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The role of torsion in projective invariant theories of gravity with non-minimally

coupled matter fields
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cAix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France.
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We study a large family of metric-affine theories with a projective symmetry, including non-
minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly
realised by imposing that the connection only enters through the symmetric part of the Ricci tensor,
even in the matter sector. We leave the connection completely free (including torsion) and obtain its
general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only
appears as a projective mode. This result justifies the widely used condition of setting vanishing
torsion in these theories as a simple gauge choice. We apply our results to some particular cases
considered in the literature like the so-called Eddington-inspired-Born-Infeld theories among others.
We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible
and comment on the genuine character of the non-metricity in theories where the two metrics are
not conformally related.

PACS numbers:

I. INTRODUCTION

The remarkable properties of Born-Infeld electromagnetism [1], originally aimed at resolving divergences of point-like
charged particles, motivated the search of a similar route to resolve the singularities of General Relativity [2]. Among
the different proposals, the so-called Eddington-inspired-Born-Infeld (EiBI) theory [3] has attracted a lot of attention
in the last years due to its extraordinary ability to get rid of cosmological and black hole singularities and numerous
works have been devoted to constrain the model using different types of observations [4]. Extensions and modifications
of that model also lead to interesting results in cosmological and black hole scenarios [5–8]. The exploration of these
theories showed that their natural habitat is the framework of metric-affine geometries and precisely this formulation
permitted the mentioned progress (see [9] for a review). The reason for the necessity of considering these theories in
the metric-affine approach is the avoidance of ghost-like instabilities that otherwise would be present in the metric
formulation of theories with non-linear curvature terms in the action [10]. The metric-affine (sometimes also called
Palatini) formulation is characterised by unlocking the affine structure and disentangle it from the metric structure,
which amounts to assuming that the geometry is not Riemannian a priori, but of metric-affine type, where the metric
and the connection are regarded as fully independent objects. The spirit of this approach is that only the resulting
field equations should specify the full geometrical structure of the spacetime and, in particular, the relation between
the metric and the connection with the matter fields. In this regard, it must be noted that the EiBI theory has been
systematically analysed for a constrained family of connections by assuming a vanishing torsion tensor1. Given the
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1 We refer here to the most widely explored Born-Infeld inspired theories of gravity, being the EiBI model the paradigmatic example. A
noteworthy exception is the class of Born-Infeld theories based on the teleparallel formulation of gravity, where the torsion is actually
the fundamental object [11–16].
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growing interest in this theory and its applications, we find it convenient a careful analysis of the role of torsion in
its field equations and, with a little extra effort, extend the analysis to a much larger class of affine theories. This
issue has been treated with care in [9] for minimally coupled fields, which corresponds to the case in many practical
applications. In the present work we will extend the analysis to more general cases that include non-minimally coupled
matter fields. We will see that the structure of the equations remains essentially the same, but some differences arise
that could have interesting phenomenological consequences.
The role of torsion in metric-affine theories of gravity has been previously considered in the literature in the context

of e.g. f(R) and f(R,RµνRµν) theories of gravity [17–23]. The case of f(R) theories is particularly relevant to
our discussion because a degeneracy between different formulations of those theories was observed when torsion was
explicitly considered in the dynamics [17, 21, 24]. To make a long story short, one can say that i) the torsionless
Palatini formulation of f(R) theories and ii) the metric compatible (∇Γ

µgαβ = 0) formulation of these theories with
torsion yield the same field equations. This result, non-trivial at first sight, suggests an intimate relation between
torsion and non-metricity in metric-affine theories of gravity. The question whether an analogous relation also exists
in the EiBI theory is an issue that we will explicitly address and clarify in this work. As we will see, the non-metricity
structure of the EiBI theory is much richer than in the f(R) case while their torsional properties are much closer. As
a consequence, there is no possible trade between the torsional and the non-metricity properties, making it impossible
to find a metric-compatible representation of the theory with torsion. This result roots in the existence of a projective
symmetry in the theory and the fact that the torsion only enters as a projective mode which, then, can be gauged
away. This symmetry will also explain the different non-metric structure of f(R) and EiBI as a consequence of the
existence of a gauge where the non-metricity vanishes.
An important step forward that we make in the present work is the inclusion of non-minimally coupled matter fields.

However, we will handle this with care. Since the projective invariance proves to be a crucial ingredient, we will only
allow non-minimal couplings respecting this symmetry. The most straightforward procedure to realise it is by simply
allowing non-minimal couplings only to the symmetric part of the Ricci tensor (which is exactly projective invariant).
Although this might seem like a severe restriction, it is actually quite natural and permits a large class of couplings. In
fact, very much like the metric-affine formalism opens up the possibility for much more general gravitational actions
than the metric formalism allows, the same applies for non-minimal couplings. Within the metric formalism, it is
known that derivative couplings of scalar fields to the curvature must be of a very specific form in order to avoid
ghosts [25]. For vector fields, already non-derivative couplings to the curvature must be carefully constructed, but
non-minimal derivative couplings are even more contrived [26]. On the other hand, we will show that, within the
realm of the metric-affine theories with a projective invariance considered in this work, the allowed couplings of matter
fields to the curvature without Ostrogradski instabilities are much more general and, in fact, they will not be subject
to any additional constraints. For all these theories, the torsion will still enter as a projective mode and, therefore,
with no physical consequences. Our results thus provide a solid and safe justification for the widely adopted condition
of setting the torsion to zero, simply amounting to a choice of gauge, for a very large class of theories.
The content of the paper is organised as follows. We present in Sec. II a derivation of the field equations in a

general class of metric-affine theories and apply it to the EiBI and the so-called f(R) and f(R, T ) theories. We then
generalise the formalism to include non-minimal couplings in Sec. III and we discuss the Einstein frame representation
of the theories in Sec.IV. In Sec. V we discuss the conditions for the existence of metric compatible gauge fixing. We
conclude in Sec. VI with a summary and discussion of our results.

