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ABSTRACT

This work presents a joint and self-consistent Bayesian treatment of various foreground and target contaminations when inferring cos-
mological power-spectra and three dimensional density fields from galaxy redshift surveys. This is achieved by introducing additional
block sampling procedures for unknown coefficients of foreground and target contamination templates to the previously presented
ARES framework for Bayesian large scale structure analyses. As a result the method infers jointly and fully self-consistently three
dimensional density fields, cosmological power-spectra, luminosity dependent galaxy biases, noise levels of respective galaxy distri-
butions and coefficients for a set of a priori specified foreground templates. In addition this fully Bayesian approach permits detailed
quantification of correlated uncertainties amongst all inferred quantities and correctly marginalizes over observational systematic
effects. We demonstrate the validity and efficiency of our approach in obtaining unbiased estimates of power-spectra via applica-
tions to realistic mock galaxy observations subject to stellar contamination and dust extinction. While simultaneously accounting for
galaxy biases and unknown noise levels our method reliably and robustly infers three dimensional density fields and corresponding
cosmological power-spectra from deep galaxy surveys. Further our approach correctly accounts for joint and correlated uncertainties
between unknown coefficients of foreground templates and the amplitudes of the power-spectrum. An effect amounting up to 10
percent correlations and anti-correlations across large ranges in Fourier space.

Key words. large scale – reconstruction – Bayesian inference

1. Introduction

In recent years the cosmological community has witnessed
great improvements in our understanding of the Universe. This
progress is particularly due to the spectacular results of the
Planck satellite mission and deep galaxy observations such as
the ones provided by the Baryon Oscillation Sky Survey (Planck
Collaboration et al. 2011; Dawson et al. 2013; Planck Collabora-
tion et al. 2016). These results put high standards for future anal-
yses of cosmological data with an ever increasing need to control
uncertainties and systematic effects in observations in order not
to misinterpret data when searching for cosmological signals. To
address these needs, data science is challenged to provide ever
more robust data models accounting for complex systematic ef-
fects and allowing for accurate marginalization over unknowns
when interpreting cosmological data.

A particular challenge in existing and coming deep galaxy
redshift surveys arises from the need to properly understand se-
lection processes of galaxies from which cosmological surveys
are constructed (see e.g. Huterer et al. 2013). Such identification
was conducted for mitigating star-galaxy contamination of the
first SDSS photometric galaxy catalogue (Scranton et al. 2002).
The problem is further exacerbated by our lack of understanding
of galaxies as tracers of the underlying dark matter field when
performing cosmological inference. In particular all our indi-
cators for completeness rely on the relative slow, homogeneous
and isotropic evolution of galaxy densities relative to dark matter
densities. If the observation is further hindered by instrumental
and/or terrestrial effect, this leads to a complex and challenging
analysis problem.

In particular, Ross et al. (2011) and Ho et al. (2012) have
identified that contamination by bright stars alter significantly
the intrinsic clustering signal of the observed photometric galaxy
sample at large scales. The last SDSS release based on DR12
photometry still shows this problems in the measured correlation
function (Ross et al. 2017). Effects due to foreground stars, dust,
seeing, sky background intensity have the greatest potential to
cause systematic deviations in the clustering signal (see e.g. Ho
et al. 2015; Leistedt & Peiris 2014). Selection of spectroscopic
galaxies is not affected immediately by the same effect, but it is
subject to other systematics, such as fibre collisions, target pri-
ority conflicts and fibre plate fixations. All these data contami-
nations constitute a particular nuisance, since foreground affects
are also affecting the noise properties of observed galaxy sam-
ples via varying attenuation or target contamination across the
sky.

In the large scale structure community, foreground effects
are traditionally treated by weighting observed galaxies to ho-
mogenize the distribution of the traced density field across the
sky (see e.g. Ross et al. 2011; Sánchez et al. 2013; Ross et al.
2017). This approach neglects possible and sometimes counter
intuitive correlations between contamination effects and power-
spectrum amplitudes across large ranges in Fourier space. It also
ignores the effects of modified observational noise properties due
to target contamination. There have also been several methods
proposed to account for additive contributions from unknown
foregrounds in photometric and spectroscopic galaxy observa-
tions (see e.g. Tegmark et al. 1998; Leistedt & Peiris 2014;
Ho et al. 2015). Also the literature on cosmic microwave back-
ground analyses provides a plenitude of approaches to account
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Fig. 1. Flow chart depicting the multi-step iterative block sampling procedure exemplified for two data sets. In the first step a three dimensional
density field will be realized conditional on the galaxy observations. In subsequent steps foreground template coefficients, the bias parameters, the
power spectrum and the normalization parameters for the galaxy distribution are sampled conditional on respective previous samples. Iteration of
this process yields samples from the full joint posterior distribution.

for linear additive foreground contributions (see e.g. Tegmark &
Efstathiou 1996; Hinshaw et al. 2007; Eriksen et al. 2008; Sude-
van et al. 2016; Vansyngel et al. 2016; Elsner et al. 2017).

