous with polynomial tail
decay of degree bigger p`+ 1 apart from a compact
subset K of Rk`;

(H 4) For all individuals i∈ J1,nK, t 7→ ‖γi(t)‖ grows super-
linearly or t 7→ γi(t) converges uniformly w.r.t the vari-
able yR toward a function t 7→ γ ∗i (t);

(H 5) For all individuals i ∈ J1,nK, the variables cR, m1
R,

m2
R, Am⊥R

and si are either regular or critical, in the
sens of Theorem 2.

Then, the piecewise geodesic shapes model satisfies the hy-
pothesis of Theorem 2. In particular, if (θ̂n)n∈N denote any
MAP estimator, Θ

ω,PS
∗ 6=∅ and for any ε ∈ R∗+,

lim
n→∞

P
[
δ (θ̂n,Θ

ω,PS
∗ )> ε

]
= 0 ,

where δ in any metric compatible with the topology on Θ ω,PS.

Proof Let’s demonstrate that the variables yR, tR, ξ 1
i , ξ 2

i and
τi are either regular of critical for all individuals i ∈ J1,nK.

1. Let i ∈ J1,nK and (zzzpop,zzzi) ∈ Zpop×Zi. By continuity
of the parallel transport and the trajectory γ0, there exists
a ∈ R+ such that∥∥γ iii(zzzpop,zzzi)

∥∥
∞
> a‖yR = γ0(tR)‖

and so, yR is regular.
2. By continuity of the geodesic flow, for all times t ∈ R,

γi(t) depends continuously of γi(tR). Thus, for all t ∈
R, by continuity of the parallel transport, γi(t) depends
continuously of yR. If γ ∗i exists, since the convergence
of γi toward γ ∗i is uniform w.r.t the variable yR, γ ∗i is
also continuous w.r.t yR = γ0(tR) ∼N (yR, ∗) and so is
a continuous distribution.
For all i ∈ J1,nK, all ` ∈ {1,2} and all t ∈ R, we have
lim

ξ `
i →−∞

ψ`
i (t)= tR. Therefore, lim

ξ `
i →−∞

γ`i (t)= γi(tR)
which is a continuous distribution. So, for all j ∈ J1,kiK,
Lki ({yi, j = γi(tR)}) = 0.
Last, since limψ`

i (t) =±∞ when |tR|, |τi| or ξ `
i converge

toward +∞, we get the result with Assumption (H 4).
ut

Proving (H 5) is a very interesting issue but outside of the
scope of this paper. Our conjecture is that a positive and re-
stricted curvature for the shape space M will guarantee that,
for all individuals i∈ J1,nK, cR, m1

R, m2
R, Am⊥R

and si are regu-
lar. Indeed, we guess that in geodesic shooting, sufficient ini-
tial momenta will enforce the trajectory to ”go away”, pro-
vided that the underlying manifold is ”kind” enough. Note
that the computation of the curvature for both currents and
varifolds is still an open problem.



14 Juliette Chevallier et al.

5 Experimental Results

Experimentations are performed for both models introduced
above: the piecewise logistic curve model and the piece-
wise geodesic shape model. In order to validate our model
and numerical scheme, we first run experiments on synthetic
data for the piecewise logistic model. We then test our es-
timation algorithm on real data from the Hôpital Europén
Georges Pompidou (HEGP – Georges Pompidou European
Hospital). A medical paper is under progress to provide a
more accurate interpretation of this results. Then, we run
experiments on synthetic data for the piecewise geodesic
shape model to confirm the performance of our model on
more complicated data. Real data for this framework are be-
ing collected and preprocessed.

5.1 Univariate Synthetic Data

We generate four types of data set, to put our algorithm in
different situations. More precisely, we want to quantify its
sensitivity to initialisation, sample size and noise.

5.1.1 Influence of the Initialization

The estimation is performed through the SAEM algorithm
(Algorithm 1). This iterative algorithm is proven to converge
toward a critical point of the observed likelihood. Therefore,
as our model does no imply a convex likelihood, one may
end up with a local maximum depending on the initializa-
tion point and the dynamic of our iterations. This choice of
initialization appears crucial. In particular the choice of the
initial mean population parameters zzzpop

init.
If our model were linear, the representative curve γ0 would

exactly be the one induced by the mean of the individual tra-
jectories γi, i.e. the one where zzzpop = meani∈J1,nK zzzi. Follow-
ing this idea, we set in our experiments

γ init
0

init
= mean

i∈J1,nK
yi,1 ; γ

escap
0

init
= mean

i∈J1,nK
min

j∈J1,kiK
yi, j ;

γfin
0

init
= mean

i∈J1,nK
yi,ki ; tR

init =
1
2

mean
i∈J1,nK

tki ;

and t1
init = mean

i∈J1,nK
tki .

Note that the choice of the initial covariance matrix Σ init and
the residual noise σ init does not seem to be very influential.
We just demand Σ init to be definite positive.

5.1.2 Influence of the Proposal Variances

The SAEM algorithm is very sensitive to the choice of the
proposal variances in the sampling step. Thus, we have to
carefully tune these variances in order the mean acceptance

Table 1 Degree of non-linearity. Relative errors (expressed as a per-
centage) for the initial population parameters zzzpop

init, according to the
type of data set and the sample size n.

n δL (γ init
0 ) δL (γ

escap
0 ) δL (γfin

0 ) δL (tR) δL (t1)

A 50 7.08 17.01 5.94 1.97 1.98
100 2.93 22.33 3.66 2.40 2.42
250 2.16 24.06 2.12 3.52 3.54

A∗ 50 5.63 283.14 1.51 1.03 1.01
100 3.38 259.25 0.07 4.75 4.76
250 3.67 269.42 0.41 3.94 3.95

B 50 80.47 2.77 39.78 35.04 35.09
100 88.17 4.39 51.83 36.14 36.19
250 83.52 12.91 47.90 33.23 33.27

B∗ 50 59.25 201.98 33.46 28.85 28.89
100 74.94 213.96 43.50 30.74 30.78
250 79.14 229.40 47.30 34.39 34.44

ratio to stay around the optimal rate, i.e. 24% as we are
using a symmetric random walk sampler. To decrease the
influence of a bad calibration, we adapt the proposal vari-
ances over the iterations in the way of Roberts and Rosen-
thal [28, 29]: every sth batch of 50 iterations, we increase
or decrease the logarithm of the proposal proposal variances
by δ (s) = min

(
0.001, 1√

s

)
depending on whether the mean

associated variable acceptance rate is bigger or smaller than
the optimal one. Note that we have also tried to adapt the
proposal variances as in Atchadé [3] but the results we ob-
tained were not satisfactory. Actually, it appears numeri-
cally that if we want the adaptive procedure to increase the
efficiency of our algorithm, we must modify the proposal
variance neither too often nor with a too big amplitude of
change.

