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Abstract

This paper provides a coherent framework for studying longitudinal manifold-valued data.
We introduce a Bayesian mixed-effects model which allows to estimate both a group-
representative piecewise-geodesic trajectory in the Riemannian space of shape and inter-
individual variability. We prove the existence of the maximum a posteriori estimate and
its asymptotic consistency under reasonable assumptions. Due to the non-linearity of the
proposed model, we use a stochastic version of Expectation-Maximization algorithm to es-
timate the model parameters. Our simulations show that our model is not noise-sensitive
and succeed in explaining various paths of progression.

Keywords: Bayesian estimation, EM like algorithm, Longitudinal data, MCMC methods,
Nonlinear mixed-effects model, Spatio-temporal analysis

1. Introduction

Longitudinal studies are powerful tools to achieve a better understanding of temporal pro-
gressions of biological or natural phenomenons. For instance, longitudinal psychometric
data are often used to explore differences in the progression of Alzheimer’s and more gener-
ally neurodegenerative diseases. Other important applications such as pattern recognition,
chemotherapy monitoring, study of face expression dynamics, etc. come also from longitu-
dinal studies. Moreover, efforts in medicine and medical follow-up rely more and more on
the understanding of a global disease progression and not only on punctual states of health,
often with the help of medical images.

Anatomical data – and most of structured data – are naturally modeled as points on a
Riemannian manifold, called shape space. Geometrical properties of shape manifolds have
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been properly defined over the last decades. Moreover, according to the Whitney embedding
theorem (Gallot et al., 2004), as the shape spaces are second-countable, they will always be
embedded in a real d-dimensional Euclidean space, the space of measurements, which leads
us to consider the shape manifold as a submanifold of this Euclidean space. Therefore, the
temporal evolution of empirical data may be modeled as a parametric curve in the space
of measurements and more precisely as a noisy version of an underlying parametric curve
living on the Riemannian shape submanifold. Given a cohort of individuals followed over a
time period, we thus observe discreet samples of such a curve for each subject. We call this
set of observations a longitudinal data set.

Mixed-effects models have proved their efficiency in the study of longitudinal data sets
(Laird and Ware, 1982), especially for medical purposes (Milliken and Edland, 2000; Ribba
et al., 2014). Indeed, mixed-effects models provide a general and flexible framework to
study correlated data. They consist of two parts: fixed effects which describe the data at
the population level and random effects which are associated with individual experimental
units drawn at random from a population. Given a longitudinal data set, our model aims at
estimating a representative trajectory of the whole population progression and its variability.
Then, we can define subject-specific trajectories in view of the global progression.

The recent generic approach of Schiratti et al. (2015, 2017) to align patients is even
more suitable. This model was built with the aim of granting temporal and spatial inter-
subject variability through individual variations of a common time-line grant and parallel
shifting of a representative trajectory. Each individual trajectory has its own intrinsic
geometric pattern through spacial variability and its own time parametrization through
time variability. In term of modeling, the time variability allows some individuals to follow
the same progression path but at a different age and with possibly a different pace. However,
Schiratti et al. (2015, 2017) have made a strong hypothesis to build their model as they
assume the characteristic evolution to be geodesic. Such an assumption significantly reduces
the effective framework of their model. In this paper, we will relax this assumption to make
the model applicable to a wider variety of situations and data sets: we address each situation
in which the evolution can fluctuate several times.

We propose in this paper a coherent and generic statistical framework which includes
the model of Schiratti et al. (2015, 2017). Following their approach, we define a nonlinear
mixed-effects model for the definition and estimation of spatio-temporal piecewise-geodesic
trajectories from longitudinal manifold-valued data. We estimate a representative piecewise-
geodesic trajectory of the global progression and together with spacial and temporal inter-
individual variabilities. Particular attention is paid to estimation of the correlation between
the different phases of the evolution.

Estimation is formulated as a well-defined maximum a posteriori (map) problem which
we prove to be consistent under mild considerations. Numerically, the map estimation of the
parameters is performed through a stochastic version of the the expectation-maximization
(em) algorithm (Dempster et al., 1977), namely the Markov chain Monte Carlo stochastic-
approximation expectation-maximization (mcmc-saem) algorithm (Lavielle, 2014). The-
oretical results regarding its convergence have been proved in Delyon et al. (1999) and
Allassonnière et al. (2010) and its numerical efficiency has been demonstrated for these
types of models (Schiratti et al. (2015, 2017), Monolix – http://lixoft.com/).
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The paper is organized as follows: in Section 2 we define a generic nonlinear mixed-
effects model for piecewise-geodesically distributed data. Riemannian geometry allows us
to derive a method that makes light assumptions about the data and applications we are able
to deal with. We then make the generic formulation explicit for one-dimension manifolds
and piecewise-logistically distributed data in Section 4. This particular case is built in
the target of chemotherapy monitoring. In Section 3, we explain how to use the mcmc-
saem algorithm to produce map estimates of the parameters. We also prove a consistency
theorem, whose proof is postponed in appendix A. In Section 5, some experiments are
performed for the piecewise-logistic model: both on synthetic and on real data from the
Hôpital Européen Georges Pompidou (hegp). These experiments highlight the robustness
of our model to noise and its performance in understanding individual paths of progression.

2. Generic Mixed-Effects Model for Piecewise-Geodesically Distributed
Data on a Riemannian Manifold

In the following, we describe a generic method to build mixed-effects models for piecewise-
geodesically distributed data. This leads us to a large variety of possible situations that we
will be able to deal with within the same framework. This model has been first introduced
in Chevallier et al. (2017).

We consider a longitudinal data set y obtained by repeating multivariate measurements
of n ∈ N∗ individuals, where each individual i ∈ J1, nK is observed ki ∈ N∗ times, at the time
points ti = (ti,j)j∈J1,kiK and where yi = (yi,j)j∈J1,kiK denotes the sequence of observations for
this individual. We also denote k =

∑n
i=1 ki the total numbers of observations and assume

that each observation yi,j is a point of Rd where d ∈ N. Thus, the observed data consist in
a sequence y = (yi,j)(i,j)∈J1,nK×J1,kiK of Rkd, where J1, nK × J1, kiK denotes for compactness
the set {(i, j)|i ∈ J1, nK ∧ j ∈ J1, kiK}.

We generalize the idea of Schiratti et al. (2015, 2017) and build our model in a hierar-
chical way. Our data points are seen as noisy samples along trajectories and we suppose
that each individual trajectory derives from a group-representative scenario through spa-
tiotemporal transformations. Key to our model is that the group-representative trajectory
in no longer assumed to be geodesic but piecewise-geodesic.

To ensure that the optimization of those trajectories can be computationally performed
in a reasonable amount of time, we build a parametric model. That is to say that the
trajectories depend on a finite number of variables. In the following (see Subsection 2.3),
we will denote zpop the variables driving the group-representative scenario and zi those
associated to the individual i ∈ J1, nK. For the sake of clarity, we first detail the construction
of the trajectories from a geometrical point of view. Then, we state our generative model
in a statistical perspective.

2.1 The Group-Representative Trajectory

Let m ∈ N∗ and tR =
(
−∞ < t1R < . . . < tm−1

R < +∞
)

a subdivision of R, called the
breaking-up times sequence. In order the representative trajectory γ0 to be geodesic on
each of the m sub-intervals of tR, we build γ0 component by component.
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2.1.1 A Piecewise-Geodesic Curve

In this context, let M0 be a geodesically complete submanifold of Rd,
(
γ̄`0
)
`∈J1,mK a family of

geodesics on M0 and
(
φ`0
)
`∈J1,mK a family of isometries defined on M0. For all ` ∈ J1,mK, we

set M `
0 = φ`0(M0) and γ`0 = φ`0 ◦ γ̄0

`. The isometric nature of the mapping φ`0 ensures that
the manifolds M `

0 remain Riemannian and that the curves γ`0 : R→M `
0 remain geodesic. In

particular, each γ`0 remains parametrizable (Gallot et al., 2004). We define the representative
trajectory γ0 by

∀t ∈ R, γ0(t) = γ1
0(t)1]−∞,t1R](t) +

m−1∑
`=2

γ`0(t)1]t`−1
R ,t`R](t) + γm0 (t)1]tm−1

R ,+∞[(t) .

In other words, given a manifold-template of the geodesic components M0, we build γ0 so
that the restriction of γ0 to each sub-interval of tR is the deformation of a geodesic curve
γ̄`0 living on M0 by the corresponding isometry φ`0. In practice, M0 is chosen in order to
catch the geometric nature of the observed data : if we are studying a score as in Section
4, M0 will be the standard finite segment ]0, 1[ for instance. The choice of the isometries
φ`0 and the geodesics γ̄`0 have to be done with the aim of having an ”as regular as possible”
(at least continuous) curve γ0 at the breaking-up time points t`R. In the following section,
we propose a way to meet this criterion in one dimension. Moreover, the freedoms in the
choice of φ`0 and γ̄`0 induce a wide panel of models.

2.1.2 Boundary Conditions

Because of the piecewise nature of our representative trajectory γ0, constraints have to be
formulated on each interval of the subdivision tR. Following the formulation of the local
existence and uniqueness theorem (Gallot et al., 2004), constraints on geodesics are generally
formulated by forcing a value and a tangent vector at a given time-point. However, as soon
as there is more that one geodesic component, i.e. m > 1, such an approach cannot ensure
the curve γ0 to be at least continuous. That is why we re-formulate these constraints in
our model as boundary conditions. Let Ā = (Ā0, . . . , Ām) ∈ (M0)m+1. Let t0 ∈ R be a real
value representing an initial time and t1 ∈ R representing a final one. We impose that for
all ` ∈ J1,m− 1K,

γ̄1
0(t0) = Ā0 , γ̄`0(t`R) = Ā` , γ̄`+1

0 (t`R) = Ā` and γ̄m0 (t1) = Ām .

Notably, the 2m constraints are defined step by step. In the case where the geodesics could
be written explicitly, such constraints do not complicate the model. In more complicated
case, we use shooting or matching methods to enforce this constraints.

From this representative curve, we derive a modeling of the individual trajectories that
mimics the individual evolution of subjects and best fits the individual observations.

2.2 Individual Trajectories: Space and Time Warping

We want the individual trajectories to represent a wide variety of behaviors and to derive
from the group characteristic path by spatiotemporal transformations. To do that, we define
for each component of the piecewise-geodesic curve γ0 a couple of transformations: the
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diffeomorphic component deformations and the time component reparametrizations which
characterize respectively the spatial and the temporal variability of propagation among the
population. Moreover, we decree as few constraints as possible in the construction: at least
continuity and control of the slopes at the (individual) breaking-up points.

2.2.1 Time Component Reparametrizations

For compactness, we denote t0 by t0R from now on.
To allow different paces in the progression and different rupture times for each individual,

we introduce some temporal transformations ψ`i : R→ R, called time-warp, that are defined
for the subject i ∈ J1, nK and for the geodesic component ` ∈ J1,mK by

ψ`i (t) = ψ`i (α`i ,τ
`
i )(t) = α`i(t− t`−1

R − τ `i ) + t`−1
R where (α`i , τ

`
i ) ∈ R+ × R .