However, all these approaches do not properly account for
multiplicative foreground and target contaminations which also
affect the noise. In this work we expand on the idea that fore-
ground effects are more closely related to multiplicative rather
than additive contributions. This is similar to the discussion pre-
sented in Huterer et al. (2013), who used a multiplicative correc-
tion in observed galaxy densities.

In this work we seek to account for these effects when infer-
ring cosmological power-spectra from observations. Literature
provides a plenitude of various statistically more or less rigorous
approaches to measure power-spectra. Several of these methods
rely on Fourier transform based methods or exploit Karhunen-
Loève or spherical harmonics decompositions (see e.g. Feldman
et al. 1994; Tegmark 1995; Hamilton 1997a; Yamamoto 2003;
Percival et al. 2004; Tegmark et al. 1997, 2004; Pope et al. 2004;
Fisher et al. 1994; Heavens & Taylor 1995; Tadros et al. 1999;
Percival et al. 2004; Percival 2005). Other approaches aim at in-
ferring the real space power spectrum via likelihood methods
(Ballinger et al. 1995; Hamilton 1997a,b; Tadros et al. 1999; Per-
cival 2005).

In the Bayesian community several approaches have been
proposed to jointly infer three dimensional density fields and
their corresponding cosmological power-spectra (see e.g. Jasche
et al. 2010; Granett et al. 2012; Alsing et al. 2016). Also note,
that similar approaches explored for analyses of cosmic mi-
crowave background data (see e.g. Wandelt et al. 2004; O’Dwyer
et al. 2004; Eriksen et al. 2004; Jewell et al. 2004; Larson et al.
2007; Eriksen et al. 2007; Jewell et al. 2009).

To account for such effects of foreground and target contam-
ination in a statistically rigorous fashion, we propose a hierarchi-
cal Bayesian approach to jointly and self-consistently infer three
dimensional density fields, corresponding power-spectra and co-
efficients of a set of different foreground templates. In partic-

ular this work builds upon our previously developed Bayesian
inference algorithm ARES (Algorithm for REconstruction and
Sampling) (see e.g. Jasche et al. 2010; Jasche & Wandelt 2013;
Jasche & Lavaux 2015; Lavaux & Jasche 2016).

The manuscript is structured as follows. In Section 2 we give
a brief overview of the statistical model that we propose. First
we remind in Section 2.1 the hierarchical Bayesian inference ap-
proach on which our code, ARES, is based. Then we describe in
Section 2.2 the necessary modifications of the model for fore-
ground effects and in Section 2.3 the modification to the origi-
nal inference algorithm. In Section 3 we describe the generation
of artificial data used to test the performance of the sampling
framework in section 4. Finally we discuss our results and give
an outlook on future applications in Section 5.

2. The Bayesian inference model

This section provides a brief overview over our previously pre-
sented Bayesian inference framework ARES (see e.g. Jasche et al.
2010; Jasche & Wandelt 2013; Jasche & Lavaux 2015). We will
also give a detailed description of the modifications enabling
us to account for foreground and target contamination in deep
galaxy observations.

2.1. The ARES framework

As discussed in the introduction, the current work builds upon
the previously developed Algorithm for Reconstruction and
Sampling ARES (see e.g. Jasche et al. 2010; Jasche & Wandelt
2013; Jasche & Lavaux 2015). This full Bayesian large scale
structure inference method aims at precision inference of cos-
mological power-spectra from galaxy redshift surveys. Specif-
ically it performs joint inferences of three dimensional density
fields, cosmological power spectra as well as luminosity depen-
dent galaxy biases and corresponding noise levels for different
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Fig. 2. We show here the foreground templates (top row) and the observed sky completenesses (bottom row) used to generate and analyse the
mock catalogue in this work. The upper left panel shows the reddening map derived from the data of Schlegel et al. (1998). The upper right panel
is a star map count obtained as detailed in Section 3. The lower left panel gives the observed completeness for the mock CMASS survey and the
lower right panel for the mock LOW-Z survey. These maps have been generated from SDSS-DR12 data (Eisenstein et al. 2011).

galaxy populations in the survey (Jasche et al. 2010; Jasche &
Wandelt 2013; Lavaux & Jasche 2016).

In particular the ARES algorithm addresses a large scale data
interpretation problem involving many millions of parameters.
In the following, for the sake of clarity, we will describe the
corresponding data model in case of a single galaxy population.
The generalization of this data model to account for an arbitrary
number of galaxy populations with respective stochastic and sys-
tematic uncertainties has been described in our previous works
(Jasche & Wandelt 2013; Lavaux & Jasche 2016). In case of a
single galaxy population the data model is given as:

Ni = N̄Ri(1 + bDiδi) + εi, (1)

where Ni is the number of galaxies in the i-th grid element, N̄
is the mean density of the galaxy population, Ri is the overall
linear response operator of the survey, describing redshift and
target completeness, b is the galaxy population bias, Di is the
cosmic growth factor at the position of i-th grid element, δi is
the density contrast at a reference redshift in this same grid el-
ement and εi denotes random but structured instrumental noise.
Also, as described in our previous work, the observational noise
will be assumed to be a Gaussian approximation to Poissonian
noise, neglecting the influence of the signal itself. This assump-
tion yields the corresponding noise covariance matrix as:

〈εiε j〉 = N̄Riδ
K
i, j, (2)

with δK
i, j being the Kronecker-Delta (i.e. equal to one if i = j

and zero otherwise). Finally, we assume a homogeneous and
isotropic Gaussian prior for density contrast amplitudes δi. For

further details please consult our previous work Jasche & Wan-
delt (2013).

