
HAL Id: hal-01645730
https://hal.science/hal-01645730v1

Submitted on 8 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrability and Black-Hole Microstate Geometries
Iosif Bena, David Turton, Robert Walker, Nicholas P. Warner

To cite this version:
Iosif Bena, David Turton, Robert Walker, Nicholas P. Warner. Integrability and Black-Hole Microstate
Geometries. Journal of High Energy Physics, 2017, 11, pp.021. �10.1007/JHEP11(2017)021�. �hal-
01645730�

https://hal.science/hal-01645730v1
https://hal.archives-ouvertes.fr


IPHT-T17/134

Integrability and Black-Hole
Microstate Geometries

Iosif Bena1, David Turton1, Robert Walker2 and Nicholas P. Warner2,3

1 Institut de Physique Théorique,
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Abstract

We examine some recently-constructed families of asymptotically-AdS3 × S3
supergravity solutions that have the same charges and mass as supersym-
metric D1-D5-P black holes, but that cap off smoothly with no horizon.
These solutions, known as superstrata, are quite complicated, however we
show that, for an infinite family of solutions, the null geodesic problem is
completely integrable, due to the existence of a non-trivial conformal Killing
tensor that provides a quadratic conservation law for null geodesics. This
implies that the massless scalar wave equation is separable. For another infi-
nite family of solutions, we find that there is a non-trivial conformal Killing
tensor only when the left-moving angular momentum of the massless scalar
is zero. We also show that, for both these families, the metric degrees of
freedom have the form they would take if they arose from a consistent trun-
cation on S3 down to a (2 + 1)-dimensional space-time. We discuss some of
the broader consequences of these special properties for the physics of these
black-hole microstate geometries.
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1 Introduction

The last year has seen a significant breakthrough in the construction of microstate geometries [1,2].

In particular, microstate geometries corresponding to five-dimensional, three-charge, supersym-

metric black holes with arbitrarily small angular momenta have been constructed. These solutions

are horizonless and smooth and have an arbitrarily-long BTZ-like throat that interpolates between

an AdS3×S3 asymptotic region and a long very-near-horizon AdS2 region. Deep inside the AdS2

region, the throat caps off smoothly just above where the black-hole horizon would be [1].

In the D1-D5-P frame these microstate geometries, known as “superstrata” [3, 4], have been

proposed as holographic duals of specific families of pure states of the D1-D5 CFT, involving

particular left-moving momentum-carrying excitations [1]1, with charges in the regime of param-

eters in which a large BPS black hole exists. Hence these solutions correspond to microstates of a

black hole with a macroscopic horizon. The momentum excitations may be thought of as creating

the long AdS2 black-hole-like throat; in the full solution these momentum excitations are located

deep inside that throat, and support its macroscopic size. As one descends the AdS2 throat, to

an excellent approximation it is almost identical to a black hole throat until near the bottom,

where one encounters the momentum excitations, before the geometry caps off smoothly.

Given that we have a holographic understanding of these solutions, and that the proposed dual

CFT states live in the same ensemble as the states that give rise to the black hole entropy, it is

important to identify the physical consequences of the fact that these solutions lack horizons. One

expects the classical black hole solution to give a thermodynamic coarse-grained description of

the physics, and for the bulk description of typical black hole microstates to give the correct fine-

grained description of the physics. For simple physical processes, typical states should reproduce

the thermodynamic coarse-grained physics (see e.g. [5, 6]), and should also give rise to novel

physics where the thermodynamic description breaks down. Hence, we would like to understand

1A subset of these microstate geometries can be mapped to excitations of the MSW string that carry momentum
and angular momentum, via a sequence of solution-generating transformations and string dualities [2].
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how, for example, horizonless geometries scatter and absorb incoming particles, and how this

differs from the classical black hole result. The states we will study are still somewhat atypical,

and will have interesting differences from the corresponding classical black hole; we hope the

present study will inform future studies of progressively more typical microstates.

Superstratum solutions are parameterized by arbitrary functions of (at least) two variables [4].

Generic superstratum solutions depend on all but one of the coordinates in six dimensions, and

hence may appear complicated and somewhat intimidating to the uninitiated. However, in this

paper we will show that two particular asymptotically-AdS3×S3 families, each parameterized by

one positive integer, have much simpler physics than may have been expected. One of these fam-

ilies, which we will call the (1, 0, n) family, has a separable wave equation and a conformal Killing

tensor2. This implies that the equations for null geodesics in these geometries are completely

integrable: there is a complete set of conserved quantities, that are linear or quadratic in veloci-

ties. Related work on geodesic integrability in (two-charge) black hole microstate geometries and

D-brane metrics can be found in [7, 8].

We will also show that the metrics of the (1, 0, n) family, and of another family that we will

call the (2, 1, n) family, can be re-written in a form that they would take if they arose from

consistent truncations on S3 to (2 + 1)-dimensions. By this, we mean the following: we can write

each metric in terms of a (deformed) S3 fibration over a three-dimensional base, K, where the

metric on K depends only on the coordinates on K. Moreover, the fibration and warp factors

conform to the standard KK Ansatz for vector fields and Einstein gravity on K.

In this paper we will restrict our attention to the metric degrees of freedom, and we postpone

a full analysis of the existence, or otherwise, of a complete consistent truncation to future work.

Such an investigation would require the inclusion of the six-dimensional tensor gauge fields in the

consistent truncation Ansatz, building upon the results of [9,10] to include more six-dimensional

tensor multiplets. The purpose of the present work is to elucidate the metric structure and how

it takes the form it would take if it came from a consistent truncation, since this is a remarkably

strong constraint upon its structure. The metrics of the (1, 0, n) and (2, 1, n) families also have

several isometries, such that the reduced metric on K, and the KK fields of the fibration, depend

only on one coordinate (which asymptotically becomes the radial coordinate of the AdS3). Thus,

the analysis of these metrics can, in principle, be carried out entirely using three-dimensional

gravity coupled to vector fields.

Unlike in the (1, 0, n) family, the wave equation is not generically separable in the (2, 1, n)

family, and the general geodesic problem does not appear to be completely integrable. However,

these microstate geometries come very close to having these properties: For waves or geodesics

that have zero SU(2)L angular momentum on the S3, one does have separability of the wave

equation and complete integrability of the null geodesic equations.

As we will discuss, complete integrability of geodesics may be both a blessing and a curse.

In particular, completely integrable systems have highly restricted spectra and limited scattering

behavior, and thus may not reveal some of the interesting physics of generic microstate geometries.

The complete set of conservation laws lead us to suspect that the (1, 0, n) geometries will quickly

eject infalling particles, and hence will not reproduce the expected black-hole thermodynamic

2This provides a quadratic conserved quantity for null geodesics.
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behavior. On the other hand, the absence of integrability in the (2, 1, n) family will allow for

more complicated dynamics, and possibly the trapping of incoming particles, which is a step

closer to the behavior one expects from typical microstates. In a sense, the (2, 1, n) family

provides an ideal setting for investigating more complicated dynamics: one can probe the behavior

of the non-integrable geodesics by doing perturbation theory for waves and geodesics about the

integrable (jL = 0) ones. Thus one can probe quite non-trivial scattering properties in a controlled

expansion.