II. GENERAL FIELD EQUATIONS FOR METRIC-AFFINE THEORIES

For the sake of generality, in this section we derive the field equations of a general family of theories whose
gravitational sector Lagrangian is a function of a metric and the Riemann tensor of an independent connection. This
will allow to set-up a general formalism and make direct contact with previous results. In order to avoid unnecessary
notational complications we will assume minimally coupled fields for the moment. We will come back to this point in
Sec. III to straightforwardly add non-minimal couplings complying with our requirements. Our starting point is thus
the action [27]

S =
1

2κ2

∫

d4x
√−gF [gµν ,Rα

βµν(Γ)] + Sm[gµν , ψ] , (1)

where Sm is the matter action, ψ represents collectively the matter fields, κ2 is a constant with suitable dimensions,
g is the determinant of the spacetime metric gµν , F (gµν ,Rα

βµν) is an arbitrary scalar function constructed with the
metric and the Riemann tensor, the field strength of the connection Γα

µβ , with components

Rα
βµν = ∂µΓ

α
νβ − ∂νΓ

α
µβ + Γα

µλΓ
λ
νβ − Γα

νλΓ
λ
µβ . (2)
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We assume a symmetric metric tensor, gµν = gνµ, and the usual definitions for the Ricci tensor, Rµν ≡ Rρ
µρν , and

the Ricci scalar, R ≡ gµνRµν .
The Palatini variation of the action (1) leads to

δS =
1

2κ2

∫

d4x
√−g

[(

∂F

∂gµν
− F

2
gµν

)

δgµν + Pα
βµν δRα

βµν

]

+ δSm . (3)

where we have introduced the tensor

Pα
βµν ≡ ∂F

∂Rα
βµν

, (4)

which inherits from the Riemann tensor the antisymmetry in the last two indices. Straightforward manipulations
show that δRα

βµν can be written as

δRα
βµν = ∇µ

(

δΓα
νβ

)

−∇ν

(

δΓα
µβ

)

+ 2Sλ
µν(δΓ

α
λβ) , (5)

where Sλ
µν ≡ 1

2 (Γ
λ
µν − Γλ

νµ) is the torsion tensor. Integrating by parts and introducing the current Jµ ≡ Pα
βµνδΓα

νβ ,
the sector of the action that concerns the variation with respect to the connection takes the form

IΓ ≡ 1

κ2

∫

d4x
√−gPα

βµν
(

∇µδΓ
α
νβ + Sλ

µν δΓ
α
λβ

)

= (6)

=
1

κ2

∫

d4x
{

∇µ(
√−gJµ)−

[

∇µ

(√−gPα
βµν

)

−√−gPα
βµλSν

µλ

]

δΓα
νβ

}

,

where we can isolate a boundary term as follows

IΓ =
1

κ2

∫

d4x
{

∂µ(
√−gJµ)−

[

∇µ

(√−gPα
βµν

)

− 2Sσ
σµ

√−gPα
βµν

]

δΓα
νβ

}

. (7)

Using this result, the complete variation of the action (3) reads

δS =
1

2κ2

∫

d4x

{√−g
(

∂F

∂gµν
− F

2
gµν

)

δgµν + 2∂µ
(√−gJµ

)

+ (8)

+ 2
√−g

[

− 1√
−g

∇µ

(√−gPα
βµν

)

+ Sν
σρPα

βσρ + 2Sσ
σµPα

βµν
]

δΓα
νβ

}

+ δSm ,

with associated field equations

κ2Tµν =
∂F

∂gµν
− F

2
gµν (9)

κ2Hα
νβ = − 1√−g∇µ

(√
−gPα

βµν
)

+ Sν
σρPα

βσρ + 2Sσ
σµPα

βµν , (10)

where Tµν ≡ − 2√
−g

δSm

δgµν is the energy-momentum tensor of the matter, and Hα
νβ ≡ − 1√

−g
δSm

δΓα
νβ

represents the

coupling of matter to the connection. As commented above, we will assume that the matter fields do not couple to
the connection so that Hα

νβ = 0 and discuss the effects of non-minimal couplings later on. The first of these equations
represents the generalisation of Einstein’s equations while the connection field equations will fix the relation between
the affine and metric structures.
In order to disentangle the symmetric part Cα

µν of the connection from the antisymmetric one, namely the torsion
Sα
µν , we write the connection as

Γα
µν = Cα

µν + Sα
µν . (11)

Then, for any vector Vν we have ∇µVν = ∂µVν − Cα
µνVα − Sα

µνVα = ∇C
µ Vν − Sα

µνVα, and for the squared root of the

metric determinant we have ∇µ

√−g = ∇C
µ

√−g− Sα
µα

√−g, where ∇C
µ denotes the covariant derivative associated to

the symmetric connection Cα
µν . Accordingly, equation (10) reduces to

1√−g∇
C
µ

(√−gPα
βµν

)

= Sλ
µαPλ

βµν − Sβ
µλPα

λµν . (12)

After deriving the equations for a general case, we will proceed to consider the class of theories of interest for us in
the present work.
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A. Connection Field Equations for Ricci-based Theories

We now restrict our initial family of gravity theories to those in which only the Ricci tensor appears. A general
analysis of these theories can also be found in [9]. The action that describes these Ricci-based theories is a particular
case of (1) where the dependence on the Riemann tensor is replaced by the dependence on the Ricci tensor, namely

S =
1

2κ2

∫

d4x
√−gF [gµν ,Rµν(Γ)] + Sm[gµν , ψ] . (13)

For this kind of theories, the P−tensor introduced in (4) takes the following form

Pα
µβν = Zµρδβναρ , (14)

where the Z−tensor is defined as the derivative of the gravity Lagrangian with respect to the Ricci tensor,

Zµν ≡ ∂F

∂Rµν

, (15)

and δβναρ ≡ 1
2

(

δβαδ
ν
ρ − δβρ δ

ν
α

)

. In terms of the Z−tensor, equation (12) reads

1√−g∇
C
µ

(√−g Zβρ
)

δµναρ = Sλ
µαZ

βρδµνλρ − Sβ
µλZ

λρδµναρ , (16)

which, once traced over να, provides the relation

− 1√−g∇
C
µ

(√−g Zβµ
)

=
2

3
Sλ
λµZ

βµδµνλρ − Sβ
λµZ

λµ . (17)