In order to provide full Bayesian uncertainty quantifica-
tion the algorithm explores the joint parameter space of density
fields, power-spectra, galaxy biases and noise parameters via an
efficient block sampling scheme. We show in Figure 1 a visual-
ization of this iterative sampling procedure including the fore-
ground sampling method presented in this work. Iterative execu-
tion of these respective sampling steps provides us with a valid
Markov chain and a numerical representation of the full joint
target posterior distribution. Also note, we use here an upgraded
version of the ARES algorithm for which we employ the messen-
ger method discussed in Elsner & Wandelt (2013). This particu-
lar implementation of the Wiener posterior sampling method has
been demonstrated to improve upon the statistical efficiency of
previous implementations (Jasche & Lavaux 2015).

2.2. The foreground and target contamination model

Spectroscopic completeness is generally computed by the ratio
of the number of observed spectra and the number of all photo-
metric targets for a given area in the sky. This ratio is assumed
to hold for any pointing of this area. However besides galaxies
also a number of unknown contamination can contribute or affect
observed photometric targets, artificially increasing or depleting
their local number density. This contamination may include e.g.
foreground stars, dust absorption or effects due to seeing. Naive
estimate of the spectroscopic completeness from data therefore
does not reflect the actual probability of obtaining a galaxy spec-
trum at a given position in the sky. From observations we can
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build an estimate of the completeness by calculating the ratio of
the number of observed galaxy spectra Ng

i,spectro and the number
of target galaxies Ng

i,targets, both in the direction of the pixel i in
the sky:

Ci,obs =
Ng

i,spectro

Ng
i,targets

=
Ng

i,spectro

Ng
i,photo

Ng
i,photo

Ng
i,targets

= CiM−1
i , (3)

with Ng
i,photo being the actual true number of galaxies that should

have been identified by photometry and Mi is the ratio of all
the observed photometric targets Ng

i,targets to the true sample of
target galaxies Ng

i,photo. Equation (3) demonstrates the dilemma,
that given some spectroscopic information (for which objects
can clearly be identified as galaxies) there is no immediate way
to decide how many galaxies were in the actual target sam-
ple. In Equation (3) this mismatch is quantified by the ratio
Mi = Ng

i,targets/N
g
i,photo between the number of real photometric

targets that should have been chosen vs the actual but unknown
number of all galaxy targets.

We expect two possible contributions to Mi: either there is an
excess in the number of targets because the photometric infor-
mation was insufficient to separate galaxies from stars or other
objects in the sky, or there is a lack of galaxies that have not
been detected due to, e.g., low surface brightness or dust absorp-
tion. Assuming such foreground contributions to be mild per-
turbations, the corresponding contamination map M on the sky
can be expressed as a product of small contaminants (greater or
lesser than one). Individual contaminations can then be modelled
via respective foreground templates. Note that this approach has
also been adopted by the BOSS collaboration to correct their
measurement of the cosmological power-spectrum (Ross et al.
2011; Ho et al. 2012; Anderson et al. 2012). Given this assump-
tion we can express individual Mi as:

Mi =

Nfg∏
n=0

(1 − αnFn,i), (4)

where Fn,i is the foreground template of the n-th contribution at
the i-th pixel of the map, αn is the amplitude of respective fore-
ground templates, Nfg is the total number of foreground maps.
We note that different surveys or even different sub-samples of
observed galaxies may be subjected to different foreground ef-
fects. To consistently account for all these foreground effects
when jointly analysing individual or several data sets the orig-
inal data model implemented in ARES needs to be modified by
a multiplicative correction of the survey response operator Rc

i .
Specifically, we model the observed number of galaxies Nc

i in a
survey as:

Nc
i = N̄cMi({αc

n})R
c
i (1 + bcDiδi) + εc

i , (5)

where the additive noise contribution εc
i drawn from a zero mean

Gaussian distribution with covariance matrix given as:

〈εc
i ε

c′
j 〉 = N̄cMi({αc

n})R
c
i δ

K
i, jδ

K
c,c′ . (6)

The superscript c indicates different considered catalogues.
These modifications render the posterior distribution of δi more
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Fig. 3. The plot gives the radial selection functions for the CMASS and
LOW-Z sample that we have used to generate the mock data to closely
resemble the actual SDSS3 BOSS data. The CMASS selection is given
in thick solid (North Galactic Cap) and dashed line (South Galactic
Cap). The LOWZ selection is given in thin dash-dotted (North Galactic
Cap) and dotted lines (South Galactic Cap).

complex. By construction the likelihood is given as:

L({Nc
i }|{δi}, {N̄c}, {bc}) ∝

Nc∏
c=0

Nv∏
i=0

(
N̄cMi({αc

n})R
c
i

)−1/2

exp
{
−

1
2

1
N̄cMi({αc

n})Rc
i[
N i

c − N̄cMi({αc
n})R

c
i (1 + bcDiδi)

]2
}
. (7)

It should be remarked that foreground contributions, as modelled
here, are not just mere additive contributions to the signal to in-
fer, but they also have pronounced impact on the varying noise
properties across the survey. Hence, as can be seen from Equa-
tion (7) inferring the foreground coefficients {αn} is a highly non-
linear analysis task.

