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Abstract

We introduce a hierarchical model which allows to estimate a group-average
piecewise-geodesic trajectory in the Riemannian space of measurements and in-
dividual variability. This model falls into the well defined mixed-effect models.
The subject-specific trajectories are defined through spatial and temporal trans-
formations of the group-average piecewise-geodesic path, component by compo-
nent. Thus we can apply our model to a wide variety of situations. Due to the
non-linearity of the model, we use the Stochastic Approximation Expectation-
Maximization algorithm to estimate the model parameters. Experiments on syn-
thetic data validate this choice. The model is then applied to the metastatic renal
cancer chemotherapy monitoring: we run estimations on RECIST scores of treated
patients and estimate the time they escape from the treatment. Experiments high-
light the role of the different parameters on the response to treatment.

1 Introduction

During the past few years, the way we treat renal metastatic cancer was profoundly changed: a new
class of anti-angiogenic therapies targeting the tumor vessels instead of the tumor cells has emerged
and drastically improved survival by a factor of three (Escudier et al., 2016). These new drugs,
however, do not cure the cancer, and only succeed in delaying the tumor growth, requiring the use of
successive therapies which must be continued or interrupted at the appropriate moment according to
the patient’s response. The new medicine process has also created a new scientific challenge: how
to choose the more efficient drug therapy. This means that one has to properly understand how the
patient reacts to the possible treatments. Actually, there are several strategies and taking the right
decision is a contested issue (Rothermundt et al., 2015, 2017).

To achieve that goal, physicians took an interest in mathematical modeling. Mathematics has already
demonstrated its efficiency and played a role in the change of stop-criteria for a given treatment
(Burotto et al., 2014). However, to the best of our knowledge, there only exists one model which
was designed by medical practitioners. Although, very basic mathematically, it seems to show that
this point of view may produce interesting results. Introduced by Stein et al. in 2008, the model
performs a non-linear regression using the least squares method to fit an increasing or/and decreasing
exponential curve. This model is still used but suffers limitations. First, as the profile are fitted
individual-by-individual independently, the model cannot explain a global dynamic. Then, the choice
of exponential growth avoids the emergence of plateau effects which are often observed in practice.
This opens the way to new models which would explain both a population and each individual with
other constraints on the shape of the response.
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Learning models of disease progression from such databases raises great methodological challenges.
We propose here a very generic model which can be adapted to a large number of situations. For a
given population, our model amounts to estimating an average trajectory in the set of measurements
and individual variability. Then we can define continuous subject-specific trajectories in view of the
population progression. Trajectories need to be registered in space and time, to allow anatomical
variability (as different tumor sizes), different paces of progression and sensitivity to treatments. The
framework of mixed-effects models is well suited to deal with this hierarchical problem. Mixed-
effects models for longitudinal measurements were introduced in the seminal paper of Laird and Ware
(1982) and have been widely developed since then. The recent generic approach of Schiratti et al.
(2015) to align patients is even more suitable. First, anatomical data are naturally modeled as points on
Riemannian manifolds while the usual mixed-effects models are defined for Euclidean data. Secondly,
the model was built with the aim of granting individual temporal and spatial variability through
individual variations of a common time-line grant and parallel shifting of the average trajectory.

However, Schiratti et al. (2015) have made a strong hypothesis to build their model as they consider
that the mean evolution is a geodesic. This would mean in our targeted situation that the cancer
would either go on evolving or is always sensitive to the treatment. Unfortunately, the anti-angiogenic
treatments may be inefficient, efficient or temporarily efficient, leading to a re-progression of the
metastasis. Therefore, we want to relax this assumption on the model.

In this paper, we propose a generic statistical framework for the definition and estimation of spatiotem-
poral piecewise-geodesic trajectories from longitudinal manifold-valued data. Riemannian geometry
allows us to derive a method that makes few assumptions about the data and applications dealt with.
We first introduce our model in its most generic formulation and then make it explicit for RECIST
(Therasse et al., 2000) score monitoring, i.e. for one-dimension manifolds. Experimental results
on those scores are given in section 4.2. The introduction of a more general model is a deliberate
choice as we are expecting to apply our model to the corresponding medical images. Because of
the non-linearity of the model, we have to use a stochastic version of the Expectation-Maximization
algorithm (Dempster et al., 1977), namely the MCMC-SAEM algorithm, for which theoretical results
regarding the convergence have been proved in Delyon et al. (1999) and Allassonnière et al. (2010)
and numerical efficiency has been demonstrated for these types of models (Schiratti et al. (2015),
MONOLIX – MOdèles NOn LInéaires à effets miXtes).