The parameters τ `i correspond to the time-shifts between the representative and the in-
dividual progression onset ; the α`i are the acceleration factors that describe the pace of
individuals, being faster or slower than the population characteristic. For all individual
i ∈ J1, nK, let tR,i = (t`R,i)`∈J1,m−1K denote the individual sequence of rupture times which

is the subdivision of R such that for all ` ∈ J1,m− 1K, ψ`i (t
`
R,i) = t`R i.e. such that

t`R,i = t`R,i(α`i ,τ`i )
= t`−1

R + τ `i +
t`R − t

`−1
R

α`i
.

To ensure good adjunction at the rupture times, we demand that for all ` ∈ J1,mK,
ψ`i (t

`−1
R,i ) = t`−1

R . Hence the time reparametrizations are constrained and only the acceler-

ation factors α`i and the first time shift τ1
i are free: all other time shift, ` ∈ J2,mK, are

defined by τ `i = t`−1
R,i − t

`−1
R .

In the following, we will sometimes refer to the individual initial and final times which

are defined, for all i ∈ J1, nK, by ti0 = t0 + τ1 and ti1 = tm−1
R + τmi +

t1−tm−1
R

αmi
.

2.2.2 Diffeomorphic Component Deformations

Concerning the space variability, we introduce m diffeomorphisms φ`i : M
`
0 → φ`i(M

`
0) to

enable the different components of the individual trajectories to vary more irrespectively
of each other. We just enforce the adjunctions to be at least continuous and therefore the
mappings φ`i to satisfy φ`i ◦ γ`0(t`R) = φ`+1

i ◦ γ`+1
0 (t`R) for all ` ∈ J1,m− 1K. Note that, as the

individual paths are no longer required to be geodesic, the mappings φ`i do not need to be
isometric.

For all individual i ∈ J1, nK and all component ` ∈ J1,mK, we set γ`i = φ`i ◦ γ`0 ◦ ψ`i and
define the corresponding individual curve γi by

∀t ∈ R, γi(t) = γ1
i (t)1]−∞,t1R,i]

(t) +
m−1∑
`=2

γ`i (t)1]t`−1
R,i ,t

`
R,i]

(t) + γmi (t)1]tm−1
R,i ,+∞[(t) .

Finally, the observations yi = (yi,j)j∈J1,kiK are assumed to be distributed along the curve γi
and perturbed by an additive Gaussian noise εi ∼ N (0, σ2Ikid) where σ ∈ R+:

∀(i, j) ∈ J1, nK× J1, kiK, yi,j = γi(ti,j) + εi,j where εi,j ∼ N (0, σ2Id) .

5
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By construction, for each (i, j) ∈ J1, nK× J1, kiK, there exist ` ∈ J1,mK such that γi(ti,j) lies
on the submanifold φ`i(M

`
0) of Rd. Thus, the previous sum is well-defined. In particular, we

do not assume that the noisy-observation remain on the manifold.

The choice of the isometries φ`0 and the diffeomorphisms φ`i induces a large range of
piecewise-geodesic models. For example, if m = 1, φ1

0 = Id and if φ1
i denotes the application

that maps a curve onto its parallel curve for a given non-zero tangent vector wi, we feature
the model proposed by Schiratti et al. (2015, 2017). In Section 4.1, we propose another
specific model which can be used for chemotherapy monitoring for instance.

2.3 Toward a Coherent and Tractable Statistical Generative Model

We first introduce some notations in order to clearly state our statistical generative model.
Let zψi = (α`i , τ

`
i )`∈J1,mK denote the individual temporal variables and similarly zφi denote

the individual spatial variables, i.e. the variables associated to the variation of the m
diffeomorphic deformations φ`i . Likewise, let zpop denote the population variable, i.e. the
variable associated to the variation of the m isometric mappings φ`0.

Let pind ∈ N be the dimension of each vector zi = (zψi , z
φ
i ) such that ∀i ∈ J1, nK,

Zi ⊂ Rpind denotes the space of random effects. Similarly, let ppop ∈ N be the dimension of
zpop and Zpop ⊂ Rppop denotes the space of fixed effects.

To cover many situations, we do not explicit here the individual spatial variables zφi .
However, for examples, we propose an instantiation of this generic model for one-dimension
manifolds and piecewise-logistically distributed data at Section 4. Moreover, our generic
approach encompass a large variety of models as such proposed by Schiratti et al. (2017),
Bône et al. (2018) and Koval et al. (2018).

2.3.1 Modeling Constraints...

In a modeling perspective, we are interested in understanding the individual behaviors
with respect to the characteristic one. Thus, we focus on the variance of the random
effects zi = (zψi , z

φ
i ) rather than their marginal distributions. Moreover, as we want the

representative path to characterize the pattern of behavior of the individual trajectories, we
have to slightly modify the individual parameters zi in such a way that for all i, E(zi) = 0.
In particular, if our model were linear, this would have ensure the representative trajectory
to be the mean (in the statistical meaning) of the individual ones. Concerning the individual
temporal variables for instance, the acceleration parameters (α`i)`∈J1,mK have to be positive

and equal to one on average while the time shifts (τ `i )`∈J1,mK are of any signs and must

be zero on average. For these reasons, we set α`i = eξ
`
i and consider the ”new” temporal

variable, still denoted zψi for compactness, zψi = (ξ`i , τ
`
i )`∈J1,mK. We proceed in the same way

for the individual spatial variables zφi , when required (for centered or positive variables).

To sum up, we assume that there exists a symmetric positive-definite matrix Σ ∈
S +
pind

(R) such that zi ∼ N (0,Σ), and now want to estimate Σ. Hence, the parameters
we are interested in are θ = (zpop,Σ, σ) ∈ Zpop ×S +

pind
(R)× R+.
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2.3.2 ...and Computational Feasibility

Given a n-sample, we target θ̂n an estimation of our parameters. Following the classical
approach for maximum likelihood estimation in nonlinear mixed-effects models, we use the
mcmc-saem algorithm. However, the theoretical convergence of this algorithm is proved
only if the model belongs to the curved exponential family (Delyon et al., 1999; Allassonnière
et al., 2010). This framework is also important for numerical performances. Without further
hypothesis, our model does not satisfy this constraint. Therefore, we proceed as in Kuhn and
Lavielle (2005): we assume that zpop is the realization of independent Gaussian random
variables with fixed small variances and estimate the means of those variables. So, the
parameters we want to estimate are θ = (zpop,Σ, σ) and we define the set of admissible
parameters by Θ = Rppop ×S +

pind
(R)× R+.

The fixed and random effects z = (zpop, zi)i∈J1,nK are considered as latent variables. Our
model writes in a hierarchical way as

y | z, θ ∼
n⊗
i=1

ki⊗
j=1

N
(
γi(ti,j) , σ

2
)

and z | θ ∼ N
(
zpop , D−1

pop

) n⊗
i=1

N (0,Σ)

where σpop ∈ Rppop

+ is an hyperparameter of the model and Dpop = σ2
popIppop ∈Mppop(R).

The products ⊗ mean that the corresponding entries are considered to be independent.
In other words, we assume that each of the measurement noises is independent of all the
others. Of course, it may not be the case in practice. But, as all the observations for a given
subject come from a single curve, this assumption is reasonable in our context. Moreover,
this assumption leads us to a more computationally tractable algorithm.

3. Parameters Estimation

As said just above, we want to estimate θ = (zpop,Σ, σ) ∈ Rppop × S +
pind

(R) × R+. As
we want our model to be consistent with high-dimensional data analysis, we consider a
Bayesian framework, i.e. we assume the following priors

(Σ, σ) ∼ W−1 (V,mΣ)⊗W−1 (v,mσ) where V ∈ S +
pind

(R), v,mΣ,mσ ∈ R

andW−1 (V,mΣ) denotes the inverse Wishart distribution with scale matrix V and degrees
of freedom mΣ. Regularization has indeed proven its fruitful in this context (Giraud, 2014).
In order for the inverse Wishart to be non-degenerate, the degrees mΣ and mσ must satisfy
mΣ > 2pind and mσ > 2. In practice, we yet use degenerate priors but with well-defined
posteriors. In the spirit of the one-dimension inverse Wishart distribution, we define the
density function distribution of higher dimension as

fW−1(V,mΣ)(Σ) =
1

Γpind

(
mΣ
2

) ( √
|V |

2
pind

2

√
|Σ|

exp

(
−1

2
tr
(
V Σ−1

)))mΣ

where Γpind
is the multivariate gamma function and, for all matrices A, |A| denotes the

determinant of the matrix A.
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The estimates are obtained by maximizing the posterior density on θ conditionally on the
observations y = (yi,j)(i,j)∈J1,nK×J1,kiK.

In the following paragraphs, we first show that the model is well-posed i.e. that for
any finite sample the maximum we are looking for exists. We then prove a consistency
theorem which ensures that the set of parameters which well-explain the observations is
non-empty and that the map estimator converges to this set. Last, we explain how to use
the mcmc-saem algorithm to produce map estimates.

3.1 Existence of the Maximum a Posteriori Estimator

The inverse Wishart priors on the variances not only regularize the log-likelihood of the
model, they also ensure the existence of the map estimator.

Theorem 1 (Existence of the MAP estimator) Given a piecewise-geodesic model and
the choice of probability distributions for the parameters and latent variables of the model,
for any data set (ti,j , yi,j)(i,j)∈J1,nK×J1,kiK, there exists θ̂MAP ∈ argmax

θ∈Θ
q
(
θ|y
)
.

The demonstration of the theorem uses the following lemma.

Lemma 1 Given a piecewise-geodesic model and the choice of a probability distribution for
the parameters and latent variables of the model, the posterior θ 7→ q

(
θ|y
)

is continuous on
the parameter space Θ.

Proof Let Z = Zpop ×
∏n
i=1Zi denote the space of latent variables. Using Bayes rule, for

all θ ∈ Θ,

q
(
θ |y

)
=

1

q(y)

(∫
Z
q
(
y | z, θ

)
q
(
z | θ

)
dz

)
qprior(θ) .

The density functions θ 7→ qprior(θ) and θ 7→ q
(
y|z, θ

)
q
(
z|θ
)

are continuous on Θ for all
z ∈ Z. Moreover, for all θ ∈ Θ and all z ∈ Z,

q
(
y | z, θ

)
=

1

(σ
√

2π)k
exp

(
− 1

2σ2

n∑
i=1

ki∑
j=1

(
yi,j − γi(ti,j)

)2)

and so, for all θ ∈ Θ and z ∈ Z, q
(
y|z, θ

)
q
(
z|θ
)
6 1

(σ
√

2π)k
q
(
z|θ
)

which is positive and in-

tegrable as a probability distribution. As a consequence, z 7→ q
(
y|z, θ

)
q
(
z|θ
)

is integrable
– and positive – on Z for all θ ∈ Θ and θ 7→ q

(
y|θ
)

is continuous.

Proof [Theorem 1 – Existence of the MAP] We use the Alexandrov one-point compactifica-
tion Θ = Θ ∪ {∞} of the parameters space Θ, where a sequence (θn)n∈N converges toward
the point∞ if and only if it eventually steps out of every compact subset of Θ. Thus, given
the result of Lemma 1, it suffices to prove that limθ→∞ log q

(
θ|y
)

= −∞. We keep the
notation of the previous proof and proceed similarly. In particular, for all θ ∈ Θ,

log q
(
θ|y
)

6 − log q(y)− k log(
√

2π)− k log(σ) + log qprior(θ) .

8
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By computing the prior distribution qprior, we remark that there exists λ which does not
depend on the parameter θ such as

log q
(
θ|y
)

6 λ(y)− (k +mσ) log(σ)− mΣ

2
log(|Σ|)− mΣ

2
tr
(
V Σ−1

)
− mσ

2

( v
σ

)2
.