2.3. Sampling foreground coefficients

As described by the likelihood distribution given in Equation (7)
foregrounds of different catalogues as labelled by the superscript
c can be sampled independently. For this reason and without loss
of generality here we provide the sampling procedure for a single
galaxy catalogue only. Then the conditional posterior distribu-
tion for the coefficients {αn} of respective foreground templates
can be written as:

P
(
{αn}|{Ni}, {δi}, {N̄}, {b}

)
∝

P ({αn}) L({Ni}|{δi}, {N̄}, {b}, {αn}) , (8)

where P ({αn}) is the prior of foreground coefficients and
L({Ni}|{δi}, {N̄}, {b}, {αn}) is the likelihood for a single catalogue
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as given by Equation (7). In the absence of any further infor-
mation on the amplitudes of foreground coefficients αn we fol-
low the maximal agnostic approach by using a uniform prior
P ({αn}) = 1. It can be seen from Equations (8) and (7) that
conditional posterior distribution does not factorize in the coef-
ficients αn for respective foreground templates. To correctly ac-
count for the conditional dependencies between the coefficients
{αn}, we propose to use a block sampling procedure to sequen-
tially draw random variates of αn with respect to all other val-
ues. This is achieved by introducing the following sequence of
sequential sampling steps to the full ARES framework:

α0 ∼ P
(
α0|{αn} \ α0, {Ni}, {δi}, {N̄}, {b}

)
α1 ∼ P

(
α1|{αn} \ α1, {Ni}, {δi}, {N̄}, {b}

)
α2 ∼ P

(
α2|{αn} \ α2, {Ni}, {δi}, {N̄}, {b}

)
...

αN fg−1 ∼ P
(
αN fg−1|{αn} \ αN fg−1, {Ni}, {δi}, {N̄}, {b}

)
where the symbol "∼" indicates a random draw from respective
distributions. This sampling procedure integrates well into the
ARES framework as indicated in Fig. 1. Despite the fact that
drawing respective realizations of the foreground coefficients
{αn} is a non-linear process, there exists a direct sampling proce-
dure. The detailed derivation of the foreground coefficient sam-
pler is presented in Appendix A. The detailed algorithm for gen-
erating respective random variates is given in Algorithm 1.

3. Generation of Gaussian mock data

To test the validity and performance of the modified ARES sam-
pling framework we follow a similar approach as discussed in
our previous works (Jasche et al. 2010; Jasche & Wandelt 2013;
Jasche & Lavaux 2015). These mock catalogues are generated
in accordance with the data model described in Equation (7), in-
cluding various foreground effects. We generate artificial galaxy
data on a cubic equidistant grid of side length 4000 h−1Mpc con-
sisting of 2563 grid nodes.

First a realization of a cosmic density contrast field δi is
drawn from a zero-mean normal distribution with covariance
matrix corresponding to a cosmological power-spectrum. This
spectrum, including baryon acoustic oscillations, is calculated
according to the prescription described in Eisenstein & Hu
(1998) and Eisenstein & Hu (1999). For numerical evaluation
we assume a ΛCDM cosmology with the set of parameters given
as (Ωm = 0.3089, ΩΛ = 0.6911, Ωb = 0.0485, h = 0.6774,
σ8 = 0.8159, ns = 0.9667), as determined by Cosmic Mi-
crowave Background observations of the Planck satellite mission
(Planck Collaboration et al. 2016).

Following a similar description as discussed in Jasche &
Wandelt (2013), we intent to create a realistic scenario to jointly
analyse the SDSS DR7 main, the CMASS and the LOW-Z
galaxy sample while accounting for their respective systematic
effects. Corresponding artificial data sets are then drawn from
the distribution given in Equation (7). These artificial data sets
include the effects of noise, galaxy bias, survey geometries, se-
lection and foreground effects. For the sake of this work we re-
strict our tests to accounting for the dominant foreground effects
of dust extinction and stellar contamination. The templates for
these two effects are presented in the upper panels of Fig. 2 the
lower panels show the completeness masks for the respective
surveys.
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Fig. 4. The plot shows the sequence of posterior power-spectrum real-
izations during the initial sampling steps of the Markov chain as indi-
cated by the colour-bar in the plot. As can be seen the Markov chain
performs a coherent drift from an over-disperse initial state towards the
preferred region in parameter space. This initial burn-in phase lasts for
∼ 2000 Markov transitions.