Using this result, equation (16) turns into

1√−g∇
C
α

(√−g Zβν
)

= −2

3
δναZ

βµSλ
λµ + ZβνSλ

λα − Sν
µαZ

βµ + Sβ
µαZ

µν . (18)

It happens that this equation can be further simplified by performing a projective transformation of the form2

Γ̃λ
µν = Γλ

µν +
2

3
Aµδ

λ
ν , (19)

with the symmetric and antisymmetric part of Γ̃λ
µν related to those of Γλ

µν by

C̃λ
µν = Cλ

µν +
2

3
δλ(νAµ) , (20)

S̃λ
µν = Sλ

µν +
2

3
δλ[νAµ] . (21)

The vector Aµ ≡ Sλ
λµ is chosen in such a way that S̃λ

λµ = 0. Using these new variables, equations (18) read

1√−g∇
C̃
α

(√−g Zβν
)

= S̃β
µαZ

µν − S̃ν
µαZ

βµ . (22)

Whenever it is possible to define the inverse of Zµν , which we denote as Zµν , an immediate consequence of (22) is

1√
−g

∇C̃
α

(√−g Zβν
)

Zνβ = 0 . (23)

Expanding this expression, one finds the useful relation

C̃λ
αλ = ∂α

(

ln |g| − 1
2 ln |Z|

)

, (24)

2 This shift in the connection is known as projective transformation because it leaves the geodesic paths invariant up to a redefinition of
the affine parameter.
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where |Z| ≡ | detZµν |. This last equation can be used to simplify (22), yielding

(

∇̃α + Vα

)

Zβν = 2 S̃ν
αλZ

βλ , (25)

where we introduced Vα ≡ 1
2∂α ln

∣

∣

∣

Z
g

∣

∣

∣
and we used ∇̃α referring to the covariant derivative of the connection Γ̃µ

αβ =

C̃µ
αβ + S̃µ

αβ defined in (19). In order to remove the vector Vα from the above equation, we redefine the Z−tensor as
follows

Zµν =

√

∣

∣

∣

g

Z

∣

∣

∣
Z̃µν , (26)

which leads to

∇̃αZ̃
βν = 2 S̃ν

αλZ̃
βλ . (27)

Guided by the standard approach of General Relativity to derive the expression of the connection, we properly sum
cyclic permutations of the last equation with lowered indices,

∇̃α Z̃µν = 2 S̃λ
µαZ̃λν , (28)

to finally obtain

∂α Z̃µν + ∂ν Z̃αµ − ∂µ Z̃να = 2 Γ̃λ
µαZ̃[λν] + 2 Γ̃λ

ανZ̃(λµ) + 2 Γ̃λ
νµZ̃[αλ] . (29)

Symmetrising and antisymmetrising this equation in αν one obtains, respectively,

C̃λ
αν Z̃(λµ) =

1
2

(

∂α Z̃(µν) + ∂ν Z̃(αµ) − ∂µ Z̃(να)

)

+ S̃λ
αµZ̃[λν] + S̃λ

νµZ̃[λα] , (30)

1
2

(

∂α Z̃[µν] + ∂ν Z̃[αµ] − ∂µ Z̃[αν]

)

= C̃λ
αµZ̃[λν] + C̃λ

µν Z̃[αλ] + S̃λ
ανZ̃(µλ) . (31)

The above two equations are key elements of this paper, as the following application shows. From the definition (15),

it is immediate to see that if the Lagrangian only depends on the symmetric part of the Ricci tensor, then Z̃µν , and
its inverse Z̃µν , must also be symmetric. As a result, for such theories we have Z̃[µν] = 0, and Eqs. (30) and (31) boil
down to

C̃λ
αν =

1

2
Z̃µλ

(

∂α Z̃µν + ∂ν Z̃αµ − ∂µ Z̃να

)

, S̃λ
αν = 0 . (32)

This implies that the symmetric part of the connection Γ̃α
µν coincides with the Levi-Civita connection of the (inverse)

auxiliary metric Z̃µν , while its torsion tensor S̃λ
αν vanishes. The connection Γλ

αβ can thus be written as

Γλ
αβ = C̃λ

αβ − 2

3
Aαδ

λ
β , (33)

with its torsion fully determined by Aµ as Sλ
µν = 1

3 (δ
λ
µAν − δλνAµ). Let us notice that the resulting connection

corresponds to a particular case of the general family of connections with vector distortion introduced in [28].
Let us now return to the definition of the Ricci tensor and its representation using the above variables

Rµν(Γ) = Rµν(C̃) +
2

3
∇C̃

[νAµ] +∇C̃
λ S̃

λ
νµ − S̃λ

κµS̃
κ
νλ . (34)

From this expression, it is immediate to see that with this choice of connection variables, namely Γα
µν split in a

symmetric part C̃α
µν , an antisymmetric traceless part S̃α

µν , and a vector Aα representing the projective freedom, the
symmetrised Ricci tensor takes the form

R(µν)(Γ) = R(µν)(C̃)− S̃λ
κ(µS̃

κ
ν)λ , (35)
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which is manifestly independent of the projective degrees of freedom Aα. Theories of gravity based on the symmetric
part of the Ricci tensor3, therefore, are insensitive to this projective mode, which remains undetermined by the field
equations. To further reinforce this point, note that, as we have shown above, when in such theories the matter is not
coupled to the connection one also finds that S̃λ

αν = 0, which implies R(µν)(Γ) = R(µν)(C̃). The equations of motion

that follow from variation of the metric, therefore, must only depend on C̃α
µν , having no trace of Aα.