Let µ(V ) denote the smallest eigenvalue of V , ρ(Σ−1) the largest eigenvalue of Σ−1,
which is also its operator norm, and

〈
Σ
∣∣ V 〉

F
the Frobenius inner product of Σ with V .

We know that
〈

Σ
∣∣ V 〉

F
> µ(V ) ρ(Σ−1) and log(|Σ−1|) 6 pind log

(
‖Σ−1‖

)
so that

−mΣ

2
tr
(
V Σ−1

)
+
mΣ

2
log(|Σ−1|) 6

mΣ

2

[
−µ(V ) ‖Σ−1‖ + pind log

(
‖Σ−1‖

) ]
(1)

and
lim

‖Σ‖+‖Σ−1‖→+∞

{
− mΣ

2
tr
(
V Σ−1

)
+
mΣ

2
log(|Σ−1|)

}
= −∞ .

Likewise,

lim
σ+σ−1→+∞

{
− (k +mσ) log(σ)− mσ

2

( v
σ

)2
}

= −∞

hence the result.

We have detailed the previous proof in order to emphasize the necessity of prior distri-
bution on the variances Σ and σ to ensure the existence of the maximum a posteriori.

3.2 Consistency of the Maximum a Posteriori Estimator

We are interested in the consistency of the map estimator without making strong assump-
tions on the distribution of the observations y. In particular, we do not assume that the
observations are generated by the model.

We denote P (dy) the distribution governing the observations and Θ∗ the set of admis-
sible parameters inducing a model distribution close to P (dy):

Θ∗ =

{
θ∗ ∈ Θ

∣∣∣∣ EP (dy) [ log q(y|θ∗) ] = sup
θ∈Θω

EP (dy) [ log q(y|θ) ]

}
.

The map estimator is said consistent if it converges to the set Θ∗ (on every compact of
Θ possibly). Classical results of consistency assume that the space Θ∗ is non-empty (see
the Wald’s consistency theorem (van der Vaart, 2000)). However, such an hypothesis is
not entirely satisfactory: we have no guarantee that Θ∗ is actually non-empty. We propose
below a reasonable framework in which the convergence of the map estimator toward the
corresponding non-empty set Θ∗ is guaranteed.

3.2.1 Two Kinds of Latent Variables

To this end and for any ω ∈ R+, we define the space Θω of admissible parameters such that
on average, the fixed effects are bounded by ω:

Θω = {θ = (zpop,Σ, σ) ∈ Θ | ‖zpop‖2 6 ω} where Θ = Rppop ×S +
pind

(R)× R+ .

9
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As the assumption only concern the average behavior of the population variable zpop, it is
not restrictive. Moreover, fixed effects are most of the time bounded (but potentially with
high bounds) in applications. In this new framework, for all ω ∈ R+,

Θω
∗ =

{
θ ∈ Θω

∣∣ EP (dy) [ log q(y|θ) ] = E∗(ω)
}

where E∗(ω) = sup
θ∈Θω

EP (dy) [ log q(y|θ) ] .

To state the consistency of the map estimator, we first have to give some notations.
For all i ∈ J1, nK, we assume the existence of two subsets of Zi – Zreg

i and Zcrit
i – such

that Zi = Zreg
i ×Zcrit

i . In other words, we assume that each component of each individual
latent variable zi is of two sorts: regular or critical. We will respectively denote zreg

i and
zcrit
i this sub-variables leading to write, up to permutations, zi = (zreg

i , zcrit
i ). Likewise, we

assume that the components of the population latent variables can be regular or critical, i.e.
that there exists Zreg

pop,Zcrit
pop ⊂ Zpop such that zpop = (zreg

pop, zcrit
pop) ∈ Zreg

pop × Zcrit
pop. To stay

consistent with the previous notations, we denote preg
ind, pcrit

ind , preg
pop and pcrit

pop the dimension

of the ambient space of the matching sets: Zreg
i ⊂ Rp

reg
ind and so on.

3.2.2 Consistency of the Maximum a Posteriori Estimator

In the following, we want to study the effect of the variables (zpop, zi) on the trajectories.
To this end, we introduce for all i the notation ~γi(zpop, zi) = (γi(ti,j))j∈J1,kiK ∈ Rki and

more generally the functions ~γi : Zpop × Zi → Rki . Let ` ∈ J1, nK, consider a `-tuple of

individuals and denote by k` =
∑`

i=1 ki the total number of measures for this `-tuple. Let

y` = (yi)i∈J1,`K ∈ Rk` and z` = (zpop, zi)i∈J1,`K ∈ Rppop+` pind be the vectors made up of the

` corresponding vectors. As in the one-by-one case, we define by ~γ` : Zpop × Z`i → Rk` the
function which maps the vector z` to the one (~γi(zpop, zi))i∈J1,`K.

For all vectors of the form (a, b) ∈ Rpa × Rpb where pa and pb are any integer number
and for all indices v ∈ J1, pa + pbK, (a, b)v and (a, b)−v refer respectively to

(a, b)v =
(

(a1, . . . , apa) , (b1, . . . , bpb)
)
v

=

{
av if v 6 pa

bv−pa else

(a, b)−v =

{(
(a1, . . . , av−1, av+1, . . . , apa) , (b1, . . . , bpb)

)
if v 6 pa(

(a1, . . . , apa) , (b1, . . . , bv−pa−1, bv−pa+1, . . . , bpb)
)

else
.

Last, for all k ∈ N, Lk refers to the Lebesgue measure on Rk.

Theorem 2 (Consistency of the MAP estimator) Assume that there exists an integer
` ∈ J1, nK such that:

(H 1) The number of observations is bigger than the one of latent variables: p` < k` where
k` =

∑`
i=1 ki and p` = ppop + ` pind ;

(H 2) The times of registration ti = (ti,j)j∈J1,kiK are independent and identically distributed;

(H 3) The density P (dy`) is continuous with polynomial tail decay of degree bigger than the
dimension of the truncated space of latent variables, i.e. bigger than p` + 1, apart
from a subset compact K of Rk`;

10
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(H 4) The individual trajectories grow super-linearly with respect to the regular variables:
for all individuals i ∈ J1, nK and for all v ∈ J1, pregpop + pregindK, there exists two functions

ai,v, bi,v : Rp
reg
pop+pregind−1 → R which depend only of (zregpop, z

reg
i )−v and such that for all

(zpop, zi) ∈ Zpop ×Zi,

ai,v

(
(zregpop, z

reg
i )−v

)
> 0 where ai,v

(
(zregpop, z

reg
i )−v

)
= 0 iff (zregpop, z

reg
i )−v = 0

and ‖~γi(zpop, zi)‖∞ > ai,v

(
(zregpop, z

reg
i )−v

) ∣∣∣(zregpop, z
reg
i )

v

∣∣∣+ bi,v

(
(zregpop, z

reg
i )−v

)
;

(H 5) Critical variables induce critical trajectories: for all individuals i ∈ J1, nK and for all
v ∈ J1, pcritpop + pcritind K, there exists a critical trajectory γcriti,v

lim
|(zcrit

pop ,z
crit
i )v|→+∞

~γi(zpop, zi) = γcriti,v and Lki({yi = γcriti,v }) = 0 .

Let (θ̂n)n∈N denote any map estimator. Then Θω
∗ 6= ∅ and for any ε ∈ R∗+,

lim
n→∞

P
[
δ(θ̂n,Θ

ω
∗ ) > ε

]
= 0

where δ in any metric compatible with the topology on Θω.

See Appendix A for the proof.
If the times of observations ti are identically distributed, the individual numbers of

measurements ki are in particular all equal. Thus, under (H 2), Assumption (H 1) writes in
a more concise manner as p` < `k1. However, as (H 2) is not required for all intermediate
results (see the proof, Appendix A), we keep the more general statement for (H 1). This
condition is for instance met if we assume that the times ti are regularly spaced, that is to say
that for all individuals i ∈ J1, nK and all measurements j ∈ J1, k1K, ti,j follows the uniform
distribution U ([Tj−1, Tj ]), where T is a maximum of the set {ti,j |i ∈ J1, nK, j ∈ J1, k1K} and
(T0 = 0 < T1 < . . . < Tk1 = T ) is a subdivision of [0, T ].

The condition p` < k` means that without enough observations for at least some indi-
viduals, we cannot build a consistent model. Such an assumption is quite reasonable as we
have no chance to catch the trajectories behavior with certitude with less observations than
the constraints over them. The assumption on the distribution P (dy) is really weak and
always fulfilled in practice. Moreover, as the theorem holds for all ω ∈ R+, the boundary
over the average of the population latent variable zpop is not really restrictive.

For compactness, we have stated the theorem by considering that a latent variable may
be of only one kind: regular or critical. Actually, a single latent variable can be of two
kinds: critical in the neighbourhood of +∞ and regular around −∞, and vice-versa (see
the proof for details). This remark is all the more important in view of some applications
and Section 4 but can be treated by our proof.

3.3 Estimation with the MCMC-SAEM Algorithm

As explain at the paragraph 2.3.2, a stochastic version of the em algorithm is adopted,
namely the saem algorithm. As the conditional distribution q(z|y, θ) is unknown, the

11
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simulation step is replaced using a sampling algorithm, leading to consider the mcmc-saem
algorithm. It alternates between simulation, stochastic approximation and maximization
steps until convergence. The simulation step is achieved using a symmetric random walk
Hasting-Metropolis within Gibbs sampler (Robert and Casella, 1999).

The complete log-likelihood of our model writes

log q
(
y, z, θ

)
= − 1

2σ2

n∑
i=1

ki∑
j=1

(
yi,j − γi(ti,j)

)2 − k log(σ)− 1

2

n∑
i=1

(
tzi Σ−1 zi

)
− n

2
log(|Σ|)

− 1

2
t
(
zpop − zpop

)
D−1

(
zpop − zpop

)
− 1

2
log(|D|)− 1

2
tr
(
V Σ−1

)
+
mΣ

2

(
log(|V |)− log(|Σ|)

)
+mσ log

( v
σ

)
− mσ

2

( v
σ

)2
+ csts .

It is clear to see that this model belongs to the curved exponential family: the sufficient
statistics may for instance be defined as

S1(y, z) = zpop ; S2(y, z) =
1

n

n∑
i=1

tzizi ; S3(y, z) =
1

k

n∑
i=1

ki∑
j=1

(
yi,j − γi(ti,j)

)2
where S1(y, z) ∈ Rppop , S2(y, z) ∈Mpind

(R) and S3(y, z) ∈ R.
The maximization step is straightforward given the sufficient statistics of our exponen-

tial model: we update the parameters by taking a barycentre between the corresponding
sufficient statistic and the prior (when there exists). In other words, by denoting iter the
increment: zpop

(iter+1) = S1(y, z(iter)),

Σ(iter+1) =
nS2(y, z(iter)) +mΣV

n+mΣ
and σ2(iter+1)

=
kS3(y, z(iter)) +mσv

2

k +mσ
.

Finally, given an adapted sampler and the sequence (εiter)iter>0 defined by

∀ iter > 1, εiter = 1iter6 Nburnin + (iter− Nburnin)−0.65 1iter> Nburnin

our algorithm writes as Algorithm 1 . Some experimental results are presented in Section
5.

4. Example of the Piecewise-Logistic Curve Model

In this section, we explicit the generic model with logistic geodesics and M = ]0, 1[. This
is motivated by the study of the recist score monitoring, which leads to consider one-
dimension manifold, with one rupture point. As this explicit model is designed in view of
our target application, we first give a short description of recist score.