The map describing dust extinction has been generated
straightforwardly from the SFD maps (Schlegel et al. 1998). In
particular we constructed a HEALPix map of the reddening at
Nside = 2048 by linearly interpolating the values of the SFD map
(Górski et al. 2005). The star map is built from different pieces of
information. The first component consists in computing a MAN-
GLE description1 of the geometry of the spectroscopic plates.
We then count the number of stars with apparent magnitudes
20.3 < iPSF < 20.6 present in each single non-overlapping poly-
gon. We convert these MANGLE description into an HEALPix
map and divide the value in each pixel by the area of the overlap-
ping polygon. This results in a map for which each pixel has an
estimated star count by steradians, thus a star density. We have
chosen to average by spectroscopic plates to reduce shot-noise in
the estimate. A better estimate would have been obtained from
the geometrical description of the photometric tiling but at the
cost of increased noise.

Further, for the SDSS DR7 main sample component of the
mock data we assume a radial selection function following from
a standard Schechter luminosity function with standard r-band
parameters (α = −1.05, M∗ − 5log10(h) = −20.44), and we limit
the survey to only include galaxies within an apparent Petrosian
r-band magnitude range 13.5 < r < 17.6 and within the absolute
magnitude ranges Mmin = −17.0 to Mmax = −23.0. As usual,
the radial selection function f (z) is then given by the integral
of the Schechter luminosity function over the range in absolute
magnitude.

For the CMASS and LOW-Z component we have used nu-
merical estimates of the selection functions by computing a his-
togram of the corresponding N(d) in the actual data sets (e.g. for
DR12 Ross et al. 2017) (d being the co-moving distance from

1 MANGLE software is originally provided by Swanson et al. (2008).
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Fig. 5. Correlation length of the sampler for different modes as indicated by the colour bar on the left. As can be seen most of the modes have
typical correlation lengths on the order of xxx samples. Some large scale modes exhibit longer correlation length as explained in the text.

the observer). To account for the different selection effects in
the northern and southern galactic plane we also split our mock
data sets into the CMASS and LOW-Z catalogues correspond-
ingly. The respective radial selection functions are presented in
Fig. 3. The average of the product of the two dimensional survey
geometry Cc(x̂) = Cc

i(x̂) and the selection function f (x) at each
grid element in the three dimensional volume yields the survey
response operator:

Rc
i =

1
|Vi|

∫
Vi

d3x Cc(x̂) f c(x) , (9)

with |V| the volume of the setV,Vi indicating the volume rep-
resented by the i-th grid element.

Given these definitions and a realization of the three dimen-
sional density field δi, realizations of artificial galaxy observa-
tions for respective catalogues labelled with c can be obtained
by evaluating:

Nc
i = N̄c Rc

i Mc
i (1 + bcδi) +

√
N̄c Rc

i Mc
i εi , (10)

where εi is a white-noise field drawn from zero-mean and unit
variance normal distribution.

4. Results

In this section we discuss results obtained by applying the mod-
ified ARES algorithm to artificial mock data. In particular in this
work we focus on the validity and statistical efficiency of the
algorithm.

4.1. Statistical efficiency of the sampler

To test the statistical efficiency of our sampler we follow a stan-
dard test procedure as described in previous works (see e.g.

Jasche et al. 2010; Jasche & Wandelt 2013; Jasche & Lavaux
2015). In particular we test the initial burn-in phase by starting
the sampler from an over dispersed state and monitoring transi-
tions in parameter space as a sequence of steps in the Markov
chain. Typically this test reveals a coordinated drift of inference
parameters towards their target values. Once the chain moved to
a preferred region in parameter space it starts to correctly explore
the target posterior distribution via the random walk Gibbs sam-
pling approach. At this stage it is assumed that the sampler has
passed the initial burn-in phase and we start recording samples
of the Markov chain. In Fig. 4 we show the sequence of sampled
posterior power-spectra during the burn-in phase. For this test
we started from an over dispersed state by multiplying the initial
guess of a Gaussian random density contrast field by a factor of
0.1. Fig. 4 nicely demonstrates the initial drift towards the pre-
ferred region in parameter space. As can be seen the initial burn
in phase consists of about ∼ 2000 Markov steps. As a side re-
mark we note that generation of individual samples require an
investment of ∼ 1.87 CPU-hours per sample for the present sce-
nario of dealing with five different galaxy sub-catalogues and
two foregrounds.

To further test the statistical efficiency of the Gibbs sampling
procedure we estimated its efficiency in generating independent
Markov samples. Generally subsequent samples in a Markov
chain are correlated and do not qualify for independent samples
of the target posterior distribution. To estimate how many inde-
pendent samples can be drawn from a Markov chain with a given
number of transition steps one has to determine the length over
which sequential samples are correlated. This correlation length
characterizes the statistical efficiency of generating independent
realizations of a parameter θ as follows:

C(θ)n =
1

N − n

N−n∑
i=0

θi − 〈θ〉
√

Var (θ)
θi+n − 〈θ〉
√

Var (θ)
, (11)

page 6 of 15



J. Jasche and G. Lavaux: Bayesian power-spectrum inference with foreground and target contamination treatment

1.7 1.9 2.1 2.3
®C0;F1

0.0

0.2

0.4

0.6

0.8

1.0

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C0;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
1
;F
1