The impossibility of determining Aα is simply a reflection of the fact that theories based on the symmetric part of
the Ricci tensor are projectively invariant and Aα precisely corresponds to the projective mode that was expected to
remain undetermined by the field equations. This can be clearly seen from the variation of the Ricci tensor under a
general projective transformation Γα

µβ → Γα
µβ − 2

3Aµδ
α
β that is given by

Rµν(Γ) → Rµν(Γ)−
4

3
∂[µAν] (36)

where we confirm that the projective mode does not contribute to the symmetric part of the Ricci tensor. Let us
notice that theories containing the full Ricci tensor will still have a pure gradient projective symmetry, i.e., they are
invariant under a projective transformation where Aµ = ∂µθ with θ an arbitrary scalar. This already suggests that
giving up on the projective symmetry and allowing for the general Ricci tensor will make the projective mode become
a Maxwellian field.
The arbitrary local character of the projective invariance has a direct consequence on the field equations by enforcing

an off-shell constraint on the theory given by the vanishing of the trace of the connection field equations, i.e., these
theories will satisfy

δS

δΓα
µβ

δβα = 0. (37)

This constraint is unaffected by the matter sector because we have assumed it to be minimally coupled so that the
corresponding hypermomentum is identically zero. We will see later how to add non-minimal couplings to the matter
field such that the hypermomentum also satisfies this constraint. Before proceeding to that we will first consider two
specific cases that will serve us as proxies for our discussion on the possibility of getting rid of the non-metricity by a
suitable choice of the projective mode.

B. EiBI theory

In this section, we specify the approach of the previous section to the EiBI gravity theory, which is defined by the
action [3]

SEiBI =
1

ǫκ2

∫

d4x
[√

−|gµν + ǫR(µν)(Γ)| − λ
√−g

]

, (38)

where κ2 ≡ 8πG/c4 is the usual Einstein coupling constant, ǫ is a parameter with dimensions of length squared, the
Ricci tensor is a function solely of the affine connection, which is a priori independent of the physical metric gµν , and
the parameter λ is related to an effective cosmological constant as λ = 1 + ǫΛeff . Note that we have made explicit
the fact that the Lagrangian only depends on the symmetric part of the Ricci tensor. Recall, in this sense, that in
the metric-affine formulation the Ricci tensor is not necessarily symmetric by construction, as can be seen from (34).
The non-symmetric case will be considered elsewhere (see also the discussion at this respect in [9]).
In order to take advantage of the general approach to Ricci based theories, one just needs to identify the Z−tensor

(15). Therefore, we need (38) to match the form of expression (1). To this end, we identify the argument of the square
root as an auxiliary metric

qµν ≡ gµν + ǫR(µν)(Γ) , (39)

which is manifestly symmetric, and we introduce the deformation matrix

Ωρ
ν ≡ δρν + ǫ gρσRσν , (40)

3 In particular, any theory depending on the Ricci scalar, as R = g
µνRµν = g

µνR(µν) for gµν symmetric.
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such that qµν = gµρΩ
ρ
ν (or (q−1)µν ≡ qµν = (Ω−1)µσ g

σν). This allows to rewrite action (38) as

SEiBI =
1

κ2ǫ

∫

d4x
√−g

(√
Ω− λ

)

, (41)

where Ω = detΩρ
ν . Thus, for the EiBI gravity we can identify F (gµν ,Rµν) = (

√
Ω − λ) leading directly to the

Z−tensor

Zµν =
√
Ω qνµ . (42)

With this result at hand, the traceless field equation for the connection (18), assume the form

∇C
α

(√−q qµβ
)

=
√−q

[

−2qλ[µS
β]
αλ +

(

δλαq
µβ − 2

3δ
µ
αq

λβ
)

Aλ

]

. (43)

Upon substituting the set of variables (19), equation (43) takes the simplified form

1√−q∇
C̃
α

(√
−q

(

q−1
)µν

)

= S̃µ
αλq

λν − S̃ν
αλq

µλ . (44)

Following the general procedure worked out in the previous section, it is not difficult to verify that this equation
can be put as

(

∇̃α + Vα

)(

√

|Ω| qµν
)

= 2S̃ν
αλq

λµ , Vα ≡ − 1
2∂α ln |Ω| . (45)

This can be further simplified using the redefinition (26), which in the present case reads

Zµν =
√
Ω qνµ =

√
Ω Z̃µν ⇒ Z̃µν = qνµ . (46)

Note that this last result, namely that Z̃µν = qνµ, is consistent with our interpretation of Z̃µν as the inverse of the
proper auxiliary metric. Finally, we are left with the analogue of (28)

∇̃αq
µν = 2S̃ν

αλq
λµ . (47)

Now, following the same steps as in the previous section, we end up with equations (32) particularised to the EiBI
symmetric case

C̃λ
αν =

1

2
qµλ (∂α qµν + ∂ν qαµ − ∂µ qνα) , S̃λ

αν = 0 . (48)

Actually, there is a shortcut to obtain the same result starting from (44) and noticing that we assumed the Ricci
tensor to be symmetric, which implies that qµν is symmetric as well. Therefore, for consistency, the equation (44)
splits into two equations

∇C̃
α

(√−q qµν
)

= 0 , qλ[µS̃
ν]
λα = 0 . (49)

Recalling that for any tensor aµν with determinant a and inverse aµν , the following identity holds

∂α
√

|a| = − 1
2

√

|a|aνµ∂αaµν , (50)

it is straightforward to prove that the first equation of (49) is the analogue of the metricity condition for qµν , leading
directly to

C̃α
µν =

1

2
qαρ (∂µqρν + ∂νqρµ − ∂ρqµν) . (51)

Concerning the second equation in (49), lowering free indices, one is left with S̃[µν]ρ = 0, namely, the torsion in the

new variables is symmetric in its first two indices. Therefore, it is a matter of simple algebra to conclude that S̃α
µν = 0

which, in turn, implies that

Sλ
µν = 2

3 δ
λ
[µAν] (52)
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as a consequence of (21). This proves that when the field equations for the connection are (algebraically) solved, the
torsion tensor still depends on the expected four projective degrees of freedom that are not fixed by the dynamics of
the theory.
For completeness and for future reference, we note that the variation of (41) with respect to the metric leads to

√−qqµν −√−ggµν = −ǫκ2T µν . (53)

With algebraic manipulations, one can solve for qµν in terms of gµν and the matter as qµν = gµαΩ
α
ν , where

√

|Ω|(Ω−1)µν = λδµν − ǫκ2T µ
ν . (54)

This shows that the relative deformation between the physical and auxiliary metrics is fully determined by the stress-
energy tensor of the matter sources. The field equations for qµν can be obtained from Eq.(39) using the fact that

R(µν)(Γ) = R(µν)(C̃), and take the form

Gµ
ν(q) =

κ2
√

|Ω|

[

T µ
ν − δµν

(

LG +
T

2

)]

, (55)

where LG = (
√

|Ω| − λ)/(ǫκ2) represents the EiBI gravity Lagrangian, Gµ
ν(q) ≡ qµαGαν(q), and T µ

ν ≡ gµαTαν .
This Einstein-like representation of the field equations for the auxiliary metric qµν provides an explicit example at
the equations level of our general discussion in Sec.IV. This general representation was also rigorously derived for the
general case in [9].