4.1 Motivation: Chemotherapy Monitoring through RECIST Score

Patients suffering from the metastatic kidney cancer, take a drug each day and regularly
have to check their tumor evolution. Indeed, during the past few years, the way we treat
renal metastatic cancer was profoundly changed: a new class of anti-angiogenic therapies

12
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Algorithm 1: Overview of the saem for the generic piecewise-geodesic model.

Input: θ∗ = (zpop
∗,Σ∗, σ∗), (V,mΣ), (v,mσ), maxIter, Nburnin.

Output: θ = (zpop,Σ, σ).

1 # Initialization: θ ← θ∗ ; S ← 0 ; (εiter)iter>0 ; zpop ← zpop ; (zi)i ← 0 ;

2 for iter = 1 to maxIter do
3 # Simulation: (zpop, (zi)i)← sampler(zpop, (zi)i) ;

4 # Stochastic Approximation: S1 ← S1 + εiter (zpop − S1) ;
5 S2 ← S2 + εiter

(
1
n

∑
i
tzizi − S2

)
;

6 S3 ← S3 + εiter
(

1
k

∑n
i=1

∑ki
j=1 ( yi,j − γi(ti,j) )2 − S3

)
;

7 # Maximization: zpop ← S1 ; Σ← nS2+mΣV
n+mΣ

; σ ←
√

kS3+mσv2

k+mσ
;

8 end

targeting the tumor vessels instead of the tumor cells has emerged and drastically improved
survival by a factor of three (Escudier et al., 2016). These new drugs, however, do not cure
the cancer, and only succeed in delaying the tumor growth, requiring the use of successive
therapies which must be continued or interrupted at the appropriate moment according
to the patient’s response. So, the new medicine process has also created a new scientific
challenge: how to choose the most efficient drug therapy.

The recist (response evaluation criteria in solid tumors) score (Therasse et al., 2000)
is a set of published rules that measures the tumoral growth. Physicians select at most five
lesions, with a sufficient diameter, and sum the longest diameter for all target lesions. This
leads them to determine if the tumors in cancer patients respond (completely or partially),
stabilize or progress during treatment.

The response to a given treatment has generally two distinct phases: first, tumor’s size
reduces; then, the tumor grows again. So, we have to build a model which allow to us to
catch this behaviors. Moreover, a practical question is to quantify the correlation between
both phases and to determine as accurately as possible the individual rupture times tiR
which are related to an escape of the patient’s response to treatment.

4.2 The Piecewise-Logistic Curve Model

Our observations consist of patient’s recist score over time, i.e. of sequences of bounded
one-dimension measures. As explained above, we could make out two phases in the evolution
of recist scores: a decreasing and a growing one. So, we set m = 2 and d = 1, which leads
us to propose a way to build models for chemotherapy monitoring. This model has been
designed after discussions with oncologists of the hegp.

4.2.1 The Group-Representative Trajectory

Let M0 be the open interval ]0, 1[, equipped with the logistic metric

∀x ∈M0, ∀ξ, ζ ∈ TxM0 ' R, gx(ξ, ζ) = ξ G(x) ζ with G(x) =
1

x2(1− x2)
.

13
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Figure 1: Model description. Figure 1a represents a typical representative trajectory in
bold and several individual ones, for different vectors zi. The rupture times are represented
by diamonds and the initial/final times by stars. Figure 1b illustrates the non-standard
constraints for γ0 and the transition from the representative trajectory to an individual
one: the trajectory γi is subject to a temporal and a spacial warp. In other ”words”,
γi = φ1

i ◦ γ1
0 ◦ ψ1

i 1]−∞,tiR] + φ2
i ◦ γ2

0 ◦ ψ2
i 1]tiR,+∞[.

Given three real numbers γinit
0 , γescap

0 and γfin
0 we define two affine functions by setting

down φ1
0 : x 7→

(
γinit

0 − γescap
0

)
x+ γescap

0 and φ2
0 : x 7→

(
γfin

0 − γ
escap
0

)
x+ γescap

0 . This allows
us to map M0 onto the intervals ]γescap

0 , γinit
0 [ and ]γescap

0 , γfin
0 [ respectively: if γ̄0 refers to

the sigmoid function, φ1
0 ◦ γ̄0 will be a logistic curve, growing from γescap

0 to γinit
0 . For

compactness, we note tR the single breaking-up time at the population level and tiR at the
individual one. Moreover, due to our target application, we force the first logistic to be
decreasing and the second one increasing (this condition may be easily relaxed for other
framework).

Logistics are defined on open intervals, with asymptotic constraints. We want to for-
mulate our constraints on some non-infinite time-points, as explained in paragraph 2.1.2.
So, we set a positive threshold ν, close to zero, and demand the logistics γ1

0 and γ2
0 to be

ν-near from their corresponding asymptotes. More precisely, we impose the trajectory γ0

to be of the form γ0 = γ1
0 1]−∞,tR] + γ2

0 1]tR,+∞[ where, for all time t ∈ R,

γ1
0(t) =

γinit
0 + γescap

0 e(at+b)

1 + e(at+b)
∈ ]γescap

0 , γinit
0 [ , γ2

0(t) =
γfin

0 + γescap
0 e−(ct+d)

1 + e−(ct+d)
∈ ]γescap

0 , γfin
0 [

and a, b, c and d are some positive numbers given by the following constraints

γ1
0(t0) = γinit

0 − ν , γ1
0(tR) = γ2

0(tR) = γescap
0 + ν and γ2

0(t1) = γfin
0 − ν .

In order the previous logistics to be well-defined, we also have to enforce γescap
0 + 2ν 6 γinit

0

and γescap
0 + 2ν 6 γfin

0 . Thus, ppop = 5 and

Zpop =
{(
γinit

0 , γescap
0 , γfin

0 , tR, t1

)
∈ R5

∣∣∣ γescap
0 + 2ν 6 γinit

0 ∧ γescap
0 + 2ν 6 γfin

0

}
.

In our context, the initial time of the process is known: it is the beginning of the
treatment. So, we assume that the representative initial time t0 is equal to zero.
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4.2.2 Individual Trajectories

For each subject i ∈ J1, nK, given (α1
i , α

2
i , τi) ∈ R2

+ × R, the time-warps (cf. 2.2.1) write

ψ1
i (t) = α1

i (t−t0−τi)+t0 and ψ2
i (t) = α2

i (t−tR−τ2
i )+tR where τ2

i = τ1
i +
(

1−α1
i

α1
i

)
(tR−t0).

In the same way as the time-warp, the diffeomorphisms φ1
i and φ2

i (cf. 2.2.2) are chosen
to allow different amplitudes and rupture values: for each i ∈ J1, nK, given the two scaling
factors r1

i and r2
i and the space-shift δi, we define φ`i(x) = r`i (x− γ0(tR)) + γ0(tR) + δi,

` ∈ {1, 2}. Other choices are conceivable but in the context of our target applications,
this one is the most appropriate: as we want to study the correlation between growth and
decrease phase, none of the portions of the curves have to be favoured and affine functions
allow us to put the same weight on the whole curves. Mathematically, any regular and
injective function defined on ]γescap

0 , γinit
0 [ (respectively ]γescap

0 , γfin
0 [) is suited.

To sum up, each individual trajectory γi depends on the representative curve γ0 through
fixed zpop =

(
γinit

0 , γescap
0 , γfin

0 , tR, t1
)

and random zi =
(
α1
i , α

2
i , τi, r

1
i , r

2
i , δi

)
effects. This

leads to a non-linear mixed-effects model. More precisely, we set for all individual i ∈ J1, nK
γ1
i = φ1

i ◦ γ1
0 ◦ψ1

i , γ
2
i = φ2

i ◦ γ2
0 ◦ψ2

i and tiR = t0 + τ1
i + tR−t0

α1
i

, which leads us to write for all

”time” of measurement j ∈ J1, kiK,

yi,j =
[
r1
i

(
γ1
i (ti,j)− γ0(tR)

)
+ γ0(tR) + δi

]
1]−∞,tiR](ti,j)

+
[
r2
i

(
γ2
i (ti,j)− γ0(tR)

)
+ γ0(tR) + δi

]
1]tiR,+∞[(ti,j) + εi,j .

Figure 1 provides an illustration of the model. On each subfigure, the bold black curve rep-
resents the characteristic trajectory γ0 and the colour curves several individual trajectories.

We proceed as in the paragraph 2.3.1 and set α`i = eξ
`
i for ` ∈ {1, 2}. Likewise, the

scaling parameters r`i have to be positive and equal to one on average while the space shifts

δi can be of any signs and must be zero on average. So, we set r`i = eρ
`
i for ` ∈ {1, 2}

leading to zi =
(
ξ1
i , ξ

2
i , τi, ρ

1
i , ρ

2
i , δi

)
. In particular, pind = 6 and we assume that there

exists Σ ∈ S +
pind

(R) such that zi ∼ N (0,Σ) for all i ∈ J1, nK. This assumption is really
important: usually, the random effects are studied independently. Here, we are interested
in correlations between the two phases of patient’s response to treatment.

4.3 Theoretical Analysis of the Piecewise-Logistic Curve Model

Theorem 1 applies as is and the map estimator for the piecewise-logistic model is well-
defined. Moreover, at the risk of assuming some restriction concerning the distribution of
our observations, the piecewise-logistic model is consistent.

More precisely, let Θpl be the space of the admissible parameters for the piecewise-

logistic model, i.e. Θpl = { (γinit
0 , γescap

0 , γfin
0 , tR, t1,Σ, σ) ∈ Rppop × S +

pind
(R) × R+ }. We

define Θω,pl = { θ ∈ Θpl | ‖(γinit
0 , γescap

0 , γfin
0 , tR, t1)‖ 6 ω } the space of the parameters

associated to bounded on average fixed effects, for the piecewise-logistic model and, as in
the generic framework, the space Θω,pl

∗ = {θ ∈ Θω,pl | EP (dy`)

[
log q(y`|θ)

]
= E∗(ω)} where

E∗(ω) = supθ∈Θω,pl EP (dy`)

[
log q(y`|θ)

]
.

15



J. Chevallier, S. Oudard, S. Allassonnière

Theorem 3 (Consistency of the MAP, piecewise-logistic model) Assume that

(H 1) The number of observations is bigger than the one of latent variables: There exists
` ∈ J1, nK such that p` < k` where k` =

∑`
i=1 ki and p` = ppop + ` pind ;

(H 2) The times of registration ti = (ti,j)j∈J1,kiK are independent and identically distributed;

(H 3) The density P (dy`) is continuous with polynomial tail decay of degree bigger p` + 1

apart from a subset compact K of Rk`;

Then, the piecewise-logistic model satisfies the hypothesis of Theorem 2. In particular, if
(θ̂n)n∈N denote any map estimator, Θω,pl

∗ 6= ∅ and for any ε ∈ R∗+,

lim
n→∞

P
[
δ(θ̂n,Θ

ω,pl
∗ ) > ε

]
= 0

where δ in any metric compatible with the topology on Θω,pl.

Proof We demonstrate that, for all i ∈ J1, nK, the variables
(
tR, t1, ξ

1
i , ξ

2
i , τi

)
are critical,

that
(
γinit

0 , γescap
0 , γfin

0 , ρ1
i , ρ

2
i , δi

)
are regular and that

(
ρ1
i , ρ

2
i

)
are regular in the neighbour-

hood of +∞ and critical near −∞. See the remark after Theorem 2.