1.7 1.9 2.1 2.3
®C1;F1

0.0

0.2

0.4

0.6

0.8

1.0

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C0;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
2;
F
1

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C1;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
2;
F
1

1.7 1.9 2.1 2.3
®C2;F1

0.0

0.2

0.4

0.6

0.8

1.0

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C0;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
3;
F
1

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C1;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
3;
F
1

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C2;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
3;
F
1

1.7 1.9 2.1 2.3
®C3;F1

0.0

0.2

0.4

0.6

0.8

1.0

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C0;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
4;
F
1

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C1;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
4;
F
1

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C2;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
4;
F
1

1.7 1.8 1.9 2.0 2.1 2.2 2.3
®C3;F1

1.7

1.8

1.9

2.0

2.1

2.2

2.3

®
C
4;
F
1

1.7 1.9 2.1 2.3
®C4;F1

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. Marginalized 2d probability distributions for foreground contamination coefficients of the five mock catalogues used in this analysis. Green
lines indicate the true values of foreground coefficients as used for the generation of the artificial mock galaxy survey. As can be seen different
panels show various degrees of correlation between inferred coefficients that are correctly accounted for by our Markov chain.

where n is the distance in the chain measured in iterations,
〈θ〉 = 1/N

∑
i θ

i and Var (θ) = 1/N
∑

i

(
θi − 〈θ〉

)2
and N is the

total number of samples in the chain.

As an illustration in Fig. 5 we show the correlation length
for the power-spectrum amplitudes of different modes in Fourier
space, as indicated in the plot. It can be seen that the typical cor-
relation length for a BOSS like survey analysis is on the order of
∼ 100 Markov transitions. These results demonstrate the numer-
ical feasibility of complex full Bayesian analyses of present and
next generation surveys.

4.2. Inference of template coefficients

As discussed above the proposed hierarchical Bayesian infer-
ence machine aims to account for the uncertainties of systematic
effects arising from foreground effects. In particular the ARES
framework correctly accounts for all joint and correlated uncer-
tainties of different inference parameters and even across the five
different mock galaxy surveys as used in this work. To illustrate
this fact in Fig. 6 we present two dimensional marginal posterior
distributions for the corresponding foreground template coeffi-
cients. As can be seen, different panels indicate various degrees
of correlation between different foreground coefficients across
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Mock LOWZ completeness uncertainty
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Fig. 7. Ensemble mean of the effective survey response operator (left panel) and corresponding standard deviation map (right panel). The ensemble
mean is renormalized by the largest pixel value, as the absolute value does not have an meaning independent of the mean density N̄ and the radial
selection function. The two above maps should be compared to the north galactic cap of the map in the lower right panel of Figure 2. The ensemble
mean is quite different ought to the introduced star contamination which could introduce contamination in targets. This manifests itself by an
over-completeness on the edge of the map. The right map shows a similar trend but touching the uncertainty on the selection this time.
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Fig. 8. Slices through three dimensional ensemble mean (left panels) and variance fields (right panels). Top panels show results obtained with
foreground correction while bottom panels show results without any foreground correction. As for the power-spectrum, we find an excessive large
scale power when foreground corrections are not applied. Computing the foreground self consistently results in a non contaminated reconstruction.
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Fig. 9. Univariate posterior distributions of power-spectrum amplitudes for a test without (left panel) and with (right panel) foreground corrections
over the full range of Fourier modes considered in this work. Red lines correspond to the true underlying cosmological power-spectrum from
which mock data sets were generated. The left panel clearly shows that uncorrected foreground effects yield excessive power for large scale modes
and also introduces an overall biased result. In contrast the right panel shows results obtained from our test with foreground corrections. It can be
clearly seen, that detailed treatment of all foreground effects permits us to obtain an unbiased measurement of power-spectrum amplitudes over
the full range of Fourier modes.

the five mock catalogues. We would also like to point out that
generally, distributions for foreground template coefficients are
highly non-Gaussian, and can have sharp transitions due to the
requirement that effective contamination templates are required
to have a positive sign.

As an interesting by-product of our sampling procedure we
are able to provide effective survey response maps which account
for the a priori unknown systematics due to foreground and tar-
get contamination. In particular mean and standard deviations of
such maps can be estimated by evaluating Equation (4) for every
foreground template parameter coefficient in the Markov chain
and multiplying it with the estimated completeness map Ci,obs.
The result is demonstrated in Fig. 7. It can be seen that most
corrections appear at the boundary of the mask. These are the
regions most affected by foreground stars in our test scenario.
Note, that corresponding standard deviations, as shown in the
right panel of Fig. 7, also show increased uncertainty in these
regions. This demonstrates that the algorithm accounts for larger
uncertainty for more unreliable portions of the data, and opti-
mally extracts cosmological information from observations, as
discussed in the following.