5.1.3 Construction of the Data Sets

For each type of data set, given the corresponding ground
truth parameters θ true, we generate three data sets of respec-
tive size 50, 100 and 250. Last, to put our algorithm on a
more realistic situation, the synthetic individual times are
non-periodically spaced and individual sizes vary between
12 and 18.

The first type – A – is said quasilinear in the sense that,
for these data sets, the representative trajectory γ0 is ”close”
to the mean trajectory described above. Hence, we put our
algorithm in a favorable situation where the optimal repre-
sentative trajectory is close to the initial one. The second
type –A∗ – is a noisy version of A. The noise level is ap-
proximately 20% (against 2% for the non-noisy data set A).

On the contrary, the thirds type – B – is built in order to
be ”truly non-linear”: the representative trajectory γ0 is ”far”
from the curve built by zzzpop

init. Likewise, the fourth type –
B∗ – is a noisy version of B, with a 20 % noise level.
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Table 2 The piecewise logistic curve model: Fixed effects, variability and residual noise. Mean (standard deviation) relative errors (expressed as a
percentage) for the estimated parameters zzzpop

estim ; mean (standard deviation) of KullbackLeibler divergences from Σ estim to Σ true, mean (standard
deviation) relative errors (expressed as a percentage) for the individual rupture times t i

R
estim and mean estimated residual noise σ estim according to

the data set and the sample size n. All over 50 runs.

n γ init
0 γ

escap
0 γfin

0 tR t1 Σ t i
R σ

A 50 6.03 (0.32) 10.25 (0.50) 3.69 (0.25) 1.95 (0.13) 2.43 (0.18) 15.54 (5.17) 0.49 (0.04) 2.03
100 2.19 (0.17) 3.28 (0.22) 2.07 (0.18) 1.69 (0.11) 1.86 (0.17) 8.45 (2.26) 0.63 (0.06) 1.97
250 1.30 (0.10) 1.96 (0.13) 1.53 (0.08) 0.78 (0.06) 1.67 (0.09) 9.29 (3.13) 0.57 (0.60) 2.06

A∗ 50 3.74 (0.26) 25.73 (1.64) 6.84 (0.40) 3.32 (0.26) 3.73 (0.26) 16.52 (19.45) 4.66 (0.45) 19.81
100 2.35 (0.15) 12.20 (0.64) 1.35 (0.09) 2.98 (0.22) 2.29 (0.18) 12.86 (4.26) 3.85 (0.32) 19.03
250 1.70 (0.12) 3.94 (0.29) 1.33 (0.09) 1.36 (0.10) 1.51 (0.10) 6.72 (2.44) 3.98 (0.32) 20.07

B 50 71.13 (1.33) 100.24 (8.09) 90.73 (2.54) 7.78 (0.56) 46.39 (1.32) 16.53 (7.72) 5.89 (3.45) 3.07
100 58.73 (0.98) 58.88 (3.00) 84.99 (1.42) 8.13 (0.57) 42.06 (1.04) 13.59 (5.42) 4.44 (1.93) 2.14
250 67.49 (0.47) 23.12 (1.54) 57.82 (0.74) 6.01 (0.33) 38.09 (0.36) 22.24 (9.77) 4.96 (1.93) 2.49

B∗ 50 41.61 (1.26) 29.86 (2.53) 46.38 (1.60) 9.04 (0.58) 29.90 (0.58) 27.62 (17.71) 14.32 (4.06) 19.93
100 60.39 (0.81) 28.43 (2.06) 58.35 (1.07) 8.11 (0.54) 29.75 (0.50) 23.98 (18.07) 13.97 (3.71) 20.56
250 55.89 (0.74) 15.56 (0.98) 59.90 (0.58) 3.26 (0.25) 39.28 (0.43) 17.70 (5.35) 11.57 (2.42) 21.38

To measure this degree of non-linearity, we introduce the
ratio δL (zzzpop) which is the relative error of zzzpop

init:

δL (zzzpop) =
‖zzzpop

init− zzzpop
true‖

‖zzzpop
true‖ .

Table 1 compiles this ratio for every data set, and for every
parameter in zzzpop. In particular, the initialization of γ

escap
0 is

in itself a challenge and very sensitive to the noise in the

data set: even in the quasilinear case, γ
escap
0

init
is quite far

from γ
escap
0

true
.

5.1.4 Estimation of the Fixed Effects

Table 2 displays the relative errors for the estimated popu-
lation parameters. In most case, these errors decrease with
the size of the data set. More specific to our model, we ob-
serve that these errors are correlated to the subjective lin-
earity of the model. With the exception of γ

escap
0 , the errors

for estimating population parameters grow linearly with the
non-linearity of the model. We suppose that the difference
of scale between γ

escap
0 and the others can, at least partly,

explain this phenomena: γ
escap
0 is about a few tens of units

; γ init
0 , γfin

0 and tR about a few hundreds and t1 about one
thousand. Thus, a same absolute error will lead to markedly
different relative error.

As Table 1 displays the relative error for for the initial
population parameters zzzpop

init and Table 2 the relative errors
for the estimated population parameters zzzpop

estim, by com-
paring this two tables, we are able to quantify the contri-
bution of the estimation-procedure in the knowledge of the
population parameters. The first point to note is that this rel-
ative error generally decrease. Specifically, the population
parameters are well-learned in quasilinear cases (data sets A
and A∗) and in particular in large data set (n = 250). Then,

the algorithm we propose is not noise-sensitive: errors for
non-noisy and noisy versions of a same type of data set are
notably the same. And even better, for the non-linear data
sets, the estimation is better performed in the noisy case than
in the non-noisy one. It seems that the presence of noise
helps the algorithm not to get stuck in potential well.

Hence, the degree of non-linearity in the data set seems
to play a significant role in the estimation of the population
parameters. To be certain that the poor estimation of zzzpop
when the ratio δL (zzzpop) is too big is due to the non-linearity
of the data set and not to a bad initialization, we have also
performed estimations by assigning θ init = θ true. The results
were better but not so significantly.