(H 4) Let i ∈ J1, nK. By definition of ~γi,

‖~γi(zpop, zi)‖∞ = max


| γescap

0 + ν + δi |

| γescap
0 + ν + δi + eρ

1
i (γinit

0 − γescap
0 − 2ν) |

| γescap
0 + ν + δi + eρ

2
i (γfin

0 − γ
escap
0 − 2ν) |

 .

And we can check that for γinit
0 , γescap

0 , γfin
0 , ρ1

i , ρ
2
i and δi and that for ρ1

i and ρ2
i as

soon as |ρ1
i |, |ρ2

i | > 1 there exists two functions ai and bi as in [Theorem 2(H 4)].

(H 5) Let i ∈ J1, nK and j ∈ J1, kiK. By definition of ~γi,

lim
tR→+∞

~γi(zpop, zi)j =
[

eρ
1
i
(
γinit

0 − γescap
0 − 2ν

)
+ γescap

0 + ν + δi

]
1[t0,+∞[(ti,j)

where ~γi(zpop, zi)j denotes the jth coordinate of the vector ~γi(zpop, zi) ∈ Rki . How-
ever, by construction, γinit

0 − γescap
0 and γescap

0 follow a normal distribution so

Lki

({
yi,j = eρ

1
i
(
γinit

0 − γescap
0 − 2ν

)
+ γescap

0 + ν + δi

})
= 0 .

Likewise for tR → −∞. The same argument holds when t1, ξ1
i , ξ2

i or τi become
infinite and when ρ1

i or ρ2
i go to −∞.
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5. Experimental Results

Experimentations are performed for the piecewise-logistic curve model introduced above.
In order to validate our model and numerical scheme, we first run experiments on synthetic
data. We then test our estimation algorithm on real data from the hegp. A medical paper
is under progress to provide a more accurate interpretation of this results.

5.1 Synthetic Data

We generate four types of data set, to put our algorithm in different situations. More
precisely, we want to quantify its sensitivity to initialisation, sample size and noise.

5.1.1 Influence of the Initialization

The estimation is performed through the saem algorithm (Algorithm 1). This iterative al-
gorithm is proven to converge toward a critical point of the observed likelihood. Therefore,
as our model does no imply a convex likelihood, one may end up with a local maximum
depending on the initialization point and the dynamic of our iterations. This choice of
initialization appears crucial. In particular the choice of the initial mean population pa-
rameters zpop

init as illustrated bellow.

If our model were linear, the representative curve γ0 would exactly be the one induced
by the mean of the individual trajectories γi, i.e. the one where zpop = meani∈J1,nK zi.
Following this idea, we set in our experiments

γinit
0

init
= mean

i∈J1,nK
yi,1 ; γescap

0

init
= mean

i∈J1,nK
min

j∈J1,kiK
yi,j ; γfin

0

init
= mean

i∈J1,nK
yi,ki ;

tR
init

=
1

2
mean
i∈J1,nK

tki and t1
init

= mean
i∈J1,nK

tki .

Note that the choice of the initial covariance matrix Σ init and the residual noise σ init does
not seem to be very influential. We just demand Σ init to be definite positive.

5.1.2 Influence of the Proposal Variances

The saem algorithm is very sensitive to the choice of the proposal variances in the sam-
pling step. Thus, we have to carefully tune these variances in order the mean acceptance
ratio to stay around the optimal rate – 24% as we are using a symmetric random walk
sampler. To decrease the influence of a bad calibration, we adapt the proposal variances
over the iterations in the way of Roberts and Rosenthal (2007, 2009): every sth batch of
50 iterations, we increase or decrease the logarithm of the proposal proposal variances by

δ(s) = min
(

0.001, 1√
s

)
depending on whether the mean associated variable acceptance rate

is bigger or smaller than the optimal one. Note that we have also tried to adapt the proposal
variances as in Atchadé (2006) but the results we obtained were not satisfactory. Actually,
it appears numerically that if we want the adaptive procedure to increase the efficiency of
our algorithm, we must modify the proposal variance neither too often nor with a too big
amplitude of change.
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Table 1: Degree of non-linearity : Relative errors (expressed as a percentage) for the ini-
tial population parameters zpop

init and residual noise σ true used to generate the data set,
according to the type of data set and the sample size n.

n ∆L (γinit
0 ) ∆L (γescap

0 ) ∆L (γfin
0 ) ∆L (tR) ∆L (t1) σ

A 50 7.08 17.01 5.94 1.97 1.98 1.99
100 2.93 22.33 3.66 2.40 2.42 1.99
250 2.16 24.06 2.12 3.52 3.54 1.99

A∗ 50 5.63 283.14 1.51 1.03 1.01 20.09
100 3.38 259.25 0.07 4.75 4.76 20.09
250 3.67 269.42 0.41 3.94 3.95 20.09

B 50 80.47 2.77 39.78 35.04 35.09 0.29
100 88.17 4.39 51.83 36.14 36.19 0.29
250 83.52 12.91 47.90 33.23 33.27 0.29

B∗ 50 59.25 201.98 33.46 28.85 28.89 20.86
100 74.94 213.96 43.50 30.74 30.78 20.86
250 79.14 229.40 47.30 34.39 34.44 20.86

5.1.3 Construction of the Data Sets

For each type of data set, given the corresponding ground truth parameters θ true, we gener-
ate three data sets of respective size 50, 100 and 250. Last, to put our algorithm on a more
realistic situation, the synthetic individual times are non-periodically spaced and individual
sizes vary between 12 and 18.

The first type – A – is said quasilinear in the sense that, for these data sets, the rep-
resentative trajectory γ0 is ”close” to the mean trajectory described above. Hence, we put
our algorithm in a favourable situation where the optimal representative trajectory is close
to the initial one. The second type –A∗ – is a noisy version of A.

On the contrary, the thirds type – B – is built in order to be ”truly non-linear”: the
representative trajectory γ0 is ”far” from the curve built by zpop

init. Likewise, the fourth
type – B ∗ – is a noisy version of B. To measure this degree of non-linearity, we introduce

the ratio ∆L (zpop) which is the relative error of zpop
init: ∆L (zpop) =

‖zpop
init−zpop

true‖
‖zpop

init‖ .

Table 1 compiles this ratio for every data set, and for every parameter in zpop.

5.1.4 Estimation of the Fixed Effects

Table 2 displays the relative errors for the estimated population parameters. In most
case, these errors decrease with the size of the data set. More specific to our model, we
observe that these errors are correlated to the subjective linearity of the model. With the
exception of γescap

0 , the errors for estimating population parameters grow linearly with the

non-linearity of the model. We suppose that the difference of scale between γescap
0 and the

others can, at least partly, explain this phenomena: γescap
0 is about a few tens of units ;

γinit
0 , γfin

0 and tR about a few hundreds and t1 about one thousand. Thus, a same absolute
error will lead to markedly different relative error.
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Table 2: Fixed effects: Mean (standard deviation) relative errors (expressed as a percentage) over 50 runs,
for the estimated parameters zpop

estim, according to the data set and the sample size n.

n γinit
0 γescap

0 γfin
0 tR t1

A 50 6.03 (0.32) 10.25 (0.50) 3.69 (0.25) 1.95 (0.13) 2.43 (0.18)
100 2.19 (0.17) 3.28 (0.22) 2.07 (0.18) 1.69 (0.11) 1.86 (0.17)
250 1.30 (0.10) 1.96 (0.13) 1.53 (0.08) 0.78 (0.06) 1.67 (0.09)

A∗ 50 3.74 (0.26) 25.73 (1.64) 6.84 (0.40) 3.32 (0.26) 3.73 (0.26)
100 2.35 (0.15) 12.20 (0.64) 1.35 (0.09) 2.98 (0.22) 2.29 (0.18)
250 1.70 (0.12) 3.94 (0.29) 1.33 (0.09) 1.36 (0.10) 1.51 (0.10)

B 50 71.13 (1.33) 100.24 (8.09) 90.73 (2.54) 7.78 (0.56) 46.39 (1.32)
100 58.73 (0.98) 58.88 (3.00) 84.99 (1.42) 8.13 (0.57) 42.06 (1.04)
250 67.49 (0.47) 23.12 (1.54) 57.82 (0.74) 6.01 (0.33) 38.09 (0.36)

B∗ 50 41.61 (1.26) 29.86 (2.53) 46.38 (1.60) 9.04 (0.58) 29.90 (0.58)
100 60.39 (0.81) 28.43 (2.06) 58.35 (1.07) 8.11 (0.54) 29.75 (0.50)
250 55.89 (0.74) 15.56 (0.98) 59.90 (0.58) 3.26 (0.25) 39.28 (0.43)

The degree of non-linearity in the data set seems to play a significant role in the esti-
mation of the population parameters. To be certain that the poor estimation of zpop when
the ratio ∆L (zpop) is too big is due to the non-linearity of the data set and not to a bad
initialization, we have also performed estimations by assigning θinit = θtrue. The results
were better but not so significantly. Despite this limitation, the algorithm we propose is
not noise-sensitive: errors for non-noisy and noisy version of a same type of data set are no-
tably the same. Moreover, the population parameters are well-learned in quasilinear cases
and in particular in large data set (n = 250) and the mean rupture time tR seems to be
well-estimated, no matter the subjective linearity of the data set.

5.1.5 Estimation of the Inter-Individual Variability

In the target of our application, the covariance matrix Σ gives a lot of information on the
health status of a patient: pace and amplitude of tumor progression, individual rupture
times, etc. Therefore, we have to pay special attention to the estimation of Σ.

Much as the representative trajectory is not always good-estimated, our algorithm al-
ways allows a well-understanding of the inter-individual variability. We present at Table
3 the Kullback-Leibler divergence from Σ estim to Σ true, the relative error of the individual
rupture times and the estimated residual noise. As for the estimation of the population pa-
rameters, errors decrease with the sample size n and are not significantly different between
noisy and non-noisy versions of a same type of data set. Moreover, in that case, the errors
seem to not rely on the subjective linearity of the data set.

5.1.6 Reconstruction of the Individual Trajectories

Figure 2 illustrates the well-understanding of the variance within the population, including
for the non-linear data set. Determining accurate individual rupture time tiR is all the most
important as, in the aim of chemotherapy monitoring, these times are related to an escape
of the patient’s response to treatment.
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Table 3: Variability and residual noise: Mean (standard deviation) of KullbackLeibler divergences from
Σ estim to Σ true, mean (standard deviation) relative errors (expressed as a percentage) for the individual

rupture times tiR
estim

and mean estimated residual noise σestim according to the data set and the sample size
n. All over 50 runs.

Type A Type B
n Σ tiR σ Σ tiR σ

X 50 15.54 (5.17) 0.49 (0.04) 2.03 16.53 (7.72) 5.89 (3.45) 3.07
100 8.45 (2.26) 0.63 (0.06) 1.97 13.59 (5.42) 4.44 (1.93) 2.14
250 9.29 (3.13) 0.57 (0.60) 2.06 22.24 (9.77) 4.96 (1.93) 2.49

X∗ 50 16.52 (19.45) 4.66 (0.45) 19.81 27.62 (17.71) 14.32 (4.06) 19.93
100 12.86 (4.26) 3.85 (0.32) 19.03 23.98 (18.07) 13.97 (3.71) 20.56
250 6.72 (2.44) 3.98 (0.32) 20.07 17.70 (5.35) 11.57 (2.42) 21.38

An important point was to allow a lot of different individual behaviors. In our synthetic
example, Figure 1a illustrates this variability. From a single representative trajectory (γ0

in bold plain line), we can generate individuals who are cured at the end (dot-dashed lines:
γ3 and γ4), some whose response to the treatment is bad (dashed lines: γ5 and γ6), some
who only escape (no positive response to the treatments – dotted lines: γ7). Likewise, we
can generate ”patients” with only positive responses or no response at all. The case of
individual 4 is interesting in practice: the tumor still grows but so slowly that the growth
is negligible, at least in the short-run.