2 Mixed-effects model for piecewise-geodesically distributed data

We consider a longitudinal dataset obtained by repeating measurements of n ∈ N∗ individuals,
where each individual i ∈ J1, nK is observed ki ∈ N∗ times, at the time points ti = (ti,j)16j6ki
and where yi = (yi,j)16j6ki denotes the sequence of observations for this individual. We also
denote k =

∑n
i=1 ki the total numbers of observations. We assume that each observation yi,j

is a point on a d-dimensional geodesically complete Riemannian manifold (M, g), so that y =
(yi,j)16i6n, 16j6ki ∈Mk.

We generalize the idea of Schiratti et al. (2015) and build our model in a hierarchical way. We see
our data points as samples along trajectories and suppose that each individual trajectory derives
from a group-average scenario through spatiotemporal transformations. Key to our model is that the
group-average trajectory in no longer assumed to be geodesic but piecewise-geodesic.

2.1 Generic piecewise-geodesic curves model

Let m ∈ N∗ and tR =
(
−∞ < t1R < . . . < tm−1

R < +∞
)

a subdivision of R, called the breaking-
up times sequence. Let M0 a d-dimensional geodesically complete manifold and

(
γ̄`0
)

16`6m
a

family of geodesics on M0. To completely define our average trajectory, we introduce m isometries
φ`0 : M0 →M `

0 := φ`0(M0). This defines m new geodesics – on the corresponding space M `
0 – by

setting down γ`0 = φ`0 ◦ γ̄0
`. The isometric nature of the mapping φ`0 ensures that the manifolds

M `
0 remain Riemannian and that the curves γ`0 remain geodesic. In particular, each γ`0 remains

parametrizable (Gallot et al., 2004). We define the average trajectory by

∀t ∈ R, γ0(t) = γ1
0(t)1]−∞,t1R](t) +

m−1∑
`=2

γ`0(t)1]t`−1
R ,t`R](t) + γm0 (t)1]tm−1

R ,+∞[(t) .
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In this framework, M0 may be understood as a manifold-template of the geodesic components of the
curve γ0.

Because of the piecewise nature of our average-trajectory γ0, constraints have to be formulated on
each interval of the subdivision tR. Following the formulation of the local existence and uniqueness
theorem (Gallot et al., 2004), constraints on geodesics are generally formulated by forcing a value
and a tangent vector at a given time-point. However, such an approach cannot ensure the curve γ0

to be at least continuous. That is why we re-formulate these constraints in our model as boundary
conditions. Let a sequence Ā = (Ā0, . . . , Ām) ∈ (M0)

m+1, an initial time t0 ∈ R and a final time
t1 ∈ R. We impose1 that for all ` ∈ J1,m − 1K, γ̄1

0(t0) = Ā0, γ̄`0(t`R) = Ā`, γ̄`+1
0 (t`R) = Ā` and

γ̄m0 (t1) = Ām. Notably, the 2m constraints are defined step by step. In one dimension (cf section
2.2), the geodesics could be written explicitly and such constraints do not complicate the model so
much. In higher dimension, we have to use shooting or matching methods to enforce this constraint.

In practice, the choice of the isometries φ`0 and the geodesics γ̄`0 have to be done with the aim to be
"as regular as possible" (at least continuous as said above) at the rupture points t`R. In one dimension
for instance, we build trajectories that are continuous, not differentiable but with a very similar slope
on each side of the breaking-points.

We want the individual trajectories to represent a wide variety of behaviors and to derive from the
group average path by spatiotemporal transformations. To do that, we define for each component ` of
the piecewise-geodesic curve γ0 a couple of transformations (φ`i , ψ

`
i ). These transformations, namely

the diffeomorphic component deformations and the time component reparametrizations, characterize
respectively the spatial and the temporal variability of propagation among the population. Thus,
individual trajectories may write in the form of

∀t ∈ R, γi(t) = γ1
i (t)1]−∞,t1R,i](t) +

m−1∑
`=2

γ`i (t)1]t`−1
R,i ,t

`
R,i]

(t) + γmi (t)1]tm−1
R,i ,+∞[(t) (?)

where the functions γ`i are obtained from γ`0 through the applications of the two transformations
φ`i and ψ`i described below. Note that, in particular, each individual possesses his own sequence
of rupture times tR,i =

(
t`R,i
)

16`<m
. Moreover, we require the fewest constraints possible in the

construction: at least continuity and control of the slopes at these breaking-up points.

For compactness, we will now abusively denote t0R for t0 and tmR for t1.

To allow different paces in the progression and different breaking-up times for each individual,
we introduce some temporal transformations ψ`i , called time-warp, that are defined for the subject
i ∈ J1, nK and for the geodesic component ` ∈ J1,mK by ψ`i (t) = α`i(t − t

`−1
R − τ `i ) + t`−1

R . The
parameters τ `i correspond to the time-shift between the mean and the individual progression onset and
the α`i are the acceleration factors that describe the pace of individuals, being faster or slower than
the average. To ensure good adjunction at the rupture points, we demand the individual breaking-up
times t`R,i and the time-warps to satisfy ψ`i (t

`
R,i) = t`R and ψ`i (t

`−1
R,i ) = t`−1

R . Hence the subdivision
tR,i is constrained by the time reparametrizations, which are also constrained. Only the acceleration
factors α`i and the first time shift τ1

i are free: for all ` ∈ J1,mK, the constraints rewrite step by step as

t`R,i = t`−1
R + τ `i +

t`R−t
`−1
R

α`i
and τ `i = t`−1

R,i − t
`−1
R .