Last, note that the representative rupture time tR is well-
estimated, no matter the subjective linearity of the data set.
In the view of chemotherapy monitoring, well-estimating
the rupture time, which correspond to an escapement from
the treatment, is very important.

5.1.5 Estimation of the Inter-Individual Variability

In the target of our application, the covariance matrix Σ

gives a lot of information on the health status of a patient:
pace and amplitude of tumor progression, individual rupture
times, etc. Therefore, we have to pay special attention to the
estimation of Σ .

Much as the representative trajectory is not always good-
estimated, our algorithm always allows a well-understanding
of the inter-individual variability. We present at Table 2 the
Kullback-Leibler divergence from Σ estim to Σ true, the rela-
tive error of the individual rupture times and the estimated
residual noise. As for the estimation of the population pa-
rameters, errors decrease with the sample size n and are not
significantly different between noisy and non-noisy versions
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(c) B – Strongly non-linear
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Fig. 5 The piecewise logistic curve model: Distribution of the individual rupture times. Each subfigure compares the distribution of the (mean of
the) estimated individual rupture times t i

R
estim and the distribution of the true individual rupture times t i

R
true. In bold line, the estimated average

rupture time tRestim and the true average rupture time tRtrue are relatively close to each other. n = 250.
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Fig. 6 The piecewise logistic curve model: Qualitative performance of the estimation and robustness to noise of the MAP estimator. On both
figures, the estimated trajectories are in plain lines and the target curves in dashed lines. The (noisy) observations are represented by crosses. The
representative path is in bold black line, the individuals in colour. n = 250.

of a same type of data set. Moreover, in that case, the errors
seem to not rely on the subjective linearity of the data set.

Moreover, the individual rupture times tR, the residual
noise σ is always well-estimated.

5.1.6 Reconstruction of the Individual Trajectories

Figure 5 illustrates the well-understanding of the variance
within the population, including for the non-linear data set.
Determining accurate individual rupture time t i

R is all the
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most important as, in the aim of chemotherapy monitoring,
these times are related to an escape of the patient’s response
to treatment.

An important point was to allow a lot of different indi-
vidual behaviors. In our synthetic example, Figure 2 illus-
trates this variability. From a single representative trajectory
(γ0 in bold plain line), we can generate individuals who are
cured at the end (dot-dashed lines: γ3 and γ4), some whose
response to the treatment is bad (dashed lines: γ5 and γ6),
some who only escape (no positive response to the treat-
ments – dotted lines: γ7). Likewise, we can generate ”pa-
tients” with only positive responses or no response at all.
The case of individual 4 is interesting in practice: the tumor
still grows but so slowly that the growth is negligible, at least
in the short-run.

Figure 6 illustrates the qualitative performance of the
estimation. We are notably able to understand various be-
haviors and fit subjects which are far from the characteristic
path. Moreover, the noise seems to not reduce the quality of
the estimation. We represent only five individuals but 250
subjects have been used to perform the estimation.

5.2 Metastatic Kidney Cancer Monitoring

The algorithm is now run on RECIST score of real patients
suffering from kidney cancer. The estimation is performed
over a cohort of 176 patients of the HEGP. There is an av-
erage of 7 visits per subjects (min: 3, max: 22), with an av-
erage duration of 90 days between consecutive visits. We
present here a run with a low residual standard variation with
respect to the amplitude of the trajectories and complexity of
the data set: σ = 9.10.

Figure 7 illustrates the qualitative performance of the
model on ten patients. Although we cannot explain all the
paths of progression, the algorithm succeeds in fitting var-
ious types of curves: from the curve γ6 which is flat to the
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Fig. 7 RECIST score of patients from the HEGP. We keep conventions
of the previous figures. We represent only 10 patients among the 176.
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Fig. 8 Individual rupture times t i
R (in days). Histogram of the rupture

times t i
R for this run. In black bold line, the estimated average rupture

time tR is a good estimate of the average of the individual rupture times
although there exists a large range of escape.

curve γ3 which is spiky. From Figure 8, it seems that the
rupture times occur early in the progression in average.

In Figure 9, we plot the individual estimates of the ran-
dom effects (obtained from the last iteration) in comparison
to the individual rupture times. Even though the parameters
which lead the space warp, i.e. ρ1

i , ρ2
i and δi are correlated,

the correlation with the rupture time is not clear. In other
words, the volume of the tumors seems to not be relevant to
evaluate the escapement of a patient. On the contrary, which
is logical, the time warp strongly impacts the rupture time.

5.3 Shape Synthetic Data

The dataset consists of 20 synthetic sequences of 3D-shapes
built in accordance to the piecewise geodesic shape model
described at the paragraph 4.2. The estimation is still per-
formed through the MCMC-SAEM algorithm (Algorithm
1). Real data are not yet available as the segmentation of the
tumor has to be done manually, which is complex and time-
consuming. This study will motivate new segmentations for
future works.

The control points used to construct the data are chosen
to be regularly distributed. Thus, the algorithm has no reason
to return the same control points: on the contrary, it will re-
turn more relevant control points. As momenta and control
points share a single dynamic, we rather evaluate the per-
formances on the reconstruction relative error which sum-
maries the goodness of fit of our algorithm.

Table 3 displays the relative errors for the estimated rep-
resentative rupture shape, representative rupture time and in-
dividual rupture times. We emphasis the well-estimation of
the rupture times tR and (t i

R)i∈J1,nK, which is critical in the
target to our application to chemotherapy monitoring. We
also provide the relative errors of reconstruction, i.e. the rel-
ative residual distances between the estimated trajectories
and and their corresponding paths in the data set for both
the representative path and the individuals ones. Figure 10
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Fig. 9 Individual random effects. Fig. 9a: log-acceleration factors ξ 1
i and ξ 2

i against times shifts τi. Fig. 9b: log-amplitude factors ρ1
i and ρ2

i
against space shifts δi. In both figures, the colour corresponds to the individual rupture time t i

R. These estimates hold for the same run as Fig. 7.

Table 3 The piecewise geodesic shape model. Relative errors for the
representative rupture shape yR and the representative rupture times
tR. Mean (standard deviation) relative errors for the individual rupture
time t i

R
estim, within the population. Error of reconstruction for the tem-

plate and mean (standard deviation) os the error of resonstruction for
the individuals. All expressed as a percentage and for a type run.

yR tR
Template

t i
R

Individuals
reconstruction reconstruction

1.30 0.01 9.72 0.31 (0.41) 7.94 (5.91)

illustrates the qualitative performance of the reconstruction
of the template and Figure 11 the qualitative performance of
the reconstruction of subject type. Mainly, the reconstruc-
tion turns out to be very efficient.