C. f(R) and f(R, T ) theories

Other classes of theories to which the general method of section IIA can be applied are the so-called f(R) theories
[24, 29, 30], with R ≡ gµνRµν(Γ). For the same price we can also consider the f(R, T ) theories, with T representing
the trace of the stress-energy tensor of the matter fields, that have recently received some attention in the literature
[31–35]. Furthermore, this will be our first step towards including non-minimal couplings, case that will be fully
addressed in the next section. In both cases, the dependence on R guarantees the projective invariance. For these
theories, the action is the same as (1) provided the function F is replaced by the corresponding f (from now on we
use just f to denote both f(R) and f(R, T ) theories). The restricted dependence of the function F specifies the form
of the Z−tensor (15) as follows

Zµν = fR gµν , (56)

where fR ≡ ∂Rf (for both, f(R) and f(R, T ) theories). Plugging this expression into (16), the field equations for
the connection become

1√
−g

∇C
µ

(√−gfR gσβ
)

δµνασ = 1
2fR

(

Sλ
λαg

νβ − Sβ
αλg

νλ − Sν
σαg

σβ
)

. (57)

which can be further simplified using its trace equation and the shift transformation of the connection (19) to end up
with the analogue of (22), namely

1√
−g

∇C̃
α

(√−gfR gµν
)

= 2fRS̃
[µ
λα g

ν]λ . (58)

This equation makes it manifest that, as a consequence of the symmetry of the metric, both sides must identically
vanish, yielding

1√
−g

∇C̃
α (

√−g fR gβν) = 0 (59)

S̃ανβ − S̃βνα = 0 ⇔ S̃λ
µν = 0 . (60)

The general procedure of section IIA, allows to identify the auxiliary metric in the form

hµν = Z̃µν = f−2
R Zµν =

1

fR
gµν , (61)

leading to the conclusion (32) that the symmetric part of the shifted connection coincides with the Christoffel symbol
associated to the auxiliary metric, that is,

C̃α
µν = 1

2 h
αρ (∂µhρν + ∂νhρµ − ∂ρhµν) . (62)

We thus see that the connection is generated by a metric that is conformally related to the spacetime metric so that
the deformation matrix is proportional to the identity matrix Ωα

β = fRδ
α
β . As we will show later, this simple

relation between the two metrics has an important impact on the existence of a metric-compatible projective gauge.
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III. GENERAL PROJECTIVELY INVARIANT NON-MINIMAL COUPLINGS

In the previous section we have considered a type of theories where matter fields can couple non-minimally through
the trace of the energy-momentum tensor and, nevertheless, the same results found for minimally coupled fields apply
to this case as well. The specific coupling through the trace of the energy-momentum tensor does not have any special
structure and we will show in the following that it is nothing but a particular case of a larger class of theories with
non-minimally coupled matter fields.
Let us then consider general affine theories in the presence of matter fields with non-minimal couplings. We will

restrict the couplings as to maintain the projective invariance in a very simple way, namely by allowing couplings to
the curvature only through the symmetric part of the Ricci tensor so that we will consider theories generally described
by the following action

S =
1

2κ2

∫

d4xF (gµν ,R(µν)(Γ), ψ, ∂ψ) (63)

with F an arbitrary function of the metric, the symmetric part of the Ricci tensor and the matter fields collectively
denoted by ψ. Note that we only allow up to first derivatives of the matter fields and we have intentionally spelled
out that such derivatives are indeed partial derivatives and not covariant ones. For bosonic fields this is actually the
natural situation. If ψ corresponds to a scalar field ϕ, the covariant derivatives reduce to partial derivatives (assuming
we are dealing with true scalar fields and not scalar densities) ∇µφ = ∂µφ. Thus, we can include non-minimimal
couplings like e.g. Rµν∂µϕ∂νϕ that would lead to Ostrogradski instabilities in the metric formalism. For vector fields
Aµ we assume that all derivatives enter through the corresponding field strength Fµν = ∂µAν − ∂νAµ. We adopt
the standard definition of the field strength as the exterior derivative of the vector field, which naturally extends our
considerations to higher p-forms. Sometimes the field strength in curved spacetime is defined by promoting partial
derivatives to covariant ones in the flat spacetime definition of Fµν in which case an explicit coupling to the torsion
arises (that would not be allowed by our requirements). In this case we can include interactions of the form RµνAµAν

or RµνFµαFν
α that, again, would give rise to ghost-like instabilities in the purely metric framework. Things are

more subtle when including fermions into the picture since they couple directly to the spin connection with minimal
interactions. Fortunately, the minimally coupled Dirac Lagrangian still exhibits a projective symmetry and, thus,
our analysis can be consistently extended to the case of fermionic fields. However, adding non-minimal couplings for
fermions with our requirements must be done with more care than with bosonic fields. For simplicity in the derivation
of our main result we will assume that the independent connection Γα

µν only appears through the Ricci tensor. In
that case, the variation of the action with respect to the connection leads to

δS =
1

2κ2

∫

d4x
√−g ∂F

∂R(µν)
δR(µν)(Γ) , (64)

and the manipulations of Sec. II A recover the same results as we found there for minimally coupled theories. In
particular, we see that we can introduce the auxiliary metric Z̃µν defined by

√−g ∂F

∂R(µν)
≡

√

−Z̃Z̃µν (65)

so that the resolution of the connection field equations follows identically and, thus, the connection will be given
by the Levi-Civita connection of the auxiliary metric Z̃µν up to the projective mode. Obviously, similarly to the
minimally coupled case, the auxiliary metric itself depends on all the arguments of the function F among which we
find the Ricci tensor. The crucial point is once again that the metric field equations