4.3. Inferred three dimensional density fields

Although this work focusses primarily on the inference of cos-
mological power-spectra it is instructive to also look at inferred
three dimensional density fields. In particular we would like to
highlight the impact of foreground contaminations on the infer-
ence of density fields from galaxy redshift surveys. To do so
we compare two ARES analyses of the generated mock galaxy
catalogue, with and without foreground treatment. From these

two Markov chains we can calculate the ensemble mean density
and corresponding variance fields. Results are presented in Fig.
8. As can be seen, the analysis without a detailed treatment of
foreground contaminations shows residual large scale features
and erroneous power particularly close to the survey boundaries.
These regions are affected the most by stellar contamination as
indicated by the corresponding foreground map shown in Fig. 2.

In contrast our ARES run with detailed Bayesian foreground
treatment shows a homogeneous density distribution throughout
the entire observed domain. Also note that variance maps of the
corrected and uncorrected ARES run look very similar. Appar-
ently the erroneous features in the uncorrected ARES analysis
do not affect the corresponding variance map. Since for the un-
corrected run, the data model does not account for the system-
atic uncertainties associated to foreground contaminations, the
reconstructed erroneous large scale power in the field will be
fully attributed to the inferred large scale structure. From Fig. 8
it is visually evident that our data model including the treatment
of foreground contaminations is much more robust against such
misinterpretations. In the following we will have a closer look at
inferred cosmological power-spectra.

4.4. Inferred cosmological power-spectra

One of the most important features of the ARES algorithm is its
ability to jointly infer three dimensional density fields, corre-
sponding cosmological power-spectra, galaxy biases, noise lev-
els and coefficients of several foreground templates including a
detailed treatment of all joint and correlated uncertainties. Since
the ARES framework yields proper Markov chains we are able to
correctly marginalize over all joint uncertainties, when focussing
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Fig. 10. Cross correlation between power-spectrum amplitudes at dif-
ferent Fourier modes and negative (labelled F0) as well as positive (la-
belled F1) foreground coefficients for the five respective catalogues (la-
belled C0 to C4).

on the analysis of specific target quantities such as the cosmolog-
ical power-spectrum. Specifically in our previous work Jasche &
Wandelt (2013) we have already demonstrated that the ARES al-
gorithm reveals and correctly treats the anti-correlation between
bias amplitudes and power spectrum, a 20% effect across large
ranges in Fourier space. Here we also take into account the un-
known coefficients of several foreground templates.

To study the impact of foreground contamination on the anal-
yses of cosmological power-spectra in deep galaxy surveys we
compare inference results obtained from our two ARES runs with
and without corresponding corrections. The results for inferred
power-spectra are presented in Fig. 9 where we show the univari-
ate marginal posterior distribution for power-spectrum ampli-
tudes at different modes in Fourier space. For the Markov chain
without foreground treatment one can clearly observe excessive
power at the largest scales. This observation corresponds to the
excessive large scale power observed in corresponding inferred
three dimensional density fields, as discussed above. In addition
one can observe a slight bias with respect to the true underlying
power-spectrum from which mock observations were generated.
This can easily be understood by inspecting the data model de-
scribed in Equation (5), where one can see that there is a cer-
tain potential for a degeneracy between foreground coefficients
and galaxy biases. If foreground effects are not treated correctly,
then some of the foreground contributions will erroneously be
compensated by sampled galaxy bias amplitudes, introducing
the offset between true and recovered power-spectra shown in
Fig. 9. In contrast inferred power-spectra for the run with fore-
ground treatment are unbiased with respect to the true underlying
power-spectrum over the full domain of Fourier modes consid-
ered in this work. In particular the shape of the recovered power-
spectrum at the largest scales is in excellent agreement with the
true fiducial model.

We further studied the impact of different foreground co-
efficients on power-spectrum amplitudes at different scales in

Fourier space. In particular we calculated the cross correlation
matrix between the foreground coefficients of the five mock cat-
alogues and power-spectrum amplitudes from the posterior sam-
ples of the corresponding Markov chain. Results are presented in
Fig. 10. It can be seen that correlations and anti-correlations can
amount of up to ten percent across all modes in Fourier space.

Additionally we tested whether the sampler correctly ac-
counts for the combined effects of foreground contaminations,
galaxy biases and unknown noise amplitudes by estimating the
co-variance matrix of inferred power-spectra from the ARES
runs. As can be seen in Fig. 11 the co-variance matrix for both
runs exhibit strong diagonal shape indicating that the algorithm
correctly accounted for the otherwise erroneous mode coupling
introduced by survey geometry and foreground effects. Residual
off-diagonal contributions amount to less than ten percent.

These results clearly demonstrate the feasibility of dealing
with strong but unknown foreground contaminations when infer-
ring cosmological power-spectra from deep galaxy observations.

5. Summary and Conclusion

Major challenges for the analysis of next generation deep galaxy
redshift surveys arise from the requirement to account for an in-
creasing amount of systematic and stochastic uncertainties. In
particular foreground effects and target contaminations due to
e.g. stars and dust, can greatly affect the observation of galaxies.
If not accounted for properly, these effects can yield erroneous
modulations of galaxy number counts across the sky, which hin-
ders the immediate inference of power-spectra and three dimen-
sional density fields from such galaxy samples.