6 Discussion and Perspective

We have proposed a coherent statistical framework for the
spatio-temporal analysis of piecewise geodesic manifold val-
ued measurements. This model allows each individual to
have his own intrinsic geometry and his own time parametriza-
tion. Unlike previous similar works [31, 32], it allows for
piecewise geodesic trajectories. Relaxing the classical geodesic
assumption widen the application scope of the model in bi-
ology and medicine. The model is built in a hierarchical way
as a non-linear mixed effects model whose fixed effects de-
fine a representative trajectory of the global evolution in the
space of measurements and random effects account for the
spatio-temporal variability of the trajectories at the individ-
ual level.

Estimation was formulated as a well-defined MAP prob-
lem and numerically performed through the MCMC-SAEM
algorithm. Experimentations have highlighted the robustness

of our model to noise and its performance in catching in-
dividual behaviors. We believe that the complexity of our
model ensures its practical identifiability, even if it is not
structurally identifiable [22]. Besides, as the posterior likeli-
hood is not convex, the MAP could be difficult to determine
numerically. Future work focuses on exploring some possi-
ble improvement of the numerical scheme.

Our model can be applied to a wide variety of situa-
tions and data sets. In particular, we can address medical
follow-up such as neurodegenerative diseases or chemother-
apy monitoring. The example of chemotherapy monitoring
is especially interesting in a modeling perspective as the
patients are treated and tumors may respond, stabilize or
progress during the treatment, with different conducts for
each phase. At the age of personalized medicine, to give
physicians decision support systems is really important. There-
fore learning correlations between phases is crucial. This has
been taken into account in our experimentations. More gen-
erally, the inter-individual variability allows us to person-
alize the model to new patient and thus perform predictive
medicine.

A Proof of the Consistency Theorem for Bounded
Population Variable

The proof of the theorem relies on several lemmas. Lemma 4 is the
heart of the proof: we control here the behavior of the log-likelihood
at the boundary points of the parameters space Θ ω

∗ and prove that this
set is non-empty. It is based on Lemma 3 which states the integrability
of the supremum over the parameter space of the positive part of the
log-likelihood. Lemma 2 is derived from Allassonnière et al. [1]. We
transpose the proof of the cited article here (with few more details) as
this lemma is critical in the proof of Lemma 3 and not such classical.

In the following, we freely (and without reminder) use the nota-
tions introduced in Section 3.2. Moreover, (H 1), (H 2), (H 3), (H 4)
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(a) Template used to generate the dataset

(b) Template estimated after 600 iterations

Fig. 10 The piecewise shape model: Reconstruction of the template. Evolution of the template over time. In purple (Fig. 10a), the template used
for the generation of the dataset ; In red (Fig. 10b), the one estimated by the algorithm.

(a) Samples of the dataset: an observed individual trajectory

(b) Estimation of the same individual trajectory, 600 iterations

Fig. 11 The piecewise shape model: Reconstruction of the individual trajectories. Evolution of a standard subject over time. We keep the same
convention than at Figure 10: Fig. 11a (in purple) shows the shooting of an individual evolution path and Fig. 11b (in red)) the corresponding
reconstructed one.

and (H 5) refer to the hypothesis of the consistency theorem (Theorem
2, page 7).

A.1 Lemmas

We first recall that the minimal number of balls of radius r ∈ R∗+
required to cover a compact set K ∈ Rp is bounded from above by(

D iam(K)
r

)p
.

Lemma 2 (Preliminary of measure theory) Let p < q be two inte-
gers. Then, for any differentiable map f : Rp → Rq and any compact
subset K of Rp, there exists a constant λ which depends only on p and
q such that∫
Rq\ f (K)

log+
1

d
(
yyy, f (K)

) dyyy < λ

(
sup

K
‖D f‖+2

)q

D iam(K)p ,

where d is the euclidean distance on Rq, D f the differential of f and
D iam(K) the diameter of the compact K. Especially,∫
Rq\ f (K)

log+
1

d(yyy, f (K))
dyyy <+∞ .

Proof For all ρ,ρ1,ρ2 ∈ R∗+, ρ1 < ρ2, let

Mρ1,ρ2 =
{

yyy ∈ Rq | ρ1 6 d
(
yyy, f (K)

)
6 ρ2

}
and Mρ = M0,ρ .

For all ρ ∈ R∗+, due to the compactness of K, there exists a finite

set Λρ ⊂ K such that K ⊂ ⋃xxx∈Λρ
B(xxx,ρ) and |Λρ | 6

(
D iam(K)

ρ

)p
.

Let τ = supK‖D f‖. According to the mean value theorem, M0,ρ ⊂
B
(

f (xxx),(τ +2)ρ
)

and

Lq(Mρ )6 ∑
xxx∈Λρ

Lq

(
B
(

f (xxx),(τ +2)ρ
))

6

√
π

p
(τ +2)p

Γ
( p

2 +1
) ×

(
D iam(K)

)p×ρ
q−p .
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Let s ∈ ]0,1[. Then, from the Abel transformation,∫
Rq\ f (K)

log+
1

d
(
yyy, f (K)

) dyyy =
+∞

∑
n=0

∫
Msn+1 ,sn

log+
1

d
(
yyy, f (K)

) dyyy

6
+∞

∑
n=0

log
1

sn+1 [Lq(Msn )−Lq(Msn+1 )]

6− log(s)
+∞

∑
n=0

Lq(Msn ) .

Hence the result as s ∈ ]0,1[. ut

Lemma 3 Assume (H 1), (H 3), (H 4) and
(H′ 5) Bounded regular variables implies bounded trajectories: For all

individuals i∈ J1,nK, if there exists b∈R such that ‖(zzzreg
pop,zzz

reg
i )‖∞ <

b then there exists R ∈ R∗+ such that ‖γ i(zzzpop,zzzi)‖∞ < R.
Then, for any such `,

EP(dyyy`)

[
sup
θ∈Θ

(
`

∑
i=1

logq(yyyi|θ)
)+]

< +∞ .