Concerning the space variability, we introduce m diffeomorphic deformations φ`i which enable the
different components of the individual trajectories to vary more irrespectively of each other. We just
enforce the adjunction to be at least continuous and therefore the diffeomorphisms φ`i have to satisfy
φ`i ◦ γ`0(t`R) = φ`+1

i ◦ γ`+1
0 (t`R). Note that the mappings φ`i do not need to be isometric anymore, as

the individual trajectories are no longer required to be geodesic.

Finally, for all i ∈ J1, nK and ` ∈ J1,mK, we set γ`i = φ`i ◦ γ`0 ◦ ψ`i and define γi as in (?). The
observations yi = (yi,j) are assumed to be distributed along the curve γi and perturbed by an additive
Gaussian noise εi ∼ N (0, σ2Iki) :

∀(i, j) ∈ J1, nK× J1, kiK, yi,j = γi(ti,j) + εi,j where εi,j ∼ N (0, σ2) .

1By defining A` = φ`0(Ā`) for each ` we can apply the constraints on γ`0 instead of γ̄`0.
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The choice of the isometries φ`0 and the diffeomorphisms φ`i will induce a large panel of piecewise-
geodesic models. For example, if m = 1, φ0 = Id and if φ1

i denotes the application that maps the
curve γ0 onto its parallel curve for a given non-zero tangent vector wi, we feature the model proposed
by Schiratti et al. (2015). In the following paragraph we propose another specific model which can be
used for chemotherapy monitoring for instance (see section 4.2).

2.2 Piecewise-logistic curve model

We focus in the following on the case of piecewise-logistic model, which presents a real interest
regarding to our target application (cf section 4.2). We assume that m = 2 and d = 1 and we set
M0 = ]0, 1[ equipped with the logistic metric. Given three real numbers γinit

0 , γescap
0 and γfin

0 we set
down φ1

0 : x 7→
(
γinit

0 − γ
escap
0

)
x+ γescap

0 and φ2
0 : x 7→

(
γfin

0 − γ
escap
0

)
x+ γescap

0 . Thus, we can map
M0 onto the intervals ]γescap

0 , γinit
0 [ and ]γescap

0 , γfin
0 [ respectively: if γ̄0 refers to the sigmoid function,

φ1
0 ◦ γ̄0 will be a logistic curve, growing from γescap

0 to γinit
0 .

In this way, there is essentially a single breaking-up time and we will denote it tR at the population
level and tiR at the individual one. Moreover, due to our target applications, we force the first logistic
to be decreasing and the second one increasing (this condition may be relaxed). Logistics are defined
on open intervals, with asymptotic constraints. We want to formulate our constraints on some non-
infinite time-points, as explained in the previous paragraph, we set a positive threshold ν close to zero
and demand the logistics γ1

0 and γ2
0 to be ν-near from their corresponding asymptotes. More precisely,

we impose the average trajectory γ0 to be of the form γ0 = γ1
0 1]−∞,tR] + γ2

0 1]tR,+∞[ where

γ1
0 : R→ ]γescap

0 , γinit
0 [ γ2

0 : R→ ]γescap
0 , γfin

0 [

t 7→ γinit
0 + γescap

0 e(at+b)

1 + e(at+b)
t 7→ γfin

0 + γescap
0 e−(ct+d)

1 + e−(ct+d)

{
γescap

0 + 2ν 6 γinit
0

γescap
0 + 2ν 6 γfin

0

and a, b, c and d are some positive numbers given by the following constraints

γ1
0(t0) = γinit

0 − ν , γ1
0(tR) = γ2

0(tR) = γescap
0 + ν and γ2

0(t1) = γfin
0 − ν .

In our context, the initial time of the process is known: it is the beginning of the treatment. So,
we assume that the average initial time t0 is equal to zero. Especially t0 is no longer a variable.
Moreover, for each individual i ∈ J1, nK, the time-warps write ψ1

i (t) = α1
i (t − t0 − τ1

i ) + t0 and

ψ2
i (t) = α2

i (t− tR− τ2
i ) + tR where τ2

i = τ1
i +

(
1−α1

i

α1
i

)
(tR− t0). From now on, we note τi for τ1

i .