There are three recent, seemingly unrelated, lines of investigation to which our results should

be relevant. The first is an argument that supersymmetric microstate geometries should exhibit a

non-linear instability [11] (see also [12–14]). This proposed non-linear instability is related to the

existence of stably trapped null geodesics deep inside the core of microstate geometries, however

so far this has only been explicitly analyzed for very symmetric geometries, none of which have

charges and angular momenta corresponding to a black hole with a large horizon area. Our results

should help elucidate whether or not this proposed non-linear instability is an artifact of very

symmetric microstate geometries.

The second line of investigation is the late-time behavior of correlation functions in the D1-D5

CFT, and its connection to quantum chaos [15]. One expects chaotic systems to exhibit late-time

fluctuations that come from their underlying microscopic description, and that are not visible in

the thermodynamic approximation. Hence, one expects typical bulk microstates to give rise to

late-time fluctuations that are not visible in the classical black-hole solution. For a set of two-

charge black hole microstates these fluctuations have been computed in the dual CFT [16, 17],

but the corresponding computations in the bulk are beyond the capability of present technology.

We hope that our results will open the way for a new testing ground for these questions.

The third line of investigation is the computation of four-point functions of two heavy and two

light operators; for a few examples, see [18–24]. Such calculations can be done in the CFT and

can be matched to the light-light two-point function computed holographically in the microstate

geometry dual to the heavy state [22, 23]. So far, the bulk calculation has only been done in

microstate geometries that are dual to very special heavy states (a particular set of R-R ground

states and spectral flows thereof [25]), essentially because of the technical difficulty of solving

the wave equation. The integrability of geodesics and the separability of wave operators in the

infinite families of microstate geometries we consider should simplify the calculation of the two-

point functions and vastly enhance the number of two-heavy-two-light four-point functions that

can be computed in the bulk. Moreover, since there is an explicit proposal for the CFT states

dual to the microstate geometries we study [1], these four-point functions could be compared to

those computed in the CFT. Furthermore, since our geometries can have long black-hole-like AdS2

throats and closely resemble black holes far from the cap region, these four-point functions should

shed light on how unitarity is restored when replacing the black hole horizon with a fuzzball.

This paper is organized as follows. In Section 2 we describe in more detail the special properties

of the metrics in the (1, 0, n) and (2, 1, n) families of microstate geometries. In Section 3 we give a

brief description of these families of BPS solutions. In Section 4 we give the details of the metrics

of the (1, 0, n) and (2, 1, n) families, separate variables in the wave equation, and describe the

conformal Killing tensor. Finally, in Section 5 we discuss the important features of the geometries

described in this paper, and further discuss the implications of our results.
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2 Dimensional reduction, separability and Killing tensors

We work in Type IIB string theory on M4,1 × S1 ×M, where M is either T4 or K3. The circle,

S1, is taken to be macroscopic and is parameterized by the coordinate y, with radius Ry:

y ∼ y + 2πRy . (2.1)

We consider a bound state of D1-branes wrapped on S1, D5-branes wrapped on S1 ×M, and

momentum P along S1. The internal manifold, M, is taken to be microscopic, and we assume

that all fields are independent of M. Upon dimensional reduction on M, one obtains a theory

whose low-energy limit is six-dimensionalN =1 supergravity coupled to two (anti-self-dual) tensor

multiplets. This theory contains all fields expected from the study of D1-D5-P string world-sheet

amplitudes [26]. The system of equations describing all 1
8 -BPS solutions of this theory was found

in [27]; it is a generalization of the system discussed in [28, 29]. Most importantly, this BPS

system can be greatly simplified, and largely linearized [30]. For supersymmetric solutions the

six-dimensional metric is well known to take the form [28]:

ds26 = − 2√
P

(dv + β)
(
du+ ω + 1

2 F (dv + β)
)

+
√
P ds24(B) ≡ gMNdz

MdzN , (2.2)

where we take

u = 1√
2
(t− y) , v = 1√

2
(t+ y) . (2.3)

Supersymmetry requires that all fields be independent of u, but generic supersymmetric solutions

can depend upon all the other coordinates.

Upon taking the AdS/CFT decoupling limit [31], one obtains asymptotically AdS3 × S3 so-

lutions. We will work exclusively in the decoupling limit throughout this paper. We shall study

solutions whose tensor fields have explicit dependence on v, as well as on the S3. These solutions

are known as “superstrata” [3, 4, 32, 1, 2]. In the solutions we study, the metric, ds24, on the

four-dimensional base, B, is flat and we write it in the standard bipolar form:

ds24 ≡ g̃abdz
adzb = Σ

(
dr2

(r2 + a2)
+ dθ2

)
+ (r2 + a2) sin2 θ dϕ2

1 + r2 cos2 θ dϕ2
2 , (2.4)

where

Σ ≡ (r2 + a2 cos2 θ) . (2.5)

At infinity, the sets of coordinates (u, v, r) and (θ, ϕ1, ϕ2) parametrize AdS3 and S3 respectively.

The superstratum solutions that we consider were constructed in [1], and they have the property

that the tensor fields depend explicitly on a single linear combination of v, ϕ1 and ϕ2. We thus

refer to them as single-mode superstrata. In these asymptotically AdS3×S3 solutions, this phase-

dependence cancels in the energy-momentum tensor, and hence in the metric3. Thus the metric

has isometries not just along along u (as required by supersymmetry) but also along v, ϕ1 and

ϕ2. In this paper we shall exploit these enhanced symmetries and examine the remaining, highly

non-trivial dependence on (r, θ).

3Upon completing these solutions to asymptotically R1,4×S1 solutions, the metric depends explicitly on the
linear combination of v, ϕ1 and ϕ2 [33].
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Our first goal is to re-write the general six-dimensional metric as a fibration of the com-

pact three-manifold, S, described by (y1, y2, y3) ≡ (θ, ϕ1, ϕ2), over a base, K, parametrized by

(x1, x2, x3) ≡ (u, v, r). Specifically, we re-cast (2.2) in the following form:

ds26 ≡ gMNdz
MdzN = Ω−2 ĝµνdx

µdxν + hij(dy
i +Bi

µdx
µ)(dyj +Bj

νdx
ν) , (2.6)

where ĝµν and hij are viewed as metrics on K and S respectively, and where Ω is defined to be

the volume of S divided by the volume of the S3 to which S limits at infinity:

Ω ≡
√
det(hij)√

det(hij)|r→∞
. (2.7)

In a general BPS solution, ĝµν , hij , B
i
µ and Ω can depend on all the coordinates, except u.