Proof Let i ∈ J1, `K, Γi = I m(γ i) and Γ ` = ∏
`
i=1 Γi. For all θ ∈Θ ω ,

q(yyyi|θ) =
1

(σ
√

2π)ki

∫
Z i

exp
(
− 1

2σ2 ‖yyyi− γ i(zzzpop,zzzi)‖2
2

)
q(zzzpop,zzzi|θ) d(zzzpop,zzzi)

6
1

(σ
√

2π)ki
exp
(
− 1

2σ2 d(yyyi,Γi)
2
)
,

where d denotes the Euclidean distance on Rki . Thus for all θ ∈Θ ω ,

`

∑
i=1

logq(yyyi|θ)6−
k`

2
log(2πσ

2)− 1
2σ2 d(yyy`,Γ `)2 ,

where d denotes now the Euclidean distance on Rk` , k` = ∑
`
i=1 ki. As

the right hand side is maximized for σ2 = 1
k` d(yyy`,Γ `)2, there exists a

constant λ ∈ R∗+ such that

sup
θ∈Θ

(
`

∑
i=1

logq(yyyi|θ)
)+

6 λ + k` log+
1

d(yyy`,Γ `)
.

1. Assume there exists i0 ∈ J1,nK such that that ‖(zzzreg
pop,zzz

reg
i0
)‖∞ > b

for all b ∈ R.
For all r1,r2 ∈R we define a compact subset Γ `

r1,r2
of Γ ` by setting

¯A (r1,r2) =
{

zzz` ∈ Rp` | r1 6 ‖(zzzreg
pop,zzz

reg
i )i∈J1,`K‖∞,

‖(zzzcrit
pop,zzz

crit
i )i∈J1,`K‖∞ 6 r2

}
and Γ

`
r1,r2

=
{

γ
`(zzz`) | zzz` ∈ ¯A (r1,r2)

}
.

Especially, limr2→∞ Γ `
0,r2

= Γ `. Moreover, γ` is differentiable a.e.,
at least one-side differentiable everywhere and there exists τ ∈ R
such that supRp`‖Dzzz`γ

`‖ < τ . So, according to Lemma 2, for all
r1,r2 ∈ R, there exists µ ∈ R which depends only on p` and k`

such that E
[

log+ 1
d(yyy`,Γ `

r1 ,r2
)

]
< µ (τ +2)k` r2

p` . As in the proof

of Lemma 2, we set Γ `
r1,r2

= {yyy` ∈ Rk` | d(yyy`,Γ `
r1,r2

) 6 1} and we
have for all r1,r2 ∈ R,∫
Rk`

log+
1

d(yyy`,Γ `
r1,r2

)
P(dyyy`) =

∫
Γ `

r1 ,r2

log+
1

d(yyy`,Γ `
r1,r2

)
P(dyyy`)

6 µ̄ r2
p` sup

Γ `
r1 ,r2

P(yyy`) ,

where µ̄ = µ (τ +2)k` ∈R. Let R1,R2 ∈N such that K ⊂ B̄(0,R1)
and R1 < R2. By definition of the distance to a subset, it comes that

EP(dyyy`)

[
log+

1
d(yyy`,Γ `

0,R2
)

]
6 µ̄ R1

p` sup
Γ `

0,R1

P(yyy`)

+ µ̄

R2−1

∑
r=R1

(r+1)p` sup
Γ `

r,r+1

P(yyy`) .

The first term is finite as P(dyyy) is continuous. Besides, if yyy` ∈
Γ `

r,r+1, there exists zzz` ∈ ¯A (r,r+ 1) such that ‖γ`(zzz`)− yyy`‖∞ 6 1.
Let i∈ J1,nK and v∈ J1, preg

pop+ preg
indK so that ‖(zzzreg

pop,zzz
reg
i )i∈J1,nK‖∞ =

|(zzzreg
pop,zzz

reg
i )v|. Such a couple exists due to the existence of i0. More-

over, there exists ai,v
(
(zzzreg

pop,zzz
reg
i )−v

)
and bi,v

(
(zzzreg

pop,zzz
reg
i )−v

)
as in

(H 4) and by definition of zzz` and the infinite norm,

‖yyy`‖∞ > ‖γ`(zzz`)‖∞−1 > ‖γ i(zzzpop,zzzi)‖∞−1

> ai,v |(zzzreg
pop,zzz

reg
i )v| + bi,v−1

> ai,v× r + bi,v−1 .

Consequently,

sup
Γ `

r,r+1

P(yyy`)6 sup{P(yyy`) | ‖yyy`‖∞ > ai,v× r + bi,v−1}

and the series ∑(r+ 1)p` sup
Γ `

r,r+1
P(yyy`) converge since P(dyyy) has

a polynomial decay tail of degree bigger than p`+1 apart from K
by assumption (H 3).

2. Assume that there exists b ∈R such that ‖(zzzreg
pop,zzz

reg
i )‖∞ 6 b for all

i ∈ J1,nK. Then, by assumption (H′ 5), there exists R ∈ R∗+ such
that for all i, ‖γ i(zzzpop,zzzi)‖∞ < R. In particular, ‖γ`(zzz`)‖∞ < R and
Γ ` ⊂ B̄(0,R). Thus,

EP(dyyy`)

[
log+

1
d(yyy`,Γ `)

]
6 EP(dyyy`)

[
log+

1
d
(
yyy`,B̄(0,R)

)] .
Yet, by still denoting B̄(0,R) = {yyy` ∈ Rk` | d

(
yyy`,B̄(0,R)

)
6 1}

and applying Lemma 2 to the compact K = B̄(0,R) and f = Id,
there exists µ ∈ R such that

EP(dyyy`)

[
log+

1
d
(
yyy`,B̄(0,R)

)]

=
∫

B̄(0,R)
log+

1
d
(
yyy`,B̄(0,R)

)P(dyyy`)

6 µ 3k` R p` sup
B̄(0,R)

P(yyy`) <+∞ .