In the same way as the time-warp, the diffeomorphisms φ1
i and φ2

i are chosen to allow different
amplitudes and rupture values: for each subject i ∈ J1, nK, given the two scaling factors r1

i and r2
i

and the space-shift δi, we define φ`i(x) = r`i (x− γ0(tR)) + γ0(tR) + δi, ` ∈ {1, 2}. Other choices
are conceivable but in the context of our target applications, this one is appropriate. Mathematically,
any regular and injective function defined on ]γescap

0 , γinit
0 [ (respectively ]γescap

0 , γfin
0 [) is suited.
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(a) Diversity of individual trajectories.

γinit
0 −ν

γ
escap
0 +ν

γfin
0 −ν

r1
i r2

i

δi
τi

t0 tiR tR t1ti1

γ0

γi

(b) From average to individual trajectory.

Figure 1: Model description. Figure 1a represents a typical average trajectory and several individual
ones, for different vectors Pi. The rupture times are represented by diamonds and the initial/final
times by stars. Figure 1b illustrates the non-standard constraints for γ0 and the transition from the
average trajectory to an individual one: the trajectory γi is subject to a temporal and a spacial warp.
In other "words", γi = φ1

i ◦ γ1
0 ◦ ψ1

i 1]−∞,tiR] + φ2
i ◦ γ2

0 ◦ ψ2
i 1]tiR,+∞[.
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To sum up, each individual trajectory γi depends on the average curve γ0 through fixed effects
zpop =

(
γinit

0 , γescap
0 , γfin

0 , tR, t1
)

and random effects zi =
(
α1
i , α

2
i , τi, r

1
i , r

2
i , δi

)
. This leads to a

non-linear mixed-effects model. More precisely, for all (i, j) ∈ J1, nK× J1, kiK,

yi,j =
[
r1
i

(
γ1
i (ti,j)− γ0(tR)

)
+ γ0(tR) + δi

]
1]−∞,tiR](ti,j)

+
[
r2
i

(
γ2
i (ti,j)− γ0(tR)

)
+ γ0(tR) + δi

]
1]tiR,+∞[(ti,j) + εi,j

where γ1
i = φ1

i ◦ γ1
0 , γ2

i = φ2
i ◦ γ2

0 and tiR = t0 + τ1
i + tR−t0

α1
i

. Figure 1 provides an illustration of the
model. On each subfigure, the bold black curve represents the average trajectory γ0 and the colour
curves several individual trajectories.

The acceleration and the scaling parameters have to be positive and equal to one on average while the
time and space shifts are of any signs and must be zero on average. For these reasons, we set α`i = eξ

`
i

and r`i = eρ
`
i for ` ∈ {1, 2} leading to Pi = t

(
ξ1
i ξ

2
i τi ρ

1
i ρ

2
i δi

)
. We assume that Pi ∼ N (0,Σ)

where Σ ∈ SpR, p = 6. This assumption is important in view of the applications. Usually, the
random effects are studied independently. Here, we are interested in correlations between the two
phases of patient’s response to treatment (see section 4.2).

3 Parameters estimation with the MCMC-SAEM algorithm

In this section, we explain how to use a stochastic version of the EM algorithm to produce maximum
a posteriori estimates of the parameters.

3.1 Statistical analysis of the piecewise-logistic curves model

We want to estimate (zpop,Σ, σ). The theoretical convergence of the EM algorithm, and a fortiori
of the SAEM algorithm (Delyon et al., 1999), is proved only if the model belongs to the curved
exponential family. Moreover, for numerical performances this framework is important. Without
further hypothesis, the piecewise-logistic model does not satisfy this constraint. We proceed as in
Kuhn and Lavielle (2005): we assume that zpop is the realization of independent Gaussian random
variables with fixed small variances and estimate the means of those variables. So, the parameters we
want to estimate are from now on θ =

(
γinit

0 , γescap
0 , γfin

0 , tR, t1,Σ, σ
)

.

The fixed and random effects z = (zpop, zi)16i6n are considered as latent variables. Our model write
in a hierarchical way as
y | z, θ ∼

n⊗
i=1

ki⊗
j=1

N
(
γi(ti,j), σ

2
)

z | θ ∼ N (γinit
0 , σ2

init)⊗N (γescap
0 , σ2

escap)⊗N (γfin
0 , σ

2
fin)⊗N (tR, σ

2
R)⊗N (t1, σ

2
1)

n⊗
i=1

N (0,Σ)

where σinit, σescap, σfin, σR and σ1 are hyperparameters of the model. The product measures ⊗ mean
that the corresponding entries are considered to be independent in our model. Of course, it is not the
case for the observations which are obtained by repeating measurements for several individuals but
this assumption leads us to a more computationally tractable algorithm.