It is convenient to define the metrics:

ds21,2 ≡ ĝµνdx
µdxν , ds23 ≡ hijdy

idyj . (2.8)

At infinity, ds21,2 is asymptotic to the metric on AdS3, and ds23 is asymptotic to the metric on S3.
It is also useful to observe that one can invert the form of gMN in (2.6) explicitly:

gMN =

Ω−2 ĝµν + hkmB
k
µB

m
ν Bk

µ hkj

hik B
k
ν hij

 , gMN = Ω2

 ĝµν −ĝµρBj
ρ

−Bi
ρĝ
ρν Ω−2hij + ĝρσBi

ρB
j
σ

 .

(2.9)

In particular, we note that the inverse metric on the internal space, S, is a non-trivial combination

of the vector fields, Bi
µ, and the metrics ĝµν and hij .

The warp factor, Ω−2, in front of ds21,2 in (2.6) is precisely the factor needed for the dimensional

reduction from six dimensions down to the three-dimensional space time, K. To be more specific,

this is the warp factor needed to reduce the six-dimensional Einstein action down to the three-

dimensional Einstein action for ĝµν on K. In general, attempting to perform such a dimensional

reduction is of course not very useful, because ĝµν in (2.6) will typically depend upon the yi.

However, the (1, 0, n) and (2, 1, n) single-mode families of BPS geometries both have the

property that:

(i) The metric ĝµν is only a function of r.

Moreover, the (1, 0, n) family also has the following remarkable feature:

(ii) On ds26, the massless wave equation and the Hamilton-Jacobi equation for null geodesics

are separable. The “massive” wave equation on ds26 is also separable if the mass term is

induced from a mass as seen by the the (2+1)-dimensional metric ds21,2.

Finally, it is elementary to verify that the following is true for all metrics of the form (2.2):

(iii) If one computes
√
−g gMN for the six-dimensional metric, then the components of this along

the base defined by (r, θ, ϕ1, ϕ2) are identical to the components of
√
−g̃ g̃ab, where g̃ab is

the metric defined in (2.4).
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Property (i), combined with equations (2.6) and (2.7), means that the complete six-

dimensional metric has the form it would take if it arose from a consistent truncation to three-

dimensional physics on K. This three-dimensional geometry is furthermore determined entirely

by functions of r alone.

Property (ii), the separability of the massless wave equation and of the massless Hamilton-

Jacobi equation for null geodesics, implies the existence of a “hidden symmetry”: there is another

quadratic conserved quantity for the null geodesic equation [34, 35]4. That is, in addition to the

usual conserved quantities along geodesics, there is a conformal Killing tensor, ξMN , for which

one has:
D

Dλ

(
ξMN

dzM

dλ

dzN

dλ

)
= F (λ)

(
gMN

dzM

dλ

dzN

dλ

)
, (2.10)

for some function F (λ) along each geodesic. In particular, the right-hand side vanishes for null

geodesics. Since the metrics we are considering have four Killing vectors, a conformal Killing

tensor and the usual conserved quadratic form from the metric, the null geodesic problem is com-

pletely integrable: It has four conserved momenta that are linear in velocities and two quadratic

“energies,” one involving vr ≡ dr
dλ alone and the other involving vθ ≡ dθ

dλ alone.

Properties (ii) and (iii) together mean that not only is the massless wave equation separable,

but its separability properties are precisely those of the flat-space base metric written in spherical

bipolars (2.4). In particular, the angular modes on S are elementary: they are simply the standard

spherical harmonics on a round S3! Therefore the solutions of the massless wave equation have

an expansion in terms of functions of r alone, multiplied by Jacobi polynomials in cos2 θ. Thus,

most of the interesting physics is encoded in the radial equation and in the functions of r alone

that define ĝµν .

Finally, property (iii) suggests a rather interesting conjecture arising from the general lore of

consistent truncation of supergravity theories compactified on spheres. Typically, purely internal,

higher-dimensional excitations reduce to scalar fields in the lower-dimensional theory. Conversely,

one of the most complicated aspects of obtaining “uplift” formulae for consistent truncations is

the way in which lower-dimensional scalars encode the details of the higher-dimensional fields.

For maximally supersymmetric theories on spheres, there is now a large literature on this, but one

of the earliest breakthroughs were the metric uplift formulae [37, 9, 38, 10]. These formulae gave

complete and explicit expressions, in terms of the lower-dimensional scalar fields, for the inverse

metric projected onto the internal manifold. One of the simple consequences of this formula is

that if the inverse metric retains its original round form, then it means that the lower-dimensional

scalars are essentially trivial.

This piece of lore suggests that in the solutions we are considering, there are no fundamental,

lower-dimensional scalar excitations arising from the six-dimensional metric: All the internal

physics is encoded in the vector multiplets that descend from the Bi
µ.

There are several caveats that come with this comment. First, we have not analyzed the

tensor gauge fields to determine whether or not a complete, consistent truncation containing the

above solutions exists. Since these tensor fields have non-trivial dependence on the S3 directions,

they will descend to massive fields in three dimensions.

4See also the recent review on geodesic integrability in black-hole backgrounds [36].
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Moreover, while important results have been obtained in [10], the general consistent truncation

formulae have not been established for the S3 compactifications considered here. In addition, the

formulae that have been established in other reductions are based on massless vector fields that

descend through Killing vectors on the sphere. For the tensor fields and for some of the metric

components in the (2, 1, n) family, we will need to allow more general classes of fields, Bi
µ, in

which the internal components involve higher harmonics, yielding massive vector fields on K. As

we shall comment on below, it is not clear how restricted an ansatz might be necessary in order

to obtain a consistent truncation.

It is also important to note that, from the three-dimensional perspective, Abelian vector fields

can trivially be re-written as scalars. On the other hand, there are subtleties in doing this for non-

Abelian fields and with off-shell supermultiplet structure (see, for example, [39]) and so the idea

that there are only excitations of three-dimensional vector fields, descending from metric modes

on S3, may be given some more precise formulation. The bottom line is that the supergravity lore

on consistent sphere truncations suggests that property (iii) might imply that the only degrees

of freedom that are being activated in our solutions are the vector fields encoded in Bi
µ and

that there are no other independent shape modes or lower-dimensional scalars coming from the

six-dimensional metric.

3 Single-mode superstrata

In this section we review the construction of superstrata, before focusing on the set of such

solutions that involve a single-mode excitation. This will provide some background and allow us

to set up notation to be used when we present our main results in the next section.