Finally, in both cases, EP(dyyy`)

[
supθ∈Θ

(
∑
`
i=1 logq(yyyi|θ)

)+]
<+∞.

ut

Lemma 4 Assume (H 1), (H 3), (H 4) and (H 5). Let

S +
pind (R) = S +

pind
(R)∪{∞}

be the one point Alexandrov compactification of S +
pind

(R) and consider
the compactification of the parameter space Θ ω

Θ ω =
{

θ = (zzzpop,Σ ,σ) ∈ Rppop ×S +
pind (R)×R+ | ‖zzzpop‖6 ω

}
,

where R+ = [0,+∞[∪{+∞}. Then, we have for all ω ∈ R,
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(C 1) P(dyyy`) almost surely, for any sequence θκ =
(

zzzpop κ
, Σκ , σκ

)
of elements from Θ ω such that limκ→∞ θκ ∈Θ ω \Θ ω ,

lim
κ→∞

`

∑
i=1

logq(yyyi|θκ ) =−∞ ;

(C 2) For any sequence (θκ ) ∈Θ ωN such that limκ→∞ θκ ∈Θ ω \Θ ω ,

lim
κ→∞

EP(dyyy`) [ logq(y|θκ ) ] =−∞ ;

(C 3) The mapping θ 7→ EP(dyyy`) [ logq(y|θ) ] is continuous on Θ ω and
Θ ω
∗ 6=∅.

Proof We recall that a sequence (Σκ )κ∈N of S +
pind (R) converge to-

ward the point ∞ if it eventually steps out of every compact subset of
S +

pind
(R). Let prove the three points in order.

1. As

Θ ω \Θ
ω =

{
(Σ ,σ) ∈S +

pind (R)×R+
∣∣∣

‖Σ‖=+∞ ∧ ‖Σ−1‖=+∞ ∧ σ ∈ {0,+∞}
}

we proceed by disjunction. Let

∀κ ∈ N, θκ = (zzzpop κ
,Σκ ,σκ ) ∈Θ

ω .

(i) Assume that, up to extraction of a subsequence, ‖Σκ‖ → ∞ or
‖Σ−1

κ ‖→ ∞.
Let M = ‖yyy`‖∞. For all individuals i ∈ J1,nK and all κ ∈ N, the
marginal density of yyyi given θκ is given by :

q(yyyi|θκ ) =
1

(σκ

√
2π)ki

∫
Zpop×Zi

exp
(
− 1

2σ2
κ

‖yyyi− γ i(zzzpop,zzzi)‖2
2

)
q(zzzpop,zzzi|θκ ) d(zzzpop,zzzi) .

Let x > 1, Z reg
i,−1 =

{(
zzzreg

i,2 , . . . ,zzz
reg
i,preg

ind

)
| zzzreg

i ∈Z reg
i

}
and likewise

Z reg
pop,−1. Let B̄x

i,1 be the closed ball defined by

B̄x
i,1 = B̄x

i,1

(
(zzzreg

pop,zzz
reg
i )−1

)
= B̄

(
0 ,

xM−bi,1
(
(zzzreg

pop,zzz
reg
i )−1

)
ai,1
(
(zzzreg

pop,zzz
reg
i )−1

) )
,

where ai,1
(
(zzzreg

pop,zzz
reg
i )−1

)
and bi,1

(
(zzzreg

pop,zzz
reg
i )−1

)
are defined as in

(H 4). Thus, by slicing the integral in half and bounding the expo-
nential on B̄x

i,1 by 1,

q(yyyi|θκ )6
1

(σκ

√
2π)ki

∫
B̄x

i,1×Zi,−1

q(zzzpop,zzzi|θκ ) d(zzzpop,zzzi)

+
1

(σκ

√
2π)ki

∫
B̄x

i,1
{×Zi,−1

exp
(
− 1

2σ2
κ

‖yyyi− γ i(zzzpop,zzzi)‖2
2

)
q(zzzpop,zzzi|θκ ) d(zzzpop,zzzi) ,

where Zi,−1 =Z reg
pop,−1×Z crit

pop ×Z reg
i,−1×Z crit

i . Moreover, by con-
ditioning,

∫
B̄x

i,1×Zi,−1

q(zzzpop,zzzi|θκ ) d(zzzpop,zzzi)

=
∫

B̄x
i,1

q(zzzreg
pop,1,zzz

reg
i,1 |θκ ) d(zzzreg

pop,1,zzz
reg
i,1 ) .

By continuity of (zzzreg
pop,1,zzz

reg
i,1 ) 7→ q(zzzreg

pop,1,zzz
reg
i,1 |θκ ) and compactness

of B̄x
i,1,

∫
B̄x

i,1×Zi,−1

q(zzzpop,zzzi|θκ ) d(zzzpop,zzzi)

6 sup
B̄x

i,1

q(zzzreg
pop,1,zzz

reg
i,1 |θκ )L1(B̄

x
i,1) .

Since the marginal of a multivariate distribution is a multivariate
distribution whose mean vector and covariance matrix are obtained
by dropping the irrelevant variables, lim‖Σκ‖→∞ q(zzzreg

pop,1,zzz
reg
i,1 |θκ )=

0 and the first integral goes to zero as ‖Σκ‖→ ∞.
In the same way of the proof of Theorem 1, the marginal density
q(zzzreg

pop,1,zzz
reg
i,1 |θκ ) is controlled by the operator norm of the covari-

ance matrix Σ−1
κ from which we have drop the irrelevant variables.

Hence, as ‖Σ−1
κ ‖ → ∞, the first integral converges toward zero as

well.
The second integral is maximized at σ2

κ = 1
ki
‖yyyi− γ i(zzzpop,zzzi)‖2.

Thus, due to the Cauchy-Schwarz inequality, there exists a con-
stant c ∈ R∗+ such that for all (zzzpop,zzzi) ∈ B̄x

i,1
{×Zi,−1,

‖yyyi− γ i(zzzpop,zzzi)‖2
2 > c

(
ai,1×

xM−bi,1

ai,1
+bi,1−‖yyyi‖∞

)2

> c
(
(x−1)M

)2

and by bounding the marginal density q(zzzpop,zzzi|θκ ) on B̄x
i,1
{ ×

Zi,−1 by 1, the second integral is bounded from above by

(
ki

2π

) ki
2

e−
ki
2

1(√
c(x−1)M

)ki
.

Therefore,

limsup
κ→∞

`

∑
i=1

logq(yyyi|θκ ) 6− k`

2

[
1+ log(2π)+ log

(√
c(x−1)M

)]
+

1
2

`

∑
i=1

ki logki .

Since x can be chosen arbitrarily large, we obtain the result for the
case ‖Σκ‖→+∞ as well as ‖Σ−1

κ ‖→+∞.