Figure 3 illustrates the qualitative performance of the estimation. We are notably able
to understand various behaviors and fit subjects which are far from the characteristic path.
Moreover, the noise seems to not reduce the quality of the estimation. We represent only
five individuals but 250 subjects have been used to perform the estimation.

5.2 Metastatic Kidney Cancer Monitoring

The algorithm is now run on recist score of real patients suffering from kidney cancer.
The estimation is performed over a cohort of 176 patients of the hegp. There is an average
of 7 visits per subjects (min: 3, max: 22), with an average duration of 90 days between
consecutive visits. We present here a run with a low residual standard variation with respect
to the amplitude of the trajectories and complexity of the data set: σ = 9.10.

Figure 4a illustrates the qualitative performance of the model on ten patients. Although
we cannot explain all the paths of progression, the algorithm succeeds in fitting various types
of curves: from the curve γ6 which is flat to the curve γ3 which is spiky. From Figure 4b,
it seems that the rupture times occur early in the progression in average.

In Figure 5, we plot the individual estimates of the random effects (obtained from the
last iteration) in comparison to the individual rupture times. Even though the parameters
which lead the space warp, i.e. ρ1

i , ρ
2
i and δi are correlated, the correlation with the rupture

time is not clear. In other words, the volume of the tumors seems to not be relevant to
evaluate the escapement of a patient. On the contrary, which is logical, the time warp
strongly impacts the rupture time.
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Figure 2: Distribution of the individual rupture times. Each subfigure compares the distri-
bution of the (mean of the) estimated individual rupture times tiR

estim
and the distribution

of the true individual rupture times tiR
true

. In bold line, the estimated average rupture time
tR

estim and the true average rupture time tR
true are relatively close to each other. n = 250.
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Figure 3: Qualitative performance of the estimation and robustness to noise of the map
estimator. On both figures, the estimated trajectories are in plain lines and the target curves
in dashed lines. The (noisy) observations are represented by crosses. The representative
path is in bold black line, the individuals in colour. n = 250.

6. Discussion and Perspective

We have proposed a coherent statistical framework for the spatio-temporal analysis of
piecewise-geodesic manifold-valued measurements. This model allows each individual to
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(a) recist score of patients from the hegp.
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Figure 4: recist score. We keep conventions of the previous figures. We represent at Fig.
4a only 10 patients among the 176. Fig. 4b is the histogram of the rupture times tiR for
this run. In black bold line, the estimated average rupture time tR is a good estimate of
the average of the individual rupture times although there exists a large range of escape.
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Figure 5: Individual random effects. Fig. 5a: log-acceleration factors ξ1
i and ξ2

i against
times shifts τi. Fig. 5b: log-amplitude factors ρ1

i and ρ2
i against space shifts δi. In both

figures, the colour corresponds to the individual rupture time tiR. These estimates hold for
the same run as Fig. 4.

have his own intrinsic geometry and his own time-parametrization. The model is built in a
hierarchical way as a non-linear mixed-effects model whose fixed effects define a represen-
tative trajectory of the global evolution in the space of measurements and random effects
account for the spatio-temporal variability of the trajectories at the individual level.

Estimation was formulated as a well-defined map problem and numerically performed
through the mcmc-saem algorithm. Experimentations have highlighted the robustness of
our model to noise and its performance in catching individual behaviors. We believe that
the complexity of our model ensures its practical identifiability, even if it is not structurally
identifiable (Lavielle and Aarons, 2016). Besides, as the posterior-likelihood is not convex,
the map could be difficult to determine numerically. Future work focuses on exploring some
possible improvement of the numerical scheme.
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Our model can be applied to a wide variety of situations and data sets. In particular,
we can address medical follow-up such as neurodegenerative diseases or chemotherapy mon-
itoring. The example of chemotherapy monitoring is especially interesting in a modeling
perspective as the patients are treated and tumors may respond, stabilize or progress during
the treatment, with different conducts for each phase. At the age of personalized medicine,
to give physicians decision support systems is really important. Therefore learning correla-
tions between phases is crucial. This has been taken into account in our experimentations.
More generally, the inter-individual variability allows us to personalize the model to new
patient and thus perform predictive medicine.
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Appendix A. Proof of the consistency theorem for bounded population
variable

The proof of the theorem relies on several lemmas. Lemma 4 is the heart of the proof: we
control here the behavior of the log-likelihood at the boundary points of the parameters
space Θω

∗ and prove that this set is non-empty. It is based on Lemma 3 which states the
integrability of the supremum over the parameter space of the positive part of the log-
likelihood. Lemma 2 is derived from Allassonnière et al. (2007). We transpose the proof of
the cited article here (with few more details) as this lemma is critical in the proof of Lemma
3 and not such classical.

In the following, we freely (and without reminder) use the notations introduced in
Section 3.2. Moreover, (H 1), (H 2), (H 3), (H 4) and (H 5) refer to the hypothesis of the
consistency theorem (Theorem 2, page 10).

A.1 Lemmas

We first recall that the minimal number of balls of radius r ∈ R∗+ required to cover a

compact set K ∈ Rp is bounded from above by
(
Diam(K)

r

)p
.

Lemma 2 (Preliminary of measure theory) Let p < q be two integers. Then, for any
differentiable map f : Rp → Rq and any compact subset K of Rp, there exists a constant λ
which depends only on p and q such that∫

Rq\f(K)
log+ 1

d
(
y, f(K)

) dy < λ

(
sup
K
‖Df‖+ 2

)q
Diam(K)p
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where d is the euclidean distance on Rq, Df the differential of f and Diam(K) the diameter
of the compact K. Especially,

∫
Rq\f(K) log+ 1

d(y,f(K)) dy < +∞.

Proof For all ρ, ρ1, ρ2 ∈ R∗+, ρ1 < ρ2, let Mρ1,ρ2 =
{
y ∈ Rq | ρ1 6 d

(
y, f(K)

)
6 ρ2

}
and

Mρ = M0,ρ. For all ρ ∈ R∗+, due to the compactness of K, there exists a finite set Λρ ⊂ K

such that K ⊂
⋃

x∈Λρ
B(x, ρ) and |Λρ| 6

(
Diam(K)

ρ

)p
. Let τ = supK‖Df‖. According to

the mean value theorem, M0,ρ ⊂ B
(
f(x), (τ + 2)ρ

)
and

Lq(Mρ) 6
∑
x∈Λρ

Lq

(
B
(
f(x), (τ + 2)ρ

))
6

√
π
p

(τ + 2)p

Γ
(p

2 + 1
) ×

(
Diam(K)

)p × ρq−p .
Let s ∈ ]0, 1[. Then, from the Abel transformation,∫

Rq\f(K)
log+ 1

d
(
y, f(K)

) dy =

+∞∑
n=0

∫
Msn+1,sn

log+ 1

d
(
y, f(K)

) dy

6
+∞∑
n=0

log
1

sn+1
[Lq(Msn)−Lq(Msn+1)]

6 − log(s)
+∞∑
n=0

Lq(Msn) .

Hence the result as s ∈ ]0, 1[.

Lemma 3 Assume (H 1), (H 3), (H 4) and

(H′ 5) Bounded regular variables implies bounded trajectories: For all individuals i ∈ J1, nK,
if there exists b ∈ R such that ‖(zregpop, z

reg
i )‖∞ < b then there exists R ∈ R∗+ such that

‖~γi(zpop, zi)‖∞ < R.

Then, for any such `,

EP (dy`)

 sup
θ∈Θ

(∑̀
i=1

log q(yi|θ)

)+
 < +∞ .

Proof Let i ∈ J1, `K, Γi = Im(~γi) and Γ` =
∏`
i=1 Γi. For all θ ∈ Θω,

q(yi|θ) =
1

(σ
√

2π)ki

∫
Zi

exp

(
− 1

2σ2
‖yi − ~γi(zpop, zi)‖22

)
q(zpop, zi|θ) d(zpop, zi)

6
1

(σ
√

2π)ki
exp

(
− 1

2σ2
d(yi,Γi)

2

)
.

where d denotes the Euclidean distance on Rki . Thus for all θ ∈ Θω,

∑̀
i=1

log q(yi|θ) 6 −
k`

2
log(2πσ2)− 1

2σ2
d(y`,Γ`)2
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where d denotes now the Euclidean distance on Rk` , k` =
∑`

i=1 ki. As the right hand side
is maximized for σ2 = 1

k`
d(y`,Γ`)2, there exists a constant λ ∈ R∗+ such that

sup
θ∈Θ

(∑̀
i=1

log q(yi|θ)

)+

6 λ+ k` log+ 1

d(y`,Γ`)
.

1. Assume there exists i0 ∈ J1, nK such that that for all b ∈ R, ‖(zreg
pop, z

reg
i0

)‖∞ > b.

For all r1, r2 ∈ R we define a compact subset Γ`r1,r2 of Γ` by setting

Ā(r1, r2) = {z` ∈ Rp
` | r1 6

∥∥(zreg
pop, z

reg
i )i∈J1,`K

∥∥
∞ ,
∥∥(zcrit

pop, z
crit
i )i∈J1,`K

∥∥
∞ 6 r2}

and Γ`r1,r2 = {~γ`(z`) | z` ∈ Ā(r1, r2)} .

Especially, limr2→∞ Γ`0,r2 = Γ`. Moreover, ~γ` is differentiable a.e., at least one-side

differentiable everywhere and there exists τ ∈ R such that supRp`‖Dz`~γ
`‖ < τ . So,

according to Lemma 2, for all r1, r2 ∈ R, there exists µ ∈ R which depends only on p`

and k` such that E
[
log+ 1

d(y`,Γ`r1,r2 )

]
< µ (τ + 2)k

`

r2
p` . As in the proof of Lemma 2,

we set Γ`r1,r2 = {y` ∈ Rk` | d(y`,Γ`r1,r2) 6 1} and we have for all r1, r2 ∈ R,∫
Rk`

log+ 1

d(y`,Γ`r1,r2)
P (dy`) =

∫
Γ`r1,r2

log+ 1

d(y`,Γ`r1,r2)
P (dy`) 6 µ̄ r2

p` sup
Γ`r1,r2

P (y`)

where µ̄ = µ (τ + 2)k
`

∈ R. Let R1, R2 ∈ N such that K ⊂ B̄(0, R1) and R1 < R2. By
definition of the distance to a subset, it comes that

EP (dy`)

[
log+ 1

d(y`,Γ`0,R2
)

]
6 µ̄ R1

p` sup
Γ`0,R1

P (y`) + µ̄

R2−1∑
r=R1

(r + 1)p
`

sup
Γ`r,r+1

P (y`) .