3.1 D1-D5-P Superstrata

The superstrata constructed to date have been obtained [4, 32, 1] by adding momentum waves

to the background of the circular supertube [40–44]. The starting point is therefore to take the

vector field β to be that of the standard magnetic flux of the supertube:

β =
Ry a

2

√
2 Σ

(sin2 θ dϕ1 − cos2 θ dϕ2) , Θ(3) ≡ dβ . (3.1)

We use the following frames on the four dimensional base, B, with metric (2.4):

e1 =
Σ1/2

(r2 + a2)1/2
dr , e2 = Σ1/2 dθ , e3 = (r2+a2)1/2 sin θ dϕ1 , e4 = r cos θ dϕ2 , (3.2)

and introduce a standard basis for the self-dual two forms:

Ω(1) ≡ dr ∧ dθ
(r2 + a2) cos θ

+
r sin θ

Σ
dϕ1 ∧ dϕ2 =

1

Σ (r2 + a2)
1
2 cos θ

(e1 ∧ e2 + e3 ∧ e4) ,

Ω(2) ≡ r

r2 + a2
dr ∧ dϕ2 + tan θ dθ ∧ dϕ1 =

1

Σ
1
2 (r2 + a2)

1
2 cos θ

(e1 ∧ e4 + e2 ∧ e3) ,

Ω(3) ≡ dr ∧ dϕ1

r
− cot θ dθ ∧ dϕ2 =

1

Σ
1
2 r sin θ

(e1 ∧ e3 − e2 ∧ e4) .

(3.3)
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One may then write:

Θ(3) = dβ =

√
2Ry a

2

Σ2
((r2 + a2) cos2 θΩ(2) − r2 sin2 θΩ(3)) . (3.4)

In particular, Θ(3) is self-dual.

The first part of the solution is defined by three more potential functions, ZI , and magnetic

2-forms, Θ(I), I = 1, 2, 4, that are required to satisfy the “first layer” of the linear system of

equations governing all supersymmetric solutions of this theory:

∗4 D(∂vZ1) = DΘ(2) , D ∗4 DZ1 = −Θ(2) ∧ dβ , Θ(2) = ∗4Θ(2) , (3.5)

∗4 D(∂vZ2) = DΘ(1) , D ∗4 DZ2 = −Θ(1) ∧ dβ , Θ(1) = ∗4Θ(1) , (3.6)

∗4 D(∂vZ4) = DΘ(4) , D ∗4 DZ4 = −Θ(4) ∧ dβ , Θ(4) = ∗4Θ(4) . (3.7)

The operator, D, acting on a p-form with legs on the four-dimensional base (and possibly de-

pending on v), is defined by:

DΦ ≡ d(4)Φ − β ∧ ∂vΦ , (3.8)

where d(4) denotes the exterior derivative on B. The warp factor P in (2.2) is then determined

by a quadratic form in the electric potentials:

P = Z1 Z2 − Z2
4 . (3.9)

The remaining metric quantities are determined by the “second layer” of BPS equations:

Dω + ∗4Dω + F dβ = Z1Θ
(1) + Z2Θ

(2) − 2Z4Θ
(4) ,

∗4D ∗4
(

(∂vω)− 1
2 DF

)
= ∂2v(Z1Z2 − Z2

4 )− ((∂vZ1)(∂vZ2)− (∂vZ4)
2)

− 1
2 ∗4

(
Θ(1) ∧Θ(2) − Θ(4) ∧Θ(4)

)
.

(3.10)

We will study solutions to the BPS equations with mode dependence of the form:

χk,m,n ≡
√
2

Ry
(m+ n) v + (k −m)ϕ1 − mϕ2 . (3.11)

We also define:

∆k,m,n ≡
ak rn

(r2 + a2)
k+n
2

sink−m θ cosm θ . (3.12)

The smoothness of the solutions requires k to be a positive integer and m, n to be non-negative

integers with m ≤ k. This restriction has a clear holographic interpretation in the description of

the dual CFT states [4, 32,1].

The most general solution to the first layer is known for the single-bubble solutions that are

built upon the circular supertube [45–47, 4, 1]. This family of solutions can be represented by a

superposition of the following single-mode solutions for the pair (Z4,Θ
(4)):

Z4 = b4
Ry
Σ

∆k,m,n cosχk,m,n ,

Θ(4) = −
√

2 b4∆k,m,n

[(
(m+ n) r sin θ + n

(m
k
− 1
) Σ

r sin θ

)
sinχk,m,n Ω(1)

+ cosχk,m,n

(
m
(n
k

+ 1
)

Ω(2) + n
(m
k
− 1
)

Ω(3)
)]
,

(3.13)
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with similar expressions for (Z1,Θ
(2)) and (Z2,Θ

(1)), with a priori independent coefficients.

The general families of regular solutions for the second layer have not been classified. Classes of

single-mode solutions are known [4,32,1,2] and some multi-mode solutions have been obtained [4].

Here we will focus entirely on the families of single-mode solutions obtained in [1] and further

studied in [2].

3.2 Coiffured single-mode solutions

In the maximally-rotating supertube solution, the data of the first layer of BPS equations takes

the following simple form:

Z1 =
Q1

Σ
, Z2 =

Q5

Σ
, Z4 = 0 , Θ(I) = 0 , I = 1, 2, 4 . (3.14)

To this solution we add a single fluctuating mode by taking Z4, Θ4 to be given by (3.13) and by

taking:

Z1 =
Q1

Σ

(
1 +

b24
2a2 + b2

∆2k,2m,2n cosχ2k,2m,2n

)
, Z2 =

Q5

Σ
, Θ(1) = 0 ,

Θ(2) = − b24
Ry√
2Q5

∆2k,2m,2n

[(
2(m+ n) r sin θ + 2n

(m
k
− 1
) Σ

r sin θ

)
sinχ2k,2m,2n Ω(1)

+ cosχ2k,2m,2n

(
2m
(n
k

+ 1
)

Ω(2) + 2n
(m
k
− 1
)

Ω(3)
)]
.

(3.15)

Observe that the Fourier frequencies appearing in (Z1,Θ
(2)) are twice those appearing in (Z4,Θ

(4))

and that the Fourier coefficients of these modes have been tuned in terms of the square of the

Fourier coefficients of (Z4,Θ
(4)). This is an example of the procedure known as “coiffuring”

[48, 49]. The problem is that generic fluctuations for the solutions to the first layer of BPS

equations typically lead to singular solutions in the second layer. This may be related to the

non-linear instabilities that have been suggested in [11–14]; this is currently under investigation.

Coiffuring solves this problem by tuning other excitations to remove the singularities in the

solutions to the second layer of BPS equations. For a single mode the result is particularly

simple: All dependence on (v, ϕ1, ϕ2) cancels in the sources for the second layer of BPS equations

and in the warp factor, P. As a result, for a single mode, the entire metric (2.2) is independent

of (v, ϕ1, ϕ2). All that remains of the fluctuations is the “RMS values” proportional to b24.

The warp factor P now reduces to:

P =
Q1Q5

Σ2

(
1− b24

2a2 + b2
∆2k,2m,2n

)
. (3.16)

It was shown in [1] that this is positive definite for all r and θ.