(ii) Assume that, up to extraction of a subsequence, σκ → 0 or
σκ → ∞.
Let M = ‖yyy`‖∞. With the same notations as in the proof of Lemma
3, for all κ ∈ N,

`

∑
i=1

logq(yyyi|θκ )6−
k`

2
log(2πσ

2
κ )−

1
2σ2 d(yyy`,Γ `)2 ,

where Γ ` = I m(γ`) and d denotes the Euclidean distance on
Rk` . Let us prove that d(yyy`,Γ `) > 0 a.s. : the result will go along
whatever σκ → 0 or σκ → +∞ with the previous inequality. Let
Z ` = Zpop×∏

`
i=1 Zi.

Due to (H 4), for all i ∈ J1,nK,

lim
‖(zzzreg

pop,zzz
reg
i )‖∞→∞

‖γi(zzzpop,zzzi)‖∞ =+∞ ,

and so for all ε ∈ R∗+ non-negative, there exists R ∈ R such as for
all zzz` ∈ Z ` satisfying ‖zzz`‖ > R, ‖γ `̀̀(zzz`)‖ > M + ε . In particular,
by definition of M, ‖yyy` − γ`(zzz`)‖∞ > 0 for ‖(zzzreg

pop,zzz
reg
i )i∈J1,`K‖∞

sufficiently large.
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On the other hand, if at least a critical variable blows up, then by
(H 5) there exists a critical trajectory γcrit

i such that

lim
‖(zzzcrit

pop,zzzcrit
i )‖∞→∞

‖γ i(zzzpop,zzzi)‖∞ = γ
crit
i

and as soon as this variable becomes sufficiently large, yyyi 6= γcrit
i

a.s. Thus ‖yyy` − γ`(zzz`)‖∞ > 0 a.s. for ‖(zzzcrit
pop,zzz

crit
i )i∈J1,`K‖∞ suffi-

ciently large.
In other words, there exists R ∈ R∗+ such that for all zzz` ∈ Z `, if
‖zzz`‖∞ > R, then ‖yyy`− γ`(zzz`)‖∞ > 0 a.s. So, by contraposition, if
there exists zzz` ∈Z ` such that ‖yyy`−γ`(zzz`)‖∞ = 0 (at least a.s.) then
‖zzz`‖∞ 6 R. Especially, {zzz` ∈ Z ` | yyy` = γ`(zzz`) a.s.} ⊂ B̄(0,R) .
Since (H 3) assumes that P(dyyy) has a continuous density and since
γ`
(
B̄(0,R)

)
is a sub-manifold of dimension p` < k`, it comes that

P
[

zzz` ∈ B̄(0,R)
]
= 0. Hence,

Lk`

({
yyy` | d(yyy`,I m(γ`)) = 0

})
= 0

2. Let fκ (yyy`) = ∑
`
i=1 logq(yyyi|θκ ). From (C 1), we deduce that, up

to extraction, the negative part
(

fκ (yyy`)
)− is almost surely a non-

decreasing and non-negative sequence converging to +∞. From
the monotone convergence theorem we then have

liminf
κ→+∞

EP(dyyy`)

[(
fκ (yyy`)

)−]
=+∞

and so

lim
κ→+∞

EP(dyyy`)

[(
fκ (yyy`)

)−]
=+∞ .

Concerning the positive part
(

fκ (yyy`)
)+, using the dominated con-

vergence theorem, Lemma 3 and the point (C 1), we get

lim
κ→+∞

EP(dyyy`)

[(
fκ (yyy`)

)+]
= 0 .

Actually, for all i∈ J1,nK the application (zzzreg
pop,zzz

reg
i ) 7→ γcrit

i is con-
tinuous by continuity of the function γ i and so (H′ 5) holds.
Finally, we have proved that

lim
κ→+∞

EP(dyyy`)

[
`

∑
i=1

logq(yyyi|θκ )

]
=−∞

and (C 2) follows immediately.
3. The continuity statement is straightforward. If Θ ω

∗ is empty, any
maximizing sequence θκ of EP(dyyy`)

[
logq(yyy`|θ)

]
satisfies (up to

extraction of a subsequence) θκ ∈Θ ω , ‖Σκ‖ → +∞, ‖Σ−1x
κ ‖ →

+∞, σκ → 0 or σκ →+∞, which is on contradiction with conclu-
sion (C 2).

ut

A.2 Proof of the Consistency Theorem

We follow in the following proof the classical approach of van der
Vaart [38].

Proof As in Lemma 4, let Θ ω denote the one point Alexandrov com-
pactification of the parameter space Θ ω . We have already proved at
[Lemma 4 (C 3)] that Θ ω

∗ 6=∅. To achieve the proof, let us first demon-
strate that for all θ∞ ∈Θ ω such that δ (θ∞,Θ

ω
∗ )> ε there exists an open

set U ⊂Θ ω such that

1
`
EP(dyyy`)

[
sup

θ∈U ∩Θ ω

`

∑
i=1

logq(yyyi|θ)
]
< E∗(ω) . (0)

Let ε > 0, (Uh)⊂Θ ωN be a non-increasing sequence of open subsets
of Θ ω for which

⋂
h>0 Uh = {θ∞} and fh be the function defined by

fh(yyy`) =
1
`

sup
θ∈Uh

`

∑
i=1

logq(yyyi|θ) .

1. If θ∞ ∈Θ ω , through the continuity of the map θ 7→∑
`
i=1 logq(yyyi|θ)

and the definition of the sequence (Uh),

lim
h→+∞

fh(yyy`) =
1
`

`

∑
i=1

logq(yyyi|θ∞) .

So, according to the monotone convergence theorem, Lemma 3
and since θ∞ /∈Θ ω

∗ ,

lim
h→+∞

EP(dyyy`)

[
fh(yyy`)

]
=

1
`

`

∑
i=1

EP(dyyy`) [logq(yyyi|θ∞)]< E∗(ω) .