∂F

∂gµν
− 1

2
Fgµν = κ2Tµν (66)

allow to algebraically obtain the symmetric part of the Ricci tensor in terms of the spacetime metric and the matter
fields. This is where the differences between minimally and non-minimally coupled theories arise. If the couplings are
restricted to be minimal, then the matter fields only appear on the RHS of the above equation and the symmetric
part of the Ricci tensor will be given in terms of gµν and the usual energy-momentum tensor of the corresponding
matter fields. For non-minimally coupled fields, the LHS will also depend on the matter fields so that, although we
will still be able to express the Ricci tensor in terms of gµν and the matter fields, the latter will appear in arbitrary
combinations, not necessarily through the energy-momentum tensor.
Finally, it is important to note that the hypermomentum Hµβ

α of the matter fields will not vanish and, therefore, it
will contribute non-trivially to the connection field equations. As we have discussed, this fact can be easily handled
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and the resulting effect will be a different dependence of the auxiliary metric on the matter fields. Moreover, the
existence of the projective symmetry in the non-minimal couplings will guarantee that the off-shell constraint given
in (37) will not be violated, i.e., we will have Hµα

α = 0. It is sometimes argued that the projective symmetry in
metric-affine theories (mainly within the context of the Einstein-Hilbert action as in [36]) leads to inconsistencies in
the field equations when introducing matter fields. However, as discussed for instance in [9], even in the presence
of non-minimal couplings, inconsistencies do not necessarily arise and our results here provide an explicit realisation
of this general argument by simply imposing the same projective symmetry in the matter sector, which is in fact a
natural manner of introducing non-minimal couplings within the framework of these theories.

IV. EINSTEIN FRAME REPRESENTATION

In the previous sections we have worked with the field equations directly to show that the connection is given
by the Levi-Civita connection of the auxiliary metric and the torsion only enters as a projective mode which can
therefore be gauged away. We will now re-obtain the same results from a different approach by showing the existence
of an Einstein frame representation for generic gravity Lagrangians which depend on the symmetric part of the Ricci
tensor, including the non-minimal couplings discussed in the precedent section. This naturally extends the Einstein
frame representation constructed in [9] for the case of minimally coupled fields to the case of non-minimally coupled
fields and the full discussion given in that reference will be valid for the more general theories under consideration
here. The Einstein frame is achieved by first performing a Legendre transformation so that the action is written in
the equivalent form

S =
1

2κ2

∫

d4x
√−g

[

F (gµν ,Σµν , ψ, ∂ψ) +
∂F

∂Σµν

(

R(µν) − Σµν

)

]

+ Sm[gµν , ψ, ∂ψ] , (67)

where Σµν is an auxiliary field. One can easily verify that variation with respect to Σµν leads to R(µν)(Γ) = Σµν

(provided F is a non-linear function of Σµν), which inserted back into the action recovers the theory (13) in the Ricci
symmetric case. A key reason to introduce the above action is that, unlike (63), this is linear in the Ricci tensor
R(µν)(Γ). We can now introduce the field redefinition given by

√

−Z̃Z̃µν =
√−g ∂F

∂Σµν

, (68)

that allows to express Σµν in terms of the new field Z̃µν , the spacetime metric gµν and the matter field, i.e., Σµν =

Σµν(Z̃µν , gαβ , ψ, ∂ψ). In terms of the new field Z̃µν , the action can be written as

S =
1

2κ2

∫

d4x
[
√

−Z̃Z̃µνR(µν)(Γ)−
√
−gV (gαβ , Z̃αβ , ψ, ∂ψ)

]

+ Sm[gµν , ψ, ∂ψ] , (69)

where the potential V (gαβ , Z̃αβ , ψ, ∂ψ) is defined as

V (gαβ, Z̃αβ , ψ, ∂ψ) =
∂F

∂Σµν

Σµν − F . (70)

Here, the field Σµν must be replaced by its expression obtained from solving (68). This is the step where the differences
between minimally and non-minimally coupled theories arise since in the minimally coupled case this potential does
not depend on the matter fields. On the other hand, we can see from the equivalent action (69) that the field Z̃µν

has now the standard Einstein-Hilbert kinetic term and the spacetime metric gµν only enters algebraically, i.e. it is
an auxiliary field that can be integrated out by solving its field equations. Since now the potential V also depends on
the matter fields, the solution for gµν does not need to be a function of the energy-momentum tensor as it occurs in

the minimally coupled case. The corresponding solution will thus provide gµν = gµν(Z̃αβ , ψ, ∂ψ) that can be plugged
in the action to finally obtain

S =
1

2κ2

∫

d4x
√

−Z̃Z̃µνR(µν)(Γ) + S̃m[Z̃µν , ψ, ∂ψ] , (71)

where S̃m stands for the modified matter sector resulting from integrating the spacetime metric out. Since the
auxiliary metric Z̃µν now has the usual Einstein-Hilbert kinetic term in the Palatini formalism, we can now use the
extensive machinery developed for this simple action and we can immediately conclude that the connection will be
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nothing but the Levi-Civita connection of Z̃µν up to the projective mode [36], which remains as a pure gauge freedom
(see e.g [37, 38]). The only difference now is that we have generated new matter interactions.
We thus recover the results obtained above when working at the field equations level. In this representation we

can see again the difference between minimally and non-minimally coupled cases, namely: while in the former the
matter fields only enter through the usual energy-momentum tensor in the relation of the two metrics, the latter
gives rise to a more general dependence on the matter fields, not necessarily through the energy-momentum tensor.
A very straightforward application of our result concerns the extensions of the f(R, T ) theories proposed in [39] to
include general couplings of the Ricci tensor and the energy-momentum tensor so that the action depends on an
arbitrary function f(R, T,RµνTµν). Although these theories give rise to interesting cosmological phenomenology in
their metric formulation, it was shown in [40] that the additional coupling to the Ricci tensor inevitably introduces
ghost-like instabilities when considered as universal. We see however that these theories can be rendered ghost-free
in their metric-affine formulation according to the results obtained here, since they correspond to a particular case of
the general matter couplings considered above.