Next, one must solve the second layer of BPS equations. Since the coiffured sources are

independent of (v, ϕ1, ϕ2), this means that we can use the following Ansatz:

ω ≡ ω1 dϕ1 + ω2 dϕ2 = ω0 + ω̂1(r, θ) dϕ1 + ω̂2(r, θ) dϕ2 , F = F(r, θ) , (3.17)

where ω0 the angular momentum vector of the round supertube:

ω0 ≡
Ry a

2

√
2 Σ

(sin2 θ dϕ1 + cos2 θ dϕ2) , (3.18)
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and where ω̂1, ω̂2 and F are determined by solving (3.10), with the sources on the right-hand side

given by the fluctuating solution to the first layer of BPS equations described above.

The general family of (k,m, n) single-mode superstratum solution was obtained in [1]. Regu-

larity at r = 0, θ = π/2 (the “supertube regularity” condition) imposes the constraint:

Q1Q5

R2
y

= a2 +
b2

2
, b2 ≡

[(
k

m

)(
k + n− 1

n

)]−1
b24 . (3.19)

The explicit solutions for (k,m, n) = (1, 0, n) and (k,m, n) = (2, 1, n) were studied in detail in [1]

and [2] respectively, and we will exhibit them momentarily.

In [1] it was shown that the complete (k,m, n) solution has the following values of the conserved

five-dimensional angular momenta j, j̃, and y-momentum nP:

j =
N
2

(
a2 +

m

k
b2
)
, j̃ =

N
2
a2, nP =

N
2

m+ n

k
b2 , (3.20)

where N ≡ n1n5R
2
y/(Q1Q5), and n1, n5 are the numbers of D1 and D5 branes. It was proposed

in [1] that these solutions are holographic duals of coherent superpositions of CFT states of the

form:

(|++〉1)N1

(
(J+
−1)

m

m!

(L−1 − J3
−1)

n

n!
|00〉k

)Nk,m,n
, (3.21)

for all values of N1 such that N1 + kNk,m,n = N . For an explanation of the above notation,

see [1]. The values of the conserved charges imply that, within the coherent superposition, the

average numbers of |++〉1 and |00〉k strands are given by Na2 and N b2/(2k) respectively.

4 The special families of superstrata metrics

We now examine the details of the solutions for which the parameters (k,m, n) take the values

(1, 0, n), (2, 1, n), and (2, 0, n). The solution for (k=2,m=0) is included simply to illustrate that

properties (i) and (ii) do not hold in general, since neither property holds for this solution. We

will therefore not discuss the details of this particular solution beyond writing down the metric,

and we will focus on the other two families.

For k=1, m=0 and general n > 0, the solution to the second layer of BPS equations is [1]:

F = − b
2
4

a2

(
1− r2n

(r2 + a2)n

)
, ω = ω0 +

Ry b
2
4√

2 Σ

(
1− r2n

(r2 + a2)n

)
sin2 θ dϕ1 . (4.1)

For k=2, m=1 and general n > 0, we have [2]5:

F = − b2

a2
+

b24 r
2n

4 (r2 + a2)n+2

(
Σ +

2 r2 (r2 + a2)

(n+ 1) a2

)
,

ω1 =
Ry√
2 Σ

[
(a2 + b2) sin2 θ − b24

2

r2n sin2 θ

(r2 + a2)n+1

(
r2

2 (n+ 1)
+ a2 cos2 θ

)]
,

ω2 =
Ry√
2 Σ

[
a2 cos2 θ +

b24
2

r2(n+1) cos2 θ

(r2 + a2)n+2

(
(r2 + a2)

2 (n+ 1)
+ a2 sin2 θ

)]
.

(4.2)

5To arrive at the following expression we have taken the results from Section 6.1 of [2] and undone the gauge
transformations described in Section 2.2 of that paper. We have thus ensured that (4.1) and (4.2) are solutions in
the conventions of this paper.
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Finally, for k=2, m=0 the solution to the second layer of BPS equations is:

F = − b24
(n+ 1)2 a4

[
na2 − r2

(
1− r2n

(r2 + a2)n

)
+

((
1− r2n

(r2 + a2)n

)
(2r2 + (2n+ 1)a2)− 2na2 − n2a4 r2n

(r2 + a2)n+1

)
sin2 θ

]
,

ω1 =
Ry√
2 Σ

{
a2 sin2 θ +

b24
(n+ 1)2

[
(n+ 1)

(
1− r2n

(r2 + a2)n
− na2 r2n

(r2 + a2)n+1

)
sin2 θ

−
(
r2

a2

(
1− r2n

(r2 + a2)n

)
− n

)
cos2 θ

]
sin2 θ

}
,

ω2 =
Ry√
2 Σ

[
a2 cos2 θ − b24

(n+ 1)2

[
r2

a2

(
1− r2n

(r2 + a2)n

)
− n r2n+2

(r2 + a2)n+1

]
sin2 θ cos2 θ .

(4.3)

Regularity requires that b and b4 are related via the general relation (3.19), which evaluates to:

b2 = b24 for k = 1 and b2 =
b24

2(n+ 1)
for k = 2 . (4.4)

Note that killing off all the non-trivial modes by setting b4 = b = 0 in (4.1)–(4.3) reduces these

expressions to ω0 in (3.18).

4.1 The (1, 0, n) family of solutions

4.1.1 Metric fibration

The value of P in the starting supertube solution is Q1Q5/Σ
2. It is convenient to factor this off

and introduce the quantity:

Λ ≡
√
P Σ√
Q1Q5

=

√
1− a2 b2

(2a2 + b2)

r2n

(r2 + a2)n+1
sin2 θ . (4.5)

The six-dimensional metric, (2.2), can then be re-written as:

ds26 =
√
Q1Q5

Λ

F2(r)

[
F2(r) dr

2

r2 + a2
− 2F1(r)

a2(2a2 + b2)2R2
y

(
dv +

a2 (a4 + (2a2 + b2)r2)

F1(r)
du

)2

+
2 a2 r2 (r2 + a2)F2(r)

F1(r)R2
y

du2
]

(4.6)

+
√
Q1Q5

[
Λ dθ2 +

1

Λ
sin2 θ

(
dϕ1 −

a2

(2a2 + b2)

√
2

Ry
(du+ dv)

)2
+
F2(r)

Λ
cos2 θ

(
dϕ2 +

1

(2a2 + b2)F2(r)

√
2

Ry

[
a2(du− dv)− b2 F0(r)dv

] )2]
,

where the functions, Fi(r), are defined by:

F0(r) ≡ 1− r2n

(r2 + a2)n
, F1(r) ≡ a6 − b2 (2a2 + b2) r2 F0(r) ,

F2(r) ≡ 1− a2 b2

(2a2 + b2)

r2n

(r2 + a2)n+1
.