2. If θ∞ /∈ Θ ω , i.e. if θ∞ ∈ Θ ω \Θ ω , we can prove that for all ob-
servations yyy` ∈ Rk` limh→∞ fh(yyy`) = −∞ P(dyyy`) a.s. We proceed
by contradiction : assume that there exists a measurable set A ∈
B(Rk` ) such that P(yyy` ∈ A)> 0 and for all yyy` ∈ A, infh∈N fh(yyy`)>
−∞. Then, by definition of the infimum, for all yyy` ∈ A there exists
a sequence (hn) ∈ RN such as liminfn→+∞ fhn (y)>−∞. However
for all yyy` ∈A, h 7→ fh(yyy`) is non-increasing and reaches its infimum
limit for h =+∞ and thus limn→+∞ Uhn =U∞ = {θ∞}. Finally, up
to considering a sequence (θn,n′ ) ∈U N

hn
for all subsets Uhn ⊂Θ ω

such that for all n ∈ N,

lim
n′→+∞

`

∑
i=1

logq(yyyi|θn,n′ ) = sup
θ∈Un

`

∑
i=1

logq(yyyi | θ) ,

concatenating, reindexing those sequences and using the continu-
ity of the map θ 7→ ∑

`
i=1 logq(yyyi|θ) we know that there exists a

sequence (θn) ∈Θ ωN such that

lim
n→∞

θn = θ∞ and liminf
n→+∞

`

∑
i=1

logq(yyyi|θn)>−∞ .

Moreover, θ∞ =
(

zzzpop ∞
,Σ∞,σ∞

)
∈ Θ ω \Θ ω and thus ‖Σ∞‖ =

+∞, ‖Σ−1
∞ ‖ = +∞ or σ∞ ∈ {0,+∞} in contradiction to [Lemma

4 (C 1)]. So for all observations yyy, limh→∞ fh(yyy`) =−∞ P(dyyy) a.s.
As in the proof of Lemma 4, Hypothesis (H 5) implies (H′ 5) and
according to Lemma 3 and the monotone convergence theorem,

lim
h→+∞

EP(dyyy`)

[
fh(yyy`)

]
=−∞ < E∗(ω) .

That is, in both cases limh→+∞EP(dyyy`)
[

fh(yyy`)
]
< E∗(ω) and there ex-

ists an open set U ⊂Θ ω such that

1
`
EP(dyyy`)

[
sup

θ∈U ∩Θ ω

`

∑
i=1

logq(yyyi|θ)
]
< E∗(ω)

as announced.
Let Kε = {θ ∈Θ ω | δ (θ ,Θ ω

∗ )> ε}. Through the compactness of
Kε , there exists an open finite cover (Uα )α∈J1,AK of Kε satisfying (0).
Thus, denoting qn = b n

` c and rn = n−qn` the quotient and the rest of
the euclidean division of n by ` , we get for all θ ∈ Kε ,

sup
θ∈Kε∩Θ ω

n

∑
i=1

logq(yyyi|θ)6 sup
α∈J1,AK

(
qn

∑
q=0

sup
θ∈Uα∩Θ ω

`

∑
r=1

logq(yyyq`+r|θ)

+ sup
θ∈Uα∩Θ ω

rn

∑
r=`+1

logq(yyyqn`+r|θ)
)
.
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However, according to the strong law of large numbers, Assumption
(H 2) and (0),

lim
qn→∞

1
qn

qn

∑
q=0

sup
θ∈Uα∩Θ ω

`

∑
r=1

logq(yyyq`+r|θ)6 `E∗(ω)

hence, since limn→+∞ qn =+∞ and rn < ` for all n ∈ N,

limsup
n→∞

[
qn

n
sup

α∈J1,AK

(
1
qn

qn

∑
q=0

sup
θ∈Uα∩Θ ω

`

∑
r=1

logq(yyyq`+r|θ)
) ]

=
1
`
× sup

α∈J1,AK

(
EP(dyyy`)

[
sup

θ∈Uα∩Θ ω

`

∑
r=1

logq(yyyqn`+r|θ)
])

< E∗(ω) .

Otherwise, for all r ∈ J`+ 1, `nK, logq(yyyqn`+r|θ) 6 −k` logq(σ
√

2π)
so

1
n

sup
α∈J1,AK

(
sup

θ∈Uα∩Θ ω

rn

∑
r=`+1

logq(yyyqn`+r|θ )

)
6

k`(rn−1)
n

log(σ
√

2π) .

Thereafter

limsup
n→∞

[
1
n

sup
α∈J1,AK

(
sup

θ∈Uα∩Θ ω

rn

∑
r=`+1

logq(yyyqn`+r|θ )

)]
6 0

and

limsup
n→∞

1
n

sup
θ∈Kε∩Θ ω

n

∑
i=1

logq(yyyi|θ)< E∗(ω) . (1)

By definition of Θ ω
∗ and according to the strong law of large num-

bers and (H 2), for all θ ∗ ∈Θ ω
∗ limn→∞

1
n ∑

n
i=1 logq(yyyi|θ ∗) = E∗(ω)

a.s. Moreover for all i ∈ J1,nK,

q(yyyi|θ̂n) =
q(θ̂n | yyyi)q(yyyi)

qprior(θ̂n)
>

q(θ∗ | yyyi)q(yyyi)

qprior(θ̂n)
=

q(yyyi|θ∗)qprior(θ∗)

qprior(θ̂n)

and so
n

∑
i=1

logq(yyyi|θ̂n)>
n

∑
i=1

logq(yyyi|θ∗)+
(
logqprior(θ∗)− logqprior(θ̂n)

)
.

Since qprior is upper-bounded on Θ ω , there exists M ∈ R+ such that

1
n

(
logqprior(θ∗)− logqprior(θ̂n)

)
>

1
n

log
(

qprior(θ∗)
M

)
i.e. liminfn→+∞

1
n

(
logqprior(θ∗)− logqprior(θ̂n)

)
> 0 and

liminf
n→+∞

1
n

n

∑
i=1

logq(yyyi|θ̂n)> E∗(ω) . (2)

The result follows from Equations 1 and 2 by contradiction : As-
sume that for all n ∈ N, θ̂n ∈ Kε i.e. that δ (θ̂n,Θ

ω
∗ )> ε . Then

n

∑
i=1

logq(yyyi|θ̂n)6 sup
θ∈Kε∩Θ ω

n

∑
i=1

logq(yyyi|θ)

and by taking the limit superior, we get

E∗(ω)
(2)
6 limsup

n→∞

1
n

n

∑
i=1

logq(yyyi|θ̂n)
(1)
< E∗(ω)

i.e. E∗(ω)< E∗(ω). Hence limn→∞P
[
δ (θ̂n,Θ

ω
∗ )> ε

]
= 0. ut
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5. A. Bône, O. Colliot, and S. Durrleman. Learning distributions of
shape trajectories from longitudinal datasets: A hierarchical model
on a manifold of diffeomorphisms. In Computer Vision and Pat-
tern Recognition, Salt Lake City, United States, 2018.

6. B. Charlier, N. Charon, and A. Trouvé. The fshape framework
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