In this context, the EM algorithm is very efficient to compute the maximum likelihood estimate of θ.
Due to the non-linearity of our model, a stochastic version of the EM algorithm is adopted, namely
the Stochastic Approximation Expectation-Maximization (SAEM) algorithm. As the conditional
distribution q(z|y, θ) is unknown, the Expectation step is replaced using a Monte-Carlo Markov
Chain (MCMC) sampling algorithm, leading to consider the MCMC-SAEM algorithm introduced in
Kuhn and Lavielle (2005) and Allassonnière et al. (2010). It alternates between a simulation step,
a stochastic approximation step and a maximization step until convergence. The simulation step is
achieved using a symmetric random walk Hasting-Metropolis within Gibbs sampler (Robert and
Casella, 1999). See the supplementary material for details about algorithmics.

To ensure the existence of the maximum a posteriori (theorem 1), we use a "partial" Bayesian
formalism, i.e. we assume the following prior

(Σ, σ) ∼ W−1 (V,mΣ)⊗W−1 (v,mσ) where V ∈ SpR, v,mΣ,mσ ∈ R
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and W−1 (V,mΣ) denotes the inverse Wishart distribution with scale matrix V and degrees of
freedom mΣ. In order for the inverse Wishart to be non-degenerate, the degrees mΣ and mσ must
satisfy mΣ > 2p and mσ > 2. In practice, we yet use degenerate priors but with correct posteriors
.To be consistent with the one-dimension inverse Wishart distribution, we define the density function
of distribution of higher dimension as

fW−1(V,mΣ)(Σ) =
1

Γp
(
mΣ

2

) ( √
|V |

2
p
2

√
|Σ|

exp

(
−1

2
tr
(
V Σ−1

)))mΣ

where Γp is the multivariate gamma function. The maximization step is straightforward given the
sufficient statistics of our exponential model: we update the parameters by taking a barycenter
between the corresponding sufficient statistic and the prior. See the supplementary material for
explicit equations.

3.2 Existence of the Maximum a Posteriori

The next theorem ensures us that the model is well-posed and that the maximum we are looking for
through the MCMC-SAEM algorithm exists. Let Θ the space of admissible parameters :

Θ =
{ (

γinit
0 , γescap

0 , γfin
0 , tR, t1,Σ, σ

)
∈ R5 ×SpR× R+

∣∣∣ Σ positive-definite
}
.

Theorem 1 (Existence of the MAP). Given the piecewise-logistic model and the choice of
probability distributions for the parameters and latent variables of the model, for any dataset
(ti,j , yi,j)i∈J1,nK, j∈J1,kiK, there exists θ̂MAP ∈ argmax

θ∈Θ
q(θ|y).

A detailed proof is postponed to the supplementary material.

4 Experimental results

The piecewise-logistic model has been designed for chemotherapy monitoring. More specifically,
we have met radiologists of the Hôpital Européen Georges-Pompidou (HEGP – Georges Pompidou
European Hospital) to design our model. In practice, patients suffer from the metastatic kidney cancer
and take a drug each day. Regularly, they come to the HEGP to check the tumor evolution. The
response to a given treatment has generally two distinct phases: first, tumor’s size reduces; then, the
tumor grows again. A practical question is to quantify the correlation between both phases and to
determine as accurately as possible the individual rupture times tiR which are related to an escape of
the patient’s response to treatment.

4.1 Synthetic data

In order to validate our model and numerical scheme, we first run experiments on synthetic data.

We well understood that the covariance matrix Σ gives a lot of information on the health status of a
patient: pace and amplitude of tumor progression, individual rupture times. . . Therefore, we have to
pay special attention to the estimation of Σ in this paragraph.

An important point was to allow a lot of different individual behaviors. In our synthetic example,
Figure 1a illustrates this variability. From a single average trajectory (γ0 in bold plain line), we can
generate individuals who are cured at the end (dot-dashed lines: γ3 and γ4), some whose response to
the treatment is bad (dashed lines: γ5 and γ6), some who only escape (no positive response to the
treatments – dotted lines: γ7). Likewise, we can generate "patients" with only positive responses or
no response at all. The case of individual 4 is interesting in practice: the tumor still grows but so
slowly that the growth is negligible, at least in the short-run.

Figure 2 illustrates the qualitative performance of the estimation. We are notably able to understand
various behaviors and fit subjects which are far from the average path, such as the orange and the
green curves. We represent only five individuals but 200 subjects have been used to perform the
estimation.

To measure the influence of the sample size on our model/algorithm, we generate synthetic datasets
of various size and perform the estimation 50 times for each dataset. Means and standard deviations

6
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(a) Initialisation.
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(b) After 600 iterations.

Figure 2: Initialisation and "results". On both figures, the estimated trajectories are in plain lines and
the target curves in dashed lines. The (noisy) observations are represented by crosses. The average
path is in bold black line, the individuals in color. Figure 2a: Population parameters zpop and latent
variables zpop are initialized at the empirical mean of the observations; individual trajectories are
initialized on the average trajectory (P = 0, Σ = 0.1Ip, σ = 1). Figure 2b: After 600 iterations,
sometime less, the estimated curves fit very well the observations. As the algorithm is stochastic,
estimated curves – and effectively the individuals – still wave around the target curves.