(4.7)
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From (4.6) it is elementary to evaluate the determinant of the internal metric along S. Re-

calling that (2.7) defines the warp factor required by dimensional reduction, we find:

Ω−2 =
Λ

F2(r)
. (4.8)

In (4.6) we have extracted this warp factor from the first part of the metric and so the metric

terms inside the first set of square brackets yield the metric, ĝµν , on K defined in (2.6). The

resulting three-dimensional metric is, indeed, purely a function of r,

ĝµν dx
µdxν =

√
Q1Q5

[
F2(r) dr

2

r2 + a2
+

2 a2 r2 (r2 + a2)F2(r)

F1(r)R2
y

du2

− 2F1(r)

a2(2a2 + b2)2R2
y

(
dv +

a2 (a4 + (2a2 + b2)r2)

F1(r)
du

)2
]
.

(4.9)

We define the following one-forms on the three-dimensional base, K:

A(1) ≡ − a2

(2a2 + b2)

√
2

Ry
(du+ dv) , A(2) ≡ 1

(2a2 + b2)F2(r)

√
2

Ry
(a2(du− dv)− b2 F0(r)dv) .

(4.10)

We now observe that the off-diagonal components, Bi
µ of the fibration form of the metric (2.6)

can be written as

Bi
µdx

µ = K(1)
i A(1) +K(2)

i A(2) , (4.11)

where K(1)
M = (0, 0, 0, 0, 1, 0) and K(2)

M = (0, 0, 0, 0, 0, 1) are the components of the Killing vectors

∂/∂ϕ1 and ∂/∂ϕ2 respectively. This means that, under dimensional reduction, the vector fields,

A(1) and A(2) are massless electromagnetic potentials on K. Thus, not only is the metric ĝµν
independent of the coordinates on S3, but so are the dynamical components of the metric on S.

In light of Property (iii) and the comments made at the end of Section 2 about the absence of

scalar excitations and shape modes, the dynamics of the six-dimensional metric excitations in

this solution reduces to dynamics of the metric and massless vector fields on K. Of course, one

should recall that in the complete six-dimensional solution, the three-form fields depend upon

v, ϕ1 and ϕ2, and so do not reduce to massless fields in three dimensions. It is, however, still

possible that such tensor gauge modes give rise, in a consistent truncation, to a collection of

massless and massive fields on K. This possibility is currently under investigation.

4.1.2 Geodesics

Since the six-dimensional metric is independent of (u, v, ϕ1, ϕ2), this means that the corresponding

momenta are conserved:

L1 = K(1)M
dzM

dλ
, L2 = K(2)M

dzM

dλ
, P = K(3)M

dzM

dλ
, E = K(4)M

dzM

dλ
, (4.12)

where the K(I) are the Killing vectors: K(1) = ∂
∂ϕ1

, K(2) = ∂
∂ϕ2

, K(3) = ∂
∂v and K(4) = ∂

∂u . In

addition, there is the standard quadratic conserved quantity coming from the metric:

ε ≡ gMN
dzM

dλ

dzN

dλ
. (4.13)
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Figure 1: Plot of F2(r) for a = 1, b = 4 and n = 1, 2, 3, 4. The curve with the largest dip has n = 1 and,
as (4.17) implies, the size of the dip decreases with n.

These conservation laws determine all the velocities except vr ≡ dr
dλ and vθ ≡ dθ

dλ . In principle

(4.13) allows exchange of energy between vr and vθ, and this could generate interesting trapping

of geodesics: as a particle falls in, some of its vr is traded for vθ and thus the particle may lose

radial momentum and be prevented from returning to where it started.

However, at least for null geodesics in the (1, 0, n) family of metrics, there is a hidden sym-

metry: there is an additional conserved quantity, that is quadratic in momenta. The additional

conserved quantity can be found by separating variables in the massless Hamilton-Jacobi equa-

tion, and takes the form:

Ξ ≡ ξMN
dzM

dλ

dzN

dλ
≡ Q1Q5 Λ2 v2θ +

L2
1

sin2 θ
+

L2
2

cos2 θ
. (4.14)

One can verify that for any geodesic one has

d

dλ
Ξ = Ry vθ

(
∂Λ

∂θ

)(
gMN

dzM

dλ

dzN

dλ

)
, (4.15)

which vanishes on null geodesics.

Were it not for the presence of Λ2 in (4.14), this conserved quantity would be the total angular

momentum on the round S3, and the motion on S would be essentially decoupled from that on K.

However, because of the the factor of Λ2, these motions are not decoupled. On the other hand,

the factor of Λ2 only exerts a minor influence on geodesic motion. To see this, first observe that

Λ2|r=0 = 1 , Λ2 → 1 as r →∞ , Λ2|θ=π
2

= F2(r) . (4.16)

In fact Λ2 is very close to 1 for most values of (r, θ), and its maximum deviation from 1 is at θ = π
2

where it is given by F2(r). The function F2(r) is minimized at r = a
√
n, and has a minimum

value of

1 − b2

2a2 + b2
nn

(n+ 1)n+1
>

3

4
. (4.17)

Moreover, as one can see in Fig. 1, the variation from 1 takes place in a short interval around

r = a
√
n. The region around r = a

√
n is also the region where the microstate structure, in the

form of momentum-carrying waves, is concentrated.
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This means that vθ will increase briefly as it passes through r = a
√
n and this can, in turn,

change the value of θ and the value of vr. However, this effect is quite localized and makes little

difference to the asymptotic values or vr and r. A free particle falling in from outside the throat

will bounce off the center and escape the throat. The only geodesics that are affected significantly

by the microstate structure are the ones that are already localized near r = a
√
n.

4.1.3 The wave equation

Consider the six-dimensional scalar wave equation

1√
−det (gMN )

∂

∂zP

(√
−det (gMN ) gPQ

∂

∂zQ
Φ

)
=

M2

√
Q1Q5 Λ

Φ , (4.18)

where the factor of Λ−1 has been included in the “mass term” on the right-hand side for reasons

that will become apparent below.

Consider a generic mode for Φ of the form

Φ = K(r)S(θ) e
i
(√

2
Ry

ωu+
√

2
Ry

pv+q1ϕ1+q2ϕ2

)
. (4.19)

One then finds that the wave equation separates, yielding:

1

r
∂r

(
r(r2 + a2) ∂rK

)
+

(
a2(ω + p+ q1)

2

r2 + a2
− a2(ω − p− q2)2

r2

)
K (4.20)

+
b2ω

(
2a2p+ F0(r)

[
2a2(ω + q1) + b2ω

])
a2 (r2 + a2)

K = (λ+M2)K ,

1

sin θ cos θ
∂θ
(

sin θ cos θ ∂θS
)
−
(

q21
sin2 θ

+
q22

cos2 θ

)
S = −λS , (4.21)

for some eigenvalue λ.

Observe that the second equation (4.21) is the eigenvalue problem for the Laplace operator

on the round S3. The regular modes are therefore given in terms of Jacobi polynomials:

S(θ) = sinq1 θ cosq2 θ P
(q1,q2)
j (cos 2θ) , (4.22)

where

P
(q1,q2)
j (x) =

(q1 + 1)j
j!