V. PROJECTIVE GAUGE FIXING AND EXISTENCE OF A METRIC GAUGE

In the previous sections we have extensively studied the consistency of theories with a projective symmetry, including
non-minimal couplings. Due to this symmetry we have encountered the expected presence of four gauge degrees of
freedom in the solution of the connection encoded in the vector Aµ = Sλ

λµ. In this section we will exploit this symmetry
and discuss the existence of special gauge choices. In particular, we will analyse the conditions under which a gauge
without non-metricity is possible.
Let us first consider the case of f(R) and f(R, T ) theories already explored above. In those theories, the projective

modes can be used to obtain different representations of the same theory in such a way that one can have i) a
torsionless theory with nontrivial non-metricity or ii) a metric compatible theory with torsion. Obviously, both
representations being simply two different gauge choices are physically equivalent, but the geometrical frameworks
differ4. In order to explicitly show this, we will consider the general solution for the connection (33), which consists of
the piece compatible with the auxiliary metric, that in the present case is given by hµν = fR gµν , plus the projective
mode. By taking the Γ-covariant derivative of this expression we then have ∇Γ

αhµν = 4
3Aαhµν so that the covariant

derivative of the spacetime metric is given by

∇Γ
αgµν =

(

4
3Aα − ∂α log fR

)

gµν . (72)

In the study of f(R) and f(R, T ) theories à la Palatini, it is common to set the torsion to zero (Aα = 0) at the onset
of the analysis, which implies that the non-metricity tensor QΓ

αµν ≡ ∇Γ
αgµν takes the value QΓ

αµν = −gµν ∂α log fR.

However, the above equation (73) shows that the choice Aα = 3
4∂α log fR leads to QΓ

αµν = 0, which implies a metric-
compatible connection, but with torsion. An explicit analysis of the resulting field equations puts forward that these
two representations are physically equivalent, as a consequence of the freedom in the choice of Aα –see [24] for details.
Let us now investigate whether the Born-Infeld gravity theory exhibits similar features. The most commonly (if

not uniquely) studied case is the torsionless gauge (frequently without explicit mention to that being a gauge choice
of the projective mode). We want to study here it this theory could also admit a metric-compatible representation
with some nontrivial torsion. We are now ready to check this by explicitly computing ∇Γ

α gµν having in mind that,
unlike in the f(R)/f(R, T ) case, the particular relation between gµν and qµν is no longer conformal but of the form
qµν = gµα Ωα

ν , with Ωα
ν satisfying (54). In this case, we find

∇Γ
α gµν =

4

3
Aαgµν +∇C̃

α gµν . (73)

The computation of ∇C̃
α gµν can be efficiently done by employing the relation gµν = qµβ(Ω

−1)βν = (Ω−1)ν
β
qβµ , and

the fact that ∇C̃
α qµν = 0, leading to

∇Γ
α gµν =

4

3
Aαgµν + 2Ωλ

β

[

gλ(µ∇C̃
α (Ω

−1)βν)

]

=
4

3
Aαgµν − 2

[

∇C̃
αΩ

λ
β

]

gλ(µ(Ω
−1)βν) (74)

4 Let us comment that equivalent representations in terms of different geometrical entities of the same gravity theory already exist in the
literature. Perhaps, the paradigmatic example is the equivalence between General Relativity, with gravity represented by the curvature
of the Levi-Civita connection, and its teleparallel equivalent, where there is no curvature and gravity is ascribed to the torsion of the
Weitzenböck connection.
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that can be more compactly written as5

∇Γ
α gµν =

[

4

3
Aαδ

λ
ν −∇Γ

α

(

log Ω̂
)λ

ν

]

gµλ (75)

which nicely generalises the expression (73) to the case of Born-Infeld theories. Furthermore, since we only used
that the two metrics are related by means of the deformation matrix Ωµ

ν to obtain the above expression, it is in
fact completely general for the class of theories considered in the precedent sections built in terms of the symmetric

part of the Ricci tensor. Let us also notice that ∇Γ
αΩ

µ
ν = ∇C̃

αΩ
µ
ν because Ωµ

ν is a (1, 1)-tensor and, then, one can
easily show that the Aα−piece of the Γ−covariant derivative identically vanishes. As it is apparent from (75), those
theories for which the deformation matrix is proportional to the identity, i.e., the two metrics are conformally related,
admit a gauge such that the non-metricity tensor vanishes. In the general case where the deformation matrix has a
more involved structure (like in Born-Infeld theories for instance) one cannot, in general, find a gauge with vanishing
non-metricity.
Let us obtain more explicit conditions on the theories that permit a metric-compatible gauge. For that, let us start

from the condition

4

3
Aαδ

λ
ν −∇Γ

α

(

log Ω̂
)λ

ν = 0. (76)

The existence of solutions for this equation will guarantee the existence of a gauge without non-metricity. If we take
the trace with respect to λ and ν we obtain

Aα =
3

16
∂α logΩ (77)

where we remind that Ω = det Ω̂ and we have used that Tr log Ω̂ = log det Ω̂. We can now insert this expression in
(76) to rewrite it purely in terms of the deformation matrix as

∇Γ
α

[

logΩλ
ν −

1

4
(logΩ)δλν

]

= 0. (78)

Since the deformation matrix is fully determined by the form of the action, this equation gives the desired condition
for the existence of a metric gauge. We will not analyse here in detail the most general theories satisfying these
equations. In fact, it is conceivable that some theories exhibit solutions of the field equations compatible with (78)
so that the non-metricity can only be removed on some specific solutions, but not in general, as we will illustrate
below for a particular case. However, the condition (78) immediately shows that theories giving rise to a deformation
matrix proportional to the identity, like those where the curvature only enters through the Ricci scalar R, admit a
gauge without non-metricity. For those theories one can entirely trade the torsion and the non-metricity with the
corresponding equivalent representations of the theory.
In order to gain some insight on the conditions needed to obtain a metric compatible gauge for the general case,

we will now consider a scenario in which all off-diagonal terms in Ωλ
β vanish, leaving only a diagonal object of

the general form Ωλ
β = ω(β) δ

λ
β , with up to four different functions ω(β) (no summation over repeated indices).