The first term is finite as P (dy) is continuous. Besides, if y` ∈ Γ`r,r+1, there exists

z` ∈ Ā(r, r+1) such that ‖~γ`(z`)−y`‖∞ 6 1. Let i ∈ J1, nK and v ∈ J1, preg
pop +preg

indK so
that ‖(zreg

pop, z
reg
i )i∈J1,nK‖∞ = |(zreg

pop, z
reg
i )v|. Such a couple exists due to the existence

of i0. Moreover, there exists ai,v
(
(zreg

pop, z
reg
i )−v

)
and bi,v

(
(zreg

pop, z
reg
i )−v

)
as in (H 4)

and by definition of z` and the infinite norm,

‖y`‖∞ > ‖~γ`(z`)‖∞ − 1 > ‖~γi(zpop, zi)‖∞ − 1

> ai,v |(zreg
pop, z

reg
i )v| + bi,v − 1 > ai,v × r + bi,v − 1 .

Consequently, sup
Γ`r,r+1

P (y`) 6 sup{P (y`) | ‖y`‖∞ > ai,v × r + bi,v − 1} and the

series
∑

(r+ 1)p
`

sup
Γ`r,r+1

P (y`) converge since P (dy) has a polynomial decay tail of

degree bigger than p` + 1 apart from K by assumption (H 3).
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2. Assume that there exists b ∈ R such that for all i ∈ J1, nK, ‖(zreg
pop, z

reg
i )‖∞ 6 b. Then,

by assumption (H′ 5), there exists R ∈ R∗+ such that for all i, ‖~γi(zpop, zi)‖∞ < R. In
particular, ‖~γ`(z`)‖∞ < R and Γ` ⊂ B̄(0, R). Thus,

EP (dy`)

[
log+ 1

d(y`,Γ`)

]
6 EP (dy`)

[
log+ 1

d
(
y`, B̄(0, R)

)] .
Yet, by still denoting B̄(0, R) = {y` ∈ Rk` | d

(
y`, B̄(0, R)

)
6 1} and applying Lemma

2 to the compact K = B̄(0, R) and f = Id, there exists µ ∈ R such that

EP (dy`)

[
log+ 1

d
(
y`, B̄(0, R)

)] =

∫
B̄(0,R)

log+ 1

d
(
y`, B̄(0, R)

)P (dy`)

6 µ 3k
`
R p` sup

B̄(0,R)

P (y`) < +∞ .

Finally, in both cases, EP (dy`)

[
supθ∈Θ

(∑`
i=1 log q(yi|θ)

)+
]
< +∞.

Lemma 4 Assume (H 1), (H 3), (H 4) and (H 5). Let S +
pind(R) = S +

pind
(R) ∪ {∞} be the

one point Alexandrov compactification of S +
pind

(R) and consider the compactification of the
parameter space Θω

Θω =
{
θ = (zpop,Σ, σ) ∈ Rppop ×S +

pind(R)× R+ | ‖zpop‖ 6 ω
}

where R+ = [0,+∞[ ∪ {+∞}. Then, we have for all ω ∈ R,

(C 1) P (dy`) almost surely, for any sequence θκ =
(
zpop κ , Σκ , σκ

)
of elements from Θω

such that limκ→∞ θκ ∈ Θω \Θω,

lim
κ→∞

∑̀
i=1

log q (yi|θκ) = −∞ ;

(C 2) For any sequence (θκ) ∈ ΘωN such that limκ→∞ θκ ∈ Θω \Θω,

lim
κ→∞

EP (dy`) [ log q(y|θκ) ] = −∞ ;

(C 3) The mapping θ 7→ EP (dy`) [ log q(y|θ) ] is continuous on Θω and Θω
∗ 6= ∅.

Proof We recall that a sequence (Σκ)κ∈N of S +
pind(R) converge toward the point ∞ if it

eventually steps out of every compact subset of S +
pind

(R). Let prove the three points in
order.
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1. As Θω\Θω =
{

(Σ, σ) ∈ S +
pind(R)× R+

∣∣∣ ‖Σ‖ = +∞∧ ‖Σ−1‖ = +∞∧ σ ∈ {0,+∞}
}

,

we proceed by disjunction. Let, for all κ ∈ N, θκ = (zpop κ,Σκ, σκ) ∈ Θω.

(i) Assume that, up to extraction of a subsequence, ‖Σκ‖ → ∞ or ‖Σ−1
κ ‖ → ∞.

Let M = ‖y`‖∞. For all individuals i ∈ J1, nK and all κ ∈ N, the marginal density of
yi given θκ is given by :

q(yi|θκ) =
1

(σκ
√

2π)ki

∫
Zpop×Zi

exp

(
− 1

2σ2
κ

‖yi − ~γi(zpop, zi)‖22
)

q(zpop, zi|θκ) d(zpop, zi) .

Let x > 1, Zreg
i,−1 =

{(
zreg
i,2 , . . . ,z

reg
i,preg

ind

)
| zreg

i ∈ Zreg
i

}
and likewise Zreg

pop,−1. Let B̄xi,1 be

the closed ball defined by

B̄xi,1 = B̄xi,1
(

(zreg
pop, z

reg
i )−1

)
= B̄

(
0 ,

xM − bi,1
(
(zreg

pop, z
reg
i )−1

)
ai,1
(
(zreg

pop, z
reg
i )−1

) )

where ai,1
(
(zreg

pop, z
reg
i )−1

)
and bi,1

(
(zreg

pop, z
reg
i )−1

)
are defined as in (H 4). Thus, by

slicing the integral in half and bounding the exponential on B̄xi,1 by 1,

q(yi|θκ) 6
1

(σκ
√

2π)ki

∫
B̄xi,1×Zi,−1

q(zpop, zi|θκ) d(zpop, zi)

+
1

(σκ
√

2π)ki

∫
B̄xi,1{×Zi,−1

exp

(
− 1

2σ2
κ

‖yi − ~γi(zpop, zi)‖22
)

q(zpop, zi|θκ) d(zpop, zi) .

where Zi,−1 = Zreg
pop,−1 ×Zcrit

pop ×Z
reg
i,−1 ×Zcrit

i . Moreover, by conditioning,∫
B̄xi,1×Zi,−1

q(zpop, zi|θκ) d(zpop, zi) =

∫
B̄xi,1

q(zreg
pop,1, z

reg
i,1 |θκ) d(zreg

pop,1, z
reg
i,1 ) .

By continuity of (zreg
pop,1, z

reg
i,1 ) 7→ q(zreg

pop,1, z
reg
i,1 |θκ) and compactness of B̄xi,1,∫

B̄xi,1×Zi,−1

q(zpop, zi|θκ) d(zpop, zi) 6 sup
B̄xi,1

q(zreg
pop,1, z

reg
i,1 |θκ) L1(B̄xi,1) .

Since the marginal of a multivariate distribution is a multivariate distribution whose
mean vector and covariance matrix are obtained by dropping the irrelevant variables,
lim‖Σκ‖→∞ q(z

reg
pop,1, z

reg
i,1 |θκ) = 0 and the first integral goes to zero as ‖Σκ‖ → ∞.

In the same way of the proof of Theorem 1, the marginal density q(zreg
pop,1, z

reg
i,1 |θκ) is

controlled by the operator norm of the covariance matrix Σ−1
κ from which we have

drop the irrelevant variables. Hence, as ‖Σ−1
κ ‖ → ∞, the first integral converges

toward zero as well.
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The second integral is maximized at σ2
κ = 1

ki
‖yi − ~γi(zpop, zi)‖2. Thus, due to the

Cauchy-Schwarz inequality, there exists a constant c ∈ R∗+ such that for all (zpop, zi) ∈
B̄xi,1{ ×Zi,−1,

‖yi − ~γi(zpop, zi)‖22 > c
(
ai,1 ×

xM − bi,1
ai,1

+ bi,1 − ‖yi‖∞
)2

> c
(
(x− 1)M

)2
and by bounding the marginal density q(zpop, zi|θκ) on B̄xi,1{ ×Zi,−1 by 1, the second

integral is bounded from above by
(
ki
2π

) ki
2

e−
ki
2

1(√
c (x−1)M

)ki . Therefore,

lim sup
κ→∞

∑̀
i=1

log q(yi|θκ) 6 − k`

2

[
1 + log(2π) + log

(√
c (x− 1)M

)]
+

1

2

∑̀
i=1

ki log ki .

Since x can be chosen arbitrarily large, we obtain the result for the case ‖Σκ‖ → +∞
as well as ‖Σ−1

κ ‖ → +∞.

(ii) Assume that, up to extraction of a subsequence, σκ → 0 or σκ →∞.

Let M = ‖y`‖∞. With the same notations as in the proof of Lemma 3, for all κ ∈ N,

∑̀
i=1

log q(yi|θκ) 6 −k
`

2
log(2πσ2

κ)− 1

2σ2
d(y`,Γ`)2 where Γ` = Im(~γ`)

and d denotes the Euclidean distance on Rk` . Let us prove that d(y`,Γ`) > 0 a.s. :
the result will go along whatever σκ → 0 or σκ → +∞ with the previous inequality.
Let Z` = Zpop ×

∏`
i=1Zi.

Due to (H 4), for all i ∈ J1, nK, lim‖(zreg
pop,z

reg
i )‖∞→∞‖γi(zpop, zi)‖∞ = +∞, and so

for all ε ∈ R∗+ non-negative, there exists R ∈ R such as for all z` ∈ Z` satisfying
‖z`‖ > R, ‖~γ`(z`)‖ > M + ε. In particular, by definition of M , ‖y` − ~γ`(z`)‖∞ > 0
for ‖(zreg

pop, z
reg
i )i∈J1,`K‖∞ sufficiently large.

On the other hand, if at least a critical variable blows up, then by (H 5) there ex-
ists a critical trajectory γcrit

i such that lim‖(zcrit
pop,z

crit
i )‖∞→∞‖~γi(zpop, zi)‖∞ = γcrit

i

and as soon as this variable becomes sufficiently large, yi 6= γcrit
i a.s. Thus, for

‖(zcrit
pop, z

crit
i )i∈J1,`K‖∞ sufficiently large, ‖y` − ~γ`(z`)‖∞ > 0 a.s.

In other words, there exists R ∈ R∗+ such that for all z` ∈ Z`, if ‖z`‖∞ > R, then
‖y` − ~γ`(z`)‖∞ > 0 a.s. So, by contraposition, if there exists z` ∈ Z` such that
‖y` − ~γ`(z`)‖∞ = 0 (at least a.s.) then ‖z`‖∞ 6 R. Especially, {z` ∈ Z` | y` =
~γ`(z`) a.s.} ⊂ B̄(0, R) . Since (H 3) assumes that P (dy) has a continuous density
and since ~γ`

(
B̄(0, R)

)
is a submanifold of dimension p` < k`, P

[
z` ∈ B̄(0, R)

]
= 0.

Hence, Lk`
({
y` | d(y`, Im(~γ`)) = 0

})
= 0.

2. Let fκ(y`) =
∑`

i=1 log q(yi|θκ). From (C 1), we deduce that, up to extraction, the

negative part
(
fκ(y`)

)−
is almost surely a non-decreasing and non-negative sequence
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converging to +∞. From the monotone convergence theorem we then have

lim inf
κ→+∞

EP (dy`)

[(
fκ(y`)

)−]
= +∞ and so lim

κ→+∞
EP (dy`)

[(
fκ(y`)

)−]
= +∞ .