Table 1: Mean (standard deviation) of relative error (expressed as a percentage) for the population
parameters zpop and the residual standard deviation σ for 50 runs according to the sample size n.

Sample
γinit

0 γescap
0 γfin

0
tR t1 σ

size n

50 1.63 (1.46) 9.45 (5.40) 6.23 (2.25) 11.58 (1.64) 4.41 (0.75) 25.24 (12.84)
100 2.42 (1.50) 9.07 (5.19) 7.82 (2.43) 13.62 (1.31) 5.27 (0.60) 10.35 (3.96)
150 2.14 (1.17) 11.40 (5.72) 5.82 (2.55) 9.24 (1.63) 3.42 (0.71) 2.83 (2.31)

of the relative errors for the real parameters, namely γinit
0 , γescap

0 , γfin
0 , tR, t1 and σ, are compiled

in Table 1. To compare things which are comparable, we have generated a dataset of size 200 and
shortened them to the desired size. Moreover, to put the algorithm on a more realistic situation, the
synthetic individual times are non-periodically spaced, individual sizes vary between 12 and 18 and
the observed values are noisy (σ = 3).

We remark that our algorithm is stable and that the bigger the sample size, the better we learn the
residual standard deviation σ. The parameters tR and γescap

0 are quite difficult to learn as they occur
on the flat section of the trajectory. However, the error we made is not crippling as the most important
for clinicians is the dynamic along both phases. As the algorithm enables to estimate both the mean
trajectory and the individual dynamic, it succeeds in estimating the inter-individual variability. This
ends in a good estimate of the covariance matrix Σ (see figure 4).

4.2 Chemotherapy monitoring: RECIST score of treated patients

We now run our estimation algorithm on real data from HEGP.

The RECIST (Response Evaluation Criteria In Solid Tumors) score (Therasse et al., 2000) measures
the tumoral growth and is a key indicator of the patient survival. We have performed the estimation
over a drove of 176 patients of the HEGP. There is an average of 7 visits per subjects (min: 3, max:
22), with an average duration of 90 days between consecutive visits.

We have run the algorithm several times, with different proposal laws for the sampler (a Symmetric
Random Walk Hasting-Metropolis within Gibbs one) and different priors. We present here a run with
a low residual standard variation in respect to the amplitude of the trajectories and complexity of the
dataset: σ = 14.50 versus max(γinit

0 , γfin
0 )− γescap

0 = 452.4. Figure 3a illustrates the performance of
the model on the first eight patients. Although we cannot explain all the paths of progression, the
algorithm succeeds in fitting various types of curves: from the yellow curve γ3 which is rather flat
and only escape to the red γ7 which is spiky. From Figure 3b, it seems that the rupture times occur
early in the progression in average. Nevertheless , this result is to be considered with some reserve:
the rupture time generally occurs on a stable phase of the disease and the estimation may be difficult.
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Figure 3: RECIST score. We keep conventions of the previous figures. Figure 3a is the result of a 600
iterations run. We represent here only the first 8 patients among the 176. Figure 3b is the histogram of
the rupture times tiR for this run. In black bold line, the estimated average rupture time tR is a good
estimate of the average of the individual rupture times although there exists a large range of escape.
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Figure 4: Individual random effects. Log-acceleration factors ξ1
i and ξ2

i against times shifts τi and
log-amplitude factors ρ1

i and ρ2
i against space shifts δi. In both figure, the color corresponds to the

individual rupture time tiR. These estimations hold for the same run as Figure 3.

In Figure 4, we plot the individual estimates of the random effects (obtained from the last iteration) in
comparison to the individual rupture times. Even though the parameters which lead the space warp,
i.e. ρ1

i , ρ2
i and δi are correlated, the correlation with the rupture time is not clear. In other words, the

volume of the tumors seems to not be relevant to evaluate the escape of a patient. On the contrary,
which is logical, the time warp strongly impacts the rupture time.

4.3 Discussion and perspective

We propose here a generic spatiotemporal model to analyze longitudinal manifold-valued measure-
ments. Contrary to Schiratti et al. (2015), the average trajectory is not assumed to be geodesic
anymore. This allows us to apply our model to more complex situations: in chemotherapy monitoring
for example, where the patients are treated and tumors may respond, stabilize or progress during
the treatment, with different conducts for each phase. At the age of personalized medicine, to give
physicians decision support systems is really important. Therefore learning correlations between both
phases is crucial. This has been taken into account here.

For purpose of working with more complicated data, medical images for instance, we have first
presented our model in a very generic version. Then we made it explicit for RECIST scores monitoring
and performed experiments on data from the HEGP. However, we have studied that dataset as if all
patients behave similarly, which is not true in practice. We believe that a possible amelioration of our
model is to put it into a mixture model.