2F1

(
− j, 1 + 1

2(`+ q1 + q2); q1 + 1; 1
2(1− x)

)
, (4.23)

and (y)j =
∏j
m=0(y −m) is Pochhammer’s symbol. The quantum numbers (`, j) are defined by

λ = `(`+ 2) , j = 1
2(`− q1 − q2) . (4.24)

For the modes (4.19) to be single-valued and regular, and for P
(q1,q2)
j to be a polynomial, one

must have

q1, q2, `, j ∈ Z , q1, q2 ≥ 0 , ` ≡ q1 + q2 mod 2 . (4.25)

The radial equation is considerably more involved, because of the presence of terms propor-

tional to b2, which encode the massless scattering from the detailed structure of the superstratum.
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Note that setting r = a sinh ξ turns the differential operator part of (4.20) to a more canonical

form:
1

sinh ξ cosh ξ
∂ξ
(

sinh ξ cosh ξ ∂ξK
)
. (4.26)

Note also that in the limit b → 0, the background becomes the decoupling limit of the circular

supertube solution, and the radial equation simply becomes the hypergeometric equation [50]. It

has been known for some time that the massless scalar wave equation is separable in the circular

supertube solution [50], as well as in solutions obtained by spectral flow thereof [51, 25, 52], and

related black hole solutions [53]. The (1, 0, n) family of single-mode superstrata is considerably

more complicated than these solutions, and so it is quite remarkable that separability is preserved.

Finally, note that the mass term in (4.18) has descended to a mass term in three dimensions,

as is evident in (4.20). Indeed the total three-dimensional mass of the scalar field is the sum of

the explicit mass, M2, and the eigenvalue, λ.

4.2 The (2, 1, n) family of solutions

We now analyze the (2, 1, n) family of solutions. The warp factor, Λ, now takes the form:

Λ =

√
1− 2(n+ 1) a4 b2

(2a2 + b2)

r2n

(r2 + a2)n+2
sin2 θ cos2 θ . (4.27)

Note that, compared to the corresponding warp factor in the (1, 0, n) solutions, (4.5), the warp

factor involves a higher harmonic mode with a stronger fall-off at infinity. This means that the

non-trivial profile in Λ is even smaller than the profiles depicted in Fig. 1. The profile is sharply

peaked around

r =

√
n

2
a . (4.28)

We introduce the coordinates

ψ = ϕ1 + ϕ2 , φ = ϕ2 − ϕ1 , (4.29)

and the functions, Hi(r):

H0(r) ≡ 1− r2n+2

(r2 + a2)n+1
, H1(r) ≡ 1 +

a2 b2

2 (2a2 + b2)

r2n

(r2 + a2)n+1
,

H2(r) ≡ 1− a4 b2 (n+ 1)

2 (2a2 + b2)

r2n

(r2 + a2)n+2
.

(4.30)

In terms of these, the six-dimensional metric, (2.2), can be re-written as:

ds26 =
√
Q1Q5 Λ

[
dr2

r2 + a2
+

2 r2 (r2 + a2)

a4R2
y

dv2

− 2

a4 (2a2 + b2)2R2
yH2(r)

(
a4 (du+ dv) + (2a2 + b2) r2H1(r) dv

)2]
+
√
Q1Q5

[
Λ dθ2 +

H2(r)

4Λ

(
dψ + Â(ψ)

)2
+
H2(r)

4Λ
cos 2θ

(
dψ + Â(ψ)

)(
dφ+ Â(φ)

)
+

cos2(2θ)H2(r) + sin2(2θ)

4Λ

(
dφ+ Â(φ)

)2]
,

(4.31)

16



where the vector fields Â(ψ) and Â(φ) are given by:

Â(ψ) =
2
√

2

Ry

[
−1

2
dv + cos 2θ

1−H2(r)

H2(r)

(
a2

2a2 + b2
(du+ dv) +

r2

a2
H1(r)dv

)]
,

Â(φ) =

√
2

Ry

[
2a2du− b2H0(r)dv

(2a2 + b2)

]
.

(4.32)

As before, it is elementary to evaluate the determinant of the internal metric along S and use

(2.7) to obtain the warp factor required by dimensional reduction:

Ω−2 =
Λ

H2(r)
. (4.33)

The dimensionally-reduced metric on K, defined in (2.6), is then:

ds21,2 =
√
Q1Q5H2(r)

[
dr2

r2 + a2
+

2 r2 (r2 + a2)

a4R2
y

dv2

− 2

a4 (2a2 + b2)2R2
yH2(r)

(
a4 (du+ dv) + (2a2 + b2) r2H1(r) dv

)2]
,

(4.34)

which is, again, purely a function of r.

Like the (1, 0, n) vector fields in (4.10), the vector field Â(φ) is independent of the coordinates

on the S3 and, when incorporated in the metric, is multiplied by a Killing vector. This means that

it reduces to a massless Kaluza-Klein vector field on K. However, Â(ψ), while also multiplying

Killing vectors in the metric, has terms that are independent of θ as well as terms proportional to

cos 2θ. The former are constant multiples of dv and are thus pure gauge. The latter also depend

on r and therefore represent non-trivial profiles for massive vector fields on K. The metric of the

(2, 1, n) family thus produces both massive and massless KK vector fields on K.

4.2.1 Geodesics and separability

For the (2, 1, n) family of solutions, the massless wave equation and the Hamilton-Jacobi equation

for null geodesics are separable only for either vanishing frequency, or for a specific choice of

angular modes on S3. Specifically, if one seeks modes of the form (4.19) then one finds something

very similar to (4.20)–(4.21) except for a single problematic term. One finds:

1

K

[
1

r
∂r
(
r(r2 + a2) ∂rK

)]
+

1

S

[
1

sin θ cos θ
∂θ
(

sin θ cos θ ∂θS
)
−
( q21

sin2 θ
+

q22
cos2 θ

)
S

]
+ F (ω, p, q1, q2, n; r) − a2b2 (n+ 1)G(ω, q1, q2, n; r, θ) = 0

(4.35)

where F (ω, p, q1, q2, n; r) is a complicated function of the coordinate r and the mode numbers

ω, p, q1, q2 and n. The function G(ω, q1, q2, n; r, θ) is given by:

G(ω, q1, q2, n; r, θ) ≡ ω (q1 + q2)
r2n

(r2 + a2)n+2
cos 2θ (4.36)

and expresses the failure of separability. Note that this term vanishes if ω = 0 or q2 = −q1.
Moreover, the function G is strongly peaked at the dimple of Λ, (4.28), and vanishes rapidly as

r → 0 and r →∞.
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One finds a similar result upon attempting to separate the massless Hamilton-Jacobi equation:

gPQ
∂ S

∂zP

∂ S

∂zQ
= 0 . (4.37)