Concerning the positive part
(
fκ(y`)

)+
, using the dominated convergence theorem,

Lemma 3 and the point (C 1), we get limκ→+∞ EP (dy`)

[(
fκ(y`)

)+]
= 0. Actually,

for all i ∈ J1, nK the application (zreg
pop, z

reg
i ) 7→ γcrit

i is continuous by continuity of the
function ~γi and so (H′ 5) holds.

Finally, we have proved that limκ→+∞ EP (dy`)

[∑`
i=1 log q(yi|θκ)

]
= −∞ and (C 2)

follows immediately.

3. The continuity statement is straightforward. If Θω
∗ is empty, any maximizing se-

quence θκ of EP (dy`)

[
log q(y`|θ)

]
satisfies (up to extraction of a subsequence) θκ ∈ Θω,

‖Σκ‖ → +∞, ‖Σ−1x
κ ‖ → +∞, σκ → 0 or σκ → +∞, which is on contradiction with

conclusion (C 2).

A.2 Proof of the consistency theorem

We follow in the following proof the classical approach of van der Vaart (2000).
Proof As in Lemma 4, let Θω denote the one point Alexandrov compactification of the
parameter space Θω. We have already proved [Lemma 4 (C 3)] that Θω

∗ 6= ∅. To achieve the
proof, let us first demonstrate that for all θ∞ ∈ Θω such that δ (θ∞,Θ

ω
∗ ) > ε there exists

an open set U ⊂ Θω such that

1

`
EP (dy`)

[
sup

θ∈U∩Θω

∑̀
i=1

log q(yi|θ)

]
< E∗(ω) . (0)

Let ε > 0, (Uh) ⊂ ΘωN be a non-increasing sequence of open subsets of Θω for which⋂
h>0 Uh = {θ∞} and fh be the function defined by fh(y`) = 1

` supθ∈Uh
∑`

i=1 log q(yi|θ).

1. If θ∞ ∈ Θω, through the continuity of the map θ 7→
∑`

i=1 log q(yi|θ) and the definition

of the sequence (Uh), limh→+∞ fh(y`) = 1
`

∑`
i=1 log q(yi|θ∞). So, according to the

monotone convergence theorem, Lemma 3 and since θ∞ /∈ Θω
∗ ,

lim
h→+∞

EP (dy`)

[
fh(y`)

]
=

1

`

∑̀
i=1

EP (dy`) [log q(yi|θ∞)] < E∗(ω) .

2. If θ∞ /∈ Θω, we can prove that for all observations y` ∈ Rk` limh→∞ fh(y`) = −∞
P (dy`) a.s. We proceed by contradiction : assume that there exists a measurable set

A ∈ B(Rk`) such that P(y` ∈ A) > 0 and for all y` ∈ A, infh∈N fh(y`) > −∞. Then,
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by definition of the infimum, for all y` ∈ A there exists a sequence (hn) ∈ RN such as
lim infn→+∞ fhn(y) > −∞. However for all y` ∈ A, h 7→ fh(y`) is non-increasing and
reaches its infimum limit for h = +∞ and thus limn→+∞ Uhn = U∞ = {θ∞}. Finally,
up to considering a sequence (θn,n′) ∈ UN

hn
for all subsets Uhn ⊂ Θω such that for

all n ∈ N, limn′→+∞
∑`

i=1 log q(yi|θn,n′) = supθ∈Un
∑`

i=1 log q(yi | θ), concatenating,

reindexing those sequences and using the continuity of the map θ 7→
∑`

i=1 log q(yi|θ)
we know that there exists a sequence (θn) ∈ ΘωN such that

lim
n→∞

θn = θ∞ and lim inf
n→+∞

∑̀
i=1

log q(yi|θn) > −∞ .

Moreover, θ∞ =
(
zpop∞ , Σ∞ , σ∞

)
∈ Θω \Θω and thus σ∞ ∈ {0,+∞}, ‖Σ∞‖ = +∞

or ‖Σ−1
∞ ‖ = +∞, in contradiction to [Lemma 4 (C 1)]. So for all observations y,

limh→∞ fh(y`) = −∞ P (dy) a.s. As in the proof of Lemma 4, Hypothesis (H 5)
implies (H′ 5) and according to Lemma 3 and the monotone convergence theorem,

lim
h→+∞

EP (dy`)

[
fh(y`)

]
= −∞ < E∗(ω) .

That is, in both cases limh→+∞ EP (dy`)

[
fh(y`)

]
< E∗(ω) and there exists an open set

U ⊂ Θω such that 1
` EP (dy`)

[
supθ∈U∩Θω

∑`
i=1 log q(yi|θ)

]
< E∗(ω) as announced.

Let Kε = {θ ∈ Θω | δ(θ,Θω
∗ ) > ε}. Through the compactness of Kε, there exists an

open finite cover (Uα)α∈J1,AK of Kε satisfying (0). Thus, denoting qn = bn` c and rn = n−qn`
the quotient and the rest of the euclidean division of n by ` , we get for all θ ∈ Kε,

sup
θ∈Kε∩Θω

n∑
i=1

log q(yi|θ) 6 sup
α∈J1,AK

(
qn∑
q=0

sup
θ∈Uα∩Θω

∑̀
r=1

log q(yq`+r|θ)

+ sup
θ∈Uα∩Θω

rn∑
r=`+1

log q(yqn`+r|θ)

)
.

However, according to the strong law of large numbers, Assumption (H 2) and (0),

lim
qn→∞

1

qn

qn∑
q=0

sup
θ∈Uα∩Θω

∑̀
r=1

log q(yq`+r|θ) 6 `E∗(ω)

hence, since limn→+∞ qn = +∞ and rn < ` for all n ∈ N,

lim sup
n→∞

 qn
n

sup
α∈J1,AK

 1

qn

qn∑
q=0

sup
θ∈Uα∩Θω

∑̀
r=1

log q(yq`+r|θ)

 
=

1

`
× sup

α∈J1,AK

(
EP (dy`)

[
sup

θ∈Uα∩Θω

∑̀
r=1

log q(yqn`+r|θ)

])
< E∗(ω) .
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Otherwise, for all r ∈ J`+ 1, `nK, log q(yqn`+r|θ) 6 −k` log q(σ
√

2π) so

1

n
sup

α∈J1,AK

(
sup

θ∈Uα∩Θω

rn∑
r=`+1

log q(yqn`+r|θ )

)
6
k`(rn − 1)

n
log(σ

√
2π) .

Thereafter lim supn→∞

[
1
n supα∈J1,AK

(
supθ∈Uα∩Θω

∑rn
r=`+1 log q(yqn`+r|θ )

) ]
6 0 and

lim sup
n→∞

1

n
sup

θ∈Kε∩Θω

n∑
i=1

log q(yi|θ) < E∗(ω) . (1)

By definition of Θω
∗ and according to the strong law of large numbers and (H 2), for all

θ∗ ∈ Θω
∗ limn→∞

1
n

∑n
i=1 log q(yi|θ∗) = E∗(ω) a.s. Moreover for all i ∈ J1, nK,

q(yi|θ̂n) =
q(θ̂n | yi) q(yi)
qprior(θ̂n)

>
q(θ∗ | yi) q(yi)
qprior(θ̂n)

=
q(yi|θ∗) qprior(θ∗)

qprior(θ̂n)

and so
∑n

i=1 log q(yi|θ̂n) >
∑n

i=1 log q(yi|θ∗) +
(

log qprior(θ∗)− log qprior(θ̂n)
)

. Since qprior

is upper-bounded on Θω, there exists M ∈ R+ such that

1

n

(
log qprior(θ∗)− log qprior(θ̂n)

)
>

1

n
log

(
qprior(θ∗)

M

)
i.e. lim infn→+∞

1
n

(
log qprior(θ∗)− log qprior(θ̂n)

)
> 0 and

lim inf
n→+∞

1

n

n∑
i=1

log q(yi|θ̂n) > E∗(ω) . (2)

The result follows from Equations 1 and 2 by contradiction : Assume that for all n ∈ N,
θ̂n ∈ Kε i.e. that δ(θ̂n,Θ

ω
∗ ) > ε. Then

∑n
i=1 log q(yi|θ̂n) 6 supθ∈Kε∩Θω

∑n
i=1 log q(yi|θ)

and by taking the limit superior, we get

E∗(ω)
(2)

6 lim sup
n→∞

1

n

n∑
i=1

log q(yi|θ̂n)
(1)
< E∗(ω)

i.e. E∗(ω) < E∗(ω). Hence limn→∞ P
[
δ(θ̂n,Θ

ω
∗ ) > ε

]
= 0.
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Juliette Chevallier, Stéphane Oudard, and Stéphanie Allassonnière. Learning spatiotem-
poral piecewise-geodesic trajectories from longitudinal manifold-valued data. In Neural
Information Processing Systems, number 30 in Advances in Neural Information Process-
ing Systems, Long Beach, CA, USA, 2017.

Bernard Delyon, Marc Lavielle, and Eric Moulines. Convergence of a stochastic approxi-
mation version of the EM algorithm. The Annals of Statistics, 27(1):94–128, 1999.

Arthur Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Statistical Methodology), 39(1):1–38, 1977.

Bernard Escudier, Camillo Porta, Mlanie Schmidinger, Nathalie Rioux-Leclercq, Axel Bex,
Vincent S. Khoo, Viktor Gruenvald, and Alan Horwich. Renal cell carcinoma: ESMO
clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology,
27(suppl 5):v58–v68, 2016.

Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Uni-
versitext. Springer-Verlag Berlin Heidelberg, 3 edition, 2004.

Christophe Giraud. Introduction to High-Dimensional Statistics. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis, 2014.

Igor Koval, Jean-Baptiste Schiratti, Alexandre Routier, Michael Bacci, Olivier Colliot,
Stephanie Allassonniere, and Stanley Durrleman. Spatiotemporal propagation of the
cortical atrophy: Population and individual patterns. Frontiers in Neurology, 9, 2018.

Estelle Kuhn and Marc Lavielle. Maximum likelihood estimation in nonlinear mixed effects
models. Computational Statistics & Data Analysis, 49(4):1020–1038, 2005.

Nan M. Laird and James H. Ware. Random-effects models for longitudinal data. Biometrics,
38(4):963–974, 1982.

Marc Lavielle. Mixed Effects Models for the Population Approach: Models, Tasks, Methods
and Tools. CRC Biostatistics Series. Chapman and Hall, 2014.

Marc Lavielle and Leon Aarons. What do we mean by identifiability in mixed effects models?
Journal of Pharmacokinetics and Pharmacodynamics, 43(1):111–122, February 2016.

J. Kevin Milliken and Steven D. Edland. Mixed effect models of longitudinal alzheimer’s
disease data: A cautionary note. Statistics in Medicine, 19(11-12):1617–1629, 2000.

32



Learning piecewise-geodesic trajectories

B Ribba, NH Holford, P Magni, I Trocniz, I Gueorguieva, P Girard, C Sarr, M Elishmereni,
C Kloft, and LE Friberg. A review of mixed-effects models of tumor growth and effects
of anticancer drug treatment used in population analysis. CPT: Pharmacometrics &
Systems Pharmacology, 3(5):1–10, 2014.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer Texts
in Statistics. Springer-Verlag New York, 1999.

Gareth O. Roberts and Jeffrey S. Rosenthal. Coupling and ergodicity of adaptive Markov
chain Monte Carlo algorithms. Journal of Applied Probability, 44(2):458–475, 03 2007.

Gareth O. Roberts and Jeffrey S. Rosenthal. Examples of adaptive MCMC. Journal of
Computational and Graphical Statistics, 18(2):349–367, 2009.
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