This is also a physically relevant case as many applications involving perfect fluids, scalar fields, electric fields, etc.
in spherically symmetric or cosmological scenarios typically involve a diagonal deformation matrix Ωλ

β [9]. For
instance, considering a perfect fluid of density ρ and pressure P as matter source in homogeneous and isotropic
cosmological models, one finds T µ

ν = diag[−ρ, P, P, P ], whose symmetries allow for a deformation matrix of the
form Ωµ

ν = diag[ω0, ω1, ω1, ω1], with ω0 and ω1 being functions of the cosmic time t. In static stellar models we
find a similar decomposition but with ω0 and ω1 being functions of the radial coordinate. In black hole scenarios

with electric charge q, we find T µ
ν = q2

8πr4diag[−1,−1,+1,+1], whose symmetries can again be assumed for the
deformation matrix, namely Ωµ

ν = diag[ω0, ω0, ω1, ω1], with ω0 and ω1 now being functions of the radial coordinate
[42]. A similar structure appears in the case of certain anisotropic fluids [43, 44]. For a static, spherically symmetric
scalar field, one has T µ

ν = diag[T0, T1, T0, T0] and so one can assume Ωµ
ν = diag[ω0, ω1, ω0, ω0], with ω0 and ω1 being

again functions of the radial coordinate [45]. Note that these algebraic properties are quite general and are also valid
in theories different from the EiBI gravity model.

5 We drop the explicit symmetrisation because one can show that the object on the RHS is symmetric by construction [9].
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In the diagonal cases, we then have that (75) reduces to

∇Γ
α gµν =

(

4
3Aα − ∂α lnω(ν)

)

gµν . (79)

According to this expression, for the simplest set ups, namely, those with diagonal T µ
ν and Ωµ

ν , it is not possible in
general to set the right-hand side of (79) to zero (vanishing non-metricity) by specifying the form of Aα due to the
freedom in the choice of the four gradients ∂αω(ν). Only when Ωµ

ν represents a conformal transformation (which is
the case of theories where the curvature only enters through the Ricci scalar like in f(R) and f(R, T ) theories) is it
possible to completely remove the non-metricity in favour of a specific type of torsion. In all the examples mentioned
above, where the functions ω(ν) only depend on one coordinate (time or radius), the vector Aα can only absorb one
of the gradients of the ω(ν) and, therefore, the resulting theories possess genuine non-metricity.
Summarising, the results for this simple scenario put forward that only in the case in which the four ω(ν) are the

same function one can use the projective gauge freedom to get rid of all the non-metricity terms. This case in fact
corresponds to a conformal transformation between the physical and the auxiliary metrics, which is characteristic
of theories where the deformation matrix is proportional to the identity, as it happens for theories only depending
on the Ricci scalar R. In the EiBI theory, however, this does not happen in general, except for a restricted class
of solutions supported by very specific matter sources like e.g. the case of a cosmological constant. This illustrates
our discussion for the general case of how the non-metricity can be removed for some solutions even if the general
deformation matrix of the theory does not identically fulfils the condition (78).

VI. SUMMARY AND CONCLUSION

In this work we have developed a general formalism for metric-affine theories of gravity with a projective invariance
that is implemented by considering Lagrangians where the connection only enters through the symmetric part of the
Ricci tensor. We have naturally extended the results of [9] to the case of non-minimally coupled fields. In order to
comply with the projective symmetry, the non-minimal couplings are again imposed to contain only the symmetric
part of the Ricci tensor. For this very large class of theories we have obtained the general solution for the connection.
We have shown that the torsion only appears as a projective mode and, thus, can be gauged away. On the other
hand, the symmetric part of the connection (carrying the physical information) is given by the Levi-Civita connection
of an auxiliary metric that is non-trivially related to the spacetime metric and the matter fields. An important
property that we have clarified is that the presence of non-minimally coupled matter fields make the dependence
of the auxiliary metric on them more general than in the minimally coupled case, where matter fields only enter
through the energy-momentum tensor. This can in fact have interesting phenomenological consequences, which will
be explored elsewhere.
Finally, we have discussed the existence of a projective gauge choice without non-metricity. We have shown that

such a gauge always exists for theories where the two metrics are conformally related, essentially reducing this family
of theories to those where only the Ricci scalar appears. On the other hand, if the two metrics are not conformally
related it is, in general, not possible to impose a gauge without non-metricity. We have explicitly shown our results
for the case of f(R) and f(R, T ) theories as examples of theories admitting a metric-compatible representation and
Eddington-inspired-Born-Infeld as an example where such a representation is not possible so that non-metricity is,
therefore, an intrinsic, genuine property of such theories.
We would like to remark an interesting physical difference between the two families of theories obtained according

to the existence or not of a gauge with vanishing non-metricity. From the two frames existing in these theories, one
can easily see that gravitons propagate on the auxiliary metric6, while photons propagate on the spacetime metric
(see the discussion on this point in [9]) so that, even though they both are massless particles, their trajectories can
differ. As we have discussed, the metric gauge exists for theories where the two metrics are conformally related and,
since null geodesics are conformally invariant, these theories are characterised by the universality of the propagation
of massless particles. On the other hand, theories not allowing the gauge with vanishing non-metricity will typically
be characterised by a different propagation of photons and gravitons even if they are both massless particles.
Though this work has focused on the properties of projectively invariant theories, the master equations (30) and (31)

also contemplate cases without this symmetry. The physical implications of the breakdown of this symmetry and the
role of the pure tensorial part of the torsion, S̃λ

αβ , in cosmological and astrophysical scenarios would be interesting to
pursue. On the other hand, the noticed relation between the general solution of the connection including the projective

6 The relevance of the auxiliary metric for the propagation of the tensor modes was previously shown in [6] for general Palatini theories
and in [46] for braneworld scenarios.
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mode and the family of geometries with vector distortion introduced in [28] also opens an interesting possibility of
partially unleashing the torsion or the connection with a general vector mode, this time dynamical. This would be
at the expense of breaking the projective invariance, but with potentially interesting cosmological scenarios as those
studied in [47]. Irrespective of the specific route, our results encourage to further explore metric-affine theories as
those considered here and possible extensions.
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