Lastly, the SAEM algorithm is really sensitive to initial conditions. This phenomenon is emphasized
by the non-independence between the individual variables: actually, the average trajectory γ0 is not
exactly the trajectory of the average parameters. Fortunately, the more the sample size n increases,
the more γ0 draws closer to the trajectory of the average parameters.
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1 Details about the MCMC-SAEM algorithm

Here, we explicit the MCMC-SAEM algorithm we are use to perform the experiments. We recall that

yi,j =
[
r1
i

(
γ1
i (ti,j)− γ0(tR)

)
+ γ0(tR) + δi

]
1]−∞,tiR](ti,j)

+
[
r2
i

(
γ2
i (ti,j)− γ0(tR)

)
+ γ0(tR) + δi

]
1]tiR,+∞[(ti,j) + εi,j

where

γinit
0 ∼ N

(
γinit

0 , σ2
init

)
; γéchap

0 ∼ N
(
γéchap

0 , σ2
échap

)
; γfin

0 ∼ N
(
γfin

0 , σ
2
fin

)
tR ∼ N (tR, σ

2
R) ; t1 ∼ N (t1, σ

2
1) ; Pi

i.i.d∼ N (0,Σ)

and θ =
(
γinit

0 , γéchap
0 , γfin

0 , tR, t1,Σ, σ
)
∈ Θ, the space of admissible parameters.

Prior distribution : As explain in the article, according to the proof of the existence of the MAP
(see bellow), there is no need to put prior on the population parameters. Thus,

qprior(θ) ∝

( √
|V |

2
p
2

√
|Σ|

exp

(
−1

2
tr
(
V Σ−1

)))mΣ

×
(

v

σ
√

2
exp

(
− v2

2σ2

))mσ
.
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Sufficient statistics : The complete log-likelihood writes

log q(, y, z, θ) = − 1

2

(γinit
0 − γinit

0

σinit

)2

+

(
γéchap

0 − γéchap
0

σéchap

)2

+

(
γfin

0 − γfin
0

σfin

)2


− 1

2

[(
tR − tR
σR

)2

+

(
t1 − t1
σ1

)2
]

− mΣ

2

n∑
i=1

(
tPi Σ−1 Pi

)
+
mΣ

2
(log(|V |)− log(|Σ|))− 1

2
tr
(
V Σ−1

)
− 1

2σ2

n∑
i=1

ki∑
j=1

(
yi,j − γi(ti,j)

)2

− n

2
log(|Σ|) +mσ log

( v
σ

)
− mσ

2

( v
σ

)2

+ constants

and thus, we set

S1(y, z) = γinit
0 ; S2(y, z) = γéchap

0 ; S3(y, z) = γfin
0

S4(y, z) = tR ; S5(y, z) = t1 ; S6(y, z) =
1

n

n∑
i=1

tPiPi ∈MpR

S7(y, z) =
1

k

n∑
i=1

ki∑
j=1

(
yi,j − γi(ti,j)

)2

.

Maximisation step : We simply calculate the partial derivative of the log-likelihood. It comes:

γinit
0

(iter+1)
= S1(y, z(iter)) ; γescap

0

(iter+1)
= S2(y, z(iter)) ; γfin

0

(iter+1)
= S3(y, z(iter))

tR
(iter+1)

= S4(y, z(iter)) ; t1
(iter+1)

= S5(y, z(iter))

and

Σ(iter+1) =
nS6(y, z(iter)) +mΣV

n+mΣ
; σ2(iter+1)

=
kS7(y, z(iter)) +mσv

2

k +mσ
.

In particular, the upgraded variances are barycenters between the corresponding sufficient statistics
and the priors. Finally, given an adapted sampler (the Symetric Random Walk Hastings-Metropolis
within Gibbs Sampler for instance) and the following the sequence (εiter)iter>0

∀ iter > 1, εiter =

{
1 if iter > Nburnin
(iter− Nburnin)−0.65 else .

our algorithm writes:
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Algorithm 1: Overview of the SAEM for the Piecewise-Logistic model.

Input: θ∗ =
(
γinit ∗

0 , γescap ∗
0 , γfin ∗

0 , tR
∗, t1

∗,Σ∗, σ∗
)

, (V,mΣ), (v,mσ), maxIter, Nburnin.

Output: θ =
(
γinit

0 , γescap
0 , γfin

0 , tR, t1,Σ, σ
)

.