Substituting

S = K(r) + S(θ) +

√
2

Ry
E u+

√
2

Ry
`0 v + `1 ϕ1 + `2 ϕ2 , (4.38)

one obtains an equation of the form:(
(S′(θ))2 +

`21
sin2 θ

+
`22

cos2 θ

)
+

(
(r2 + a2) (K ′(r))2 + F̂ (E, `0, `1, `2, n; r)

)
+ (n+ 1) a2b2 Ĝ(E, `1, `2, n; r, θ) = 0 ,

(4.39)

where

Ĝ(E, `1, `2, n; r, θ) ≡ E (`1 + `2)
r2n

(r2 + a2)n+2
cos 2θ . (4.40)

This is manifestly the direct parallel of (4.36). Moreover, if either E vanishes or `1 + `2 vanishes,

then Ĝ ≡ 0 and Hamilton-Jacobi theory tells us that(
gθθ

dθ

dλ

)2

+
`21

sin2 θ
+

`22
cos2 θ

= Σ2 P
(
dθ

dλ

)2

+
`21

sin2 θ
+

`22
cos2 θ

(4.41)

is a conserved quantity. Note that one has

Σ2 P =
R2
y

2
(2a2+b2)

(
1−2(n+ 1) a4 b2

(2a2 + b2)

r2n

(r2 + a2)n+2
sin2 θ cos2 θ

)
=

R2
y

2
(2a2+b2) Λ2 , (4.42)

where Λ is given in (4.27). Thus (4.41) is the analogue of the conserved quantity (4.14). However,

(4.41) is only conserved for E = 0 or `1 = −`2.
Recall that the momentum modes that underlie our solution depend upon the angles according

to (3.11), which now has the form:

χ2,1,n ≡
√
2

Ry
(n+ 1) v + (ϕ1 − ϕ2) . (4.43)

Thus the conservation and separation conditions, `1 = −`2 and q2 = −q1, mean that the geodesic

or wave must have the same angular dependence on the S3 as the underlying momentum modes.
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5 Discussion

In this paper we have found that two infinite families of superstratum solutions have quite re-

markable integrability properties for null geodesics. One of the families, the (1, 0, n) family, has

a separable massless Klein-Gordon equation and a complete set of conserved quantities for null

geodesics. The other family, the (2, 1, n) family, has a separable massless Klein-Gordon equation

and a complete set of conserved quantities only for a constrained set of angular momenta on the

S3. For the (2, 1, n) family (and for the (2, 0, n) family), the failure of separation and failure of

conservation is sharply localized in the region of the solution where the momentum density is

concentrated. We further found that the metrics of these families of solutions can be reduced to

interesting sets of degrees of freedom in (2 + 1)-dimensions.

The conservation laws and separability of the massless scalar wave equation for the (1, 0, n)

family means that this solution is readily amenable to detailed scattering calculations. On the

other hand, because of its integrability, this solution is likely to exhibit some quite atypical

behavior, particularly when it comes to the spectrum.

An interesting question to investigate is whether, and in what regime of parameters, a given

microstate geometry can capture or trap incoming particles. It was recently argued that given

any supersymmetric microstate geometry in six dimensions, there should exist a stably-trapped

null geodesic passing through every point of the spacetime [11]. These null geodesics have tangent

vector ∂/∂u in our notation, so correspond to massless particles moving purely in the y direction.

In the geodesic approximation, massless particles following such geodesics do not fall (deeper)

into the throat. The main heuristic argument of [11] considers such a particle that is coupled to

gravitational radiation and other massless fields, such that the probe gradually radiates some of

its energy into these other fields, thus evolving to follow geodesics of progressively lower energy.

In this way a massless particle can, slowly, descend the throat.

However, within the geodesic problem, one can ask whether an infalling particle with non-zero

radial momentum, falling from outside the throat, can be deflected non-trivially from the region

of the metric at the bottom of the throat and, through this deflection, remain in the throat for

arbitrarily long periods of time, as seen from infinity. If the “radial kinetic energy,” 1
2v

2
r , is the

only kinetic energy term that appears in a particular conservation law, then, just as in any orbit

problem, an infalling particle falling from outside the throat will simply rebound and escape: it

will not be captured and trapped deep within the throat. For such capture to occur, particles

and waves must be able to scatter “radial kinetic energy,” 1
2v

2
r , into “angular kinetic energy.” A

complete set of conserved quantities is thus largely antithetical to such behavior, although the

conserved quantity, (4.14), depends on both r and θ via (4.5) and so, in principle, it is possible

that changing θ along the trajectory can result in the loss of some radial kinetic energy. However,

in practice, in our solutions the θ dependence dies out extremely rapidly for large r, and so

changing θ will have only a minimal effect upon the return of the particle to large distances.

If a given solution does allow a significant deflection of radial momentum to angular mo-

mentum, the angular motion can potentially prevent the particle from escaping the throat for

a long time. Our results imply that the (1, 0, n) family of solutions is likely the wrong place to

look for such behavior. However, the conservation laws present for the (1, 0, n) family are not

present for generic (k,m, n) superstrata, so such solutions should allow the scattering of vr into
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angular motion, and it would be interesting to investigate whether this can lead to geodesics

that describe infalling particles with non-zero radial momentum, falling from outside the throat,

becoming trapped deep inside the throat for long periods of time. One way to study this behavior

analytically could be to use the (2, 1, n) family (for which geodesics/waves with `1 + `2 = 0 or

q1 + q2 = 0 are integrable) and examine perturbatively how waves are scattered into angular di-

rections for small jL = `1 + `2 or small q1 + q2. It would be particularly interesting to investigate

the timescale associated with this trapping. This will depend on the depth of the throat, on how

radial motion is converted into angular motion, and on whether or not the trapping is chaotic. It

might be that the only way in which a particle can return to large distances after having scattered

off the microstate structure once is to scatter off it again in exactly the right manner as to restore

enough radial kinetic energy. This could lead to extremely large return times – a desirable feature

if one is to construct microstate geometries that describe typical black hole states.

Finally, the results presented here underline the fact that the (1, 0, n) and (2, 1, n) families

have remarkably stringent constraints on their structure that suggests that the full six-dimensional

solutions might be written in a form that would come from a consistent truncation to (2 + 1)-

dimensions. In particular, the Fourier expansions of the (2 + 1)-dimensional fields may only have

non-trivial dependence on one variable, r. If such a structure indeed exists, it would be very

interesting to investigate the existence or otherwise of a consistent truncation containing these

solutions. In doing so, an interesting question will be to determine whether or not any consistent

truncation ansatz will require some form of coiffuring to be built in. If a consistent truncation

involving the modes of the tensor gauge fields exists, then this could provide a powerful new route

for the construction non-supersymmetric solutions building on [54–56]: It would reduce the non-

linear, non-BPS supergravity dynamics in the system of [54,56] from functions of two variables in

six dimensions to the far more tractable problem of functions of one variable in (2+1)-dimensions.

These questions are currently under investigation.
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