1 # Initialization: θ =
(
γinit

0 , γescap
0 , γfin

0 , tR, t1,Σ, σ
)
← θ∗ ; S ← 0 ; (εiter)iter>0 ;

2 zpop ← (γinit ∗
0 , γescap ∗

0 , γfin ∗
0 , tR

∗, t1
∗, ) ; (Pi)i ← 0 ;

3 for iter = 1 to maxIter do
4 # Simulation: (γinit

0 , γescap
0 , γfin

0 , tR, t1, (Pi)i)← sampler(γinit
0 , γescap

0 , γfin
0 , tR, t1, (Pi)i) ;

5 # Stochastic Approximation: S1 ← S1 + εiter
(
γinit

0 − S1

)
;

S2 ← S2 + εiter
(
γescap

0 − S2

)
;

6 S3 ← S3 + εiter
(
γfin

0 − S3

)
; S4 ← S4 + εiter (tR − S4) ;

S5 ← S5 + εiter (t1 − S5) ;
7 S6 ← S6 + εiter

(
1
n

∑
i
tPiPi − S6

)
;

8 S7 ← S7 + εiter

(
1
k

∑n
i=1

∑ki
j=1 ( yi,j − γi(ti,j) )

2 − S7

)
;

9 # Maximization: γinit
0 ← S1 ; γescap

0 ← S2 ; γfin
0 ← S3 ; tR ← S4 ; t1 ← S5 ;

10 Σ← nS6+mΣV
n+mΣ

; σ ←
√

kS7+mσv2

k+mσ
;

11 end

2 Proof of the existence of the Maximum a Posteriori

Theorem 1 (Existence of the MAP). Given the piecewise-logistic model and the choice of
probability distributions for the parameters and latent variables of the model, for any dataset
(ti,j , yi,j)i∈J1,nK, j∈J1,kiK, there exists θ̂MAP ∈ argmax

θ∈Θ
q(θ|y).

The demonstration of the theorem uses the following lemma.
Lemma 1. Given the piecewise-logistic model, the choice of probability distribution for the parame-
ters and latent variables of the model, the posterior θ ∈ Θ 7→ q(θ|y) is continuous on the parameter
space Θ.

Proof. Let Z denote the space of latent variables in the piecewise-logistic model:

Z =
{

(zpop, (zi)16i6n) | zpop ∈ R5, ∀i ∈ J1, nK, zi ∈ Rp
}

Using Bayes rule, for all θ ∈ Θ, q(θ|y) = 1
q(y)

(∫
Z q(y|z, θ) q(z|θ) dz

)
qprior(θ). The density

function θ 7→ qprior(θ) is trivially continuous on Θ as a product of continuous functions. Likewise,
for all z ∈ Z , θ 7→ q(y|z, θ) q(z|θ) is continuous. Moreover, for all z ∈ Z and θ ∈ Θ,

q(y|z, θ) =
1

(σ
√

2π)k
exp

(
− 1

σ2

n∑
i=1

ki∑
j=1

(yi,j − γi(ti,j))2

)
and so, for all z ∈ Z and θ ∈ Θ, q(y|z, θ) q(z|θ) 6 1

(σ
√

2π)k
q(z|θ) which is positive and integrable

as a probability distribution function. As a consequence, z 7→ q(y|z, θ) q(z|θ) is integrable – and
positive – on Z for all θ ∈ Θ and θ 7→ q(y|θ) is continuous.

Proof of theorem 1. Given the result of the lemma 1 and considering the Alexandrov one-point
compactification Θ = Θ ∪ {∞}, it suffices to prove that limθ→∞ log q(θ|y) = −∞. We keep the
notation of the previous proof and proceed similarly. In particular, for all θ ∈ Θ,

log q(θ|y) 6 − log q(y)− k log(
√

2π)− k log(σ) + log qprior(θ) .
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By computing the prior distribution qprior, we remark that there exist C which does not depend on
the parameter θ such as

log q(θ|y) 6 C(y)− (k +mσ) log(σ)− mΣ

2
log(|Σ|)− mΣ

2
tr
(
V Σ−1

)
− mσ

2

( v
σ

)2

Let µ(V ) denote the smallest eigenvalue of V and ρ(Σ−1) the largest one of Σ−1, which is also its
operator norm. We know that

〈
Σ
∣∣ V 〉

F
> µ(V )ρ(Σ−1) and log(|Σ−1|) 6 p log

(
‖Σ−1‖

)
so that

−mΣ

2
tr
(
V Σ−1

)
+
mΣ

2
log(|Σ−1|) 6

mΣ

2

[
−µ(V ) ‖Σ−1‖ + p log

(
‖Σ−1‖

) ]
and

lim
‖Σ‖+‖Σ−1‖→+∞

{
− mΣ

2
tr
(
V Σ−1

)
+
mΣ

2
log(|Σ−1|)

}
= −∞ .

Likewise,

lim
σ+σ−1→+∞

{
− (k +mσ) log(σ)− mσ

2

( v
σ

)2
}

= −∞

hence the result.

We have detailed the computation in the previous proof in order to emphasize the necessity of prior
distribution on the variances Σ and σ to have the existence of the maximum a posteriori.
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