To address this issue, in this work we have described a
fully Bayesian treatment of unknown foreground contamina-
tion in the process of inferring cosmological power-spectra from
deep galaxy surveys. In particularly we build upon the previ-
ously presented Bayesian inference framework ARES (for de-
tails see Jasche et al. 2010; Jasche & Wandelt 2013; Jasche &
Lavaux 2015). The ARES algorithm aims to jointly infer three
dimensional density fields, corresponding cosmological power-
spectrum, luminosity dependent galaxy biases and unknown
noise levels. Being a full Bayesian inference engine ARES fur-
ther correctly provides joint and correlated uncertainties for all
target quantities by performing an efficient Markov chain Monte
Carlo sampling within a block sampling scheme as indicated in
Fig. 1.

In this work we extend this hierarchical Bayesian framework
by also including an additional sampling procedure to account
for foreground and target contamination effects. As discussed in
Section 2.2 such contaminating effects particularly affect the es-
timation of the spectroscopic completeness of a given galaxy sur-
vey. Naive estimation of the probability of acquisition of galaxy
spectra at given positions in the sky, by calculating ratios of ob-
served galaxy spectra and all observed photometric targets, ig-
nores the possibility that photometric targets are contaminated
by foreground stars or dust extinction. Such effects are likely to
artificially increase or decrease the estimated number of galaxy
targets in observations. In consequence these effects introduce an
artificial modulation of observed galaxy number densities across
the sky, which in turn yields erroneous large scale power in in-
ferred cosmological power-spectra.

As demonstrated in Section 2.2, foreground and target con-
taminations can be accounted for by describing the mismatch be-
tween actual galaxies and observed photometric targets as multi-
plicative correction factors to estimated spectroscopic complete-
ness maps. These correction factors can be described as com-
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Fig. 11. We provide in the two above panels the correlation matrix of power-spectrum amplitudes with respect to their mean value in the case of
unaccounted foregrounds (left panel) and modelled foregrounds (right panel). The correlation matrix is normalized using the variance of the power
spectrum amplitudes. We note that the colour-map is truncated at a correlation level of 5 10−2. We estimate that all values below this threshold are
too noisy to be cleanly represented and discard them.

binations of various templates for foreground effects, such as
introduced by stars or dust, and corresponding unknown tem-
plate coefficients. The aim of this work is to jointly infer these
template coefficients together with the three dimensional density
field, corresponding cosmological power-spectra, galaxy biases
and unknown noise levels. This goal can be achieved by sim-
ply adding an additional sampling scheme for foreground coef-
ficients to the block sampling framework of the ARES algorithm.
Interestingly, as discussed in section 2.3 and Appendix A, we
were able to derive a direct sampling scheme by introducing
auxiliary random fields and marginalizing over them. The cor-
responding algorithm to generate random realizations of fore-
ground template coefficients is given in Algorithm 1.

We test the performance of improved ARES algorithms via
applications to mock galaxy observations. To further evaluate
the impact of foreground and target contamination effects on the
inference of cosmological power-spectra we compare two test
scenarios, with and without treatment of foreground effects. Cor-
responding artificial galaxy observations were self-consistently
generated according to the data model described in Section 3. In
particular, these artificial observations seek to emulate realistic
features of the SDSS DR7 main, the LOW-Z and the CMASS
galaxy sample. Effectively this results in five artificial galaxy
surveys that are jointly handled by the ARES framework, while
self-consistently accounting for their respective systematic and
stochastic uncertainties, including survey geometries, selection
effects, galaxy biasing and foregrounds.

This artificial data was then used to test the statistical per-
formance of our sampling framework. In particular we tested the
burn-in behaviour of the algorithm by starting the Markov chain
from an over-dispersed state. As described in Section 4.1, we
start the chain with an initial power-spectrum scaled by a factor
0.1. The following burn-in behaviour then manifested itself by
a coherent drift of sequential power-spectrum samples towards
preferred regions in parameter spaces. We estimated the burn-in
phase to be completed after ∼ 2000 sampling transitions. The
statistical efficiency of the sampler was estimated by measur-
ing the correlation length between subsequent posterior power-
spectrum samples. As demonstrated in section 4.1 the sampler

exhibits a correlation length of a few hundred samples. This
leaves us with a numerically efficient sampling framework to
explore cosmological power-spectra in deep galaxy surveys. It
should be remarked that there exist various possibilities to fur-
ther improve statistical efficiencies but details are left to future
publications.

Results for inferring foreground and target contamination
template coefficients are described in section 4.2. In particular
we have used two realistic foreground templates describing fore-
ground stars in the galaxy and dust extinction. Furthermore, our
implementation is general enough to account for an arbitrary
amount of foreground templates. To demonstrate the feasibil-
ity of inferring these parameters jointly with the cosmological
power-spectrum, three dimensional density fields, galaxy biases
and noise levels, we presented two dimensional marginalized
distributions for template coefficients. These results show that
different contamination contributions can be recovered within
≤ 2.3 sigma of their input values. Given inferred foreground co-
efficients it is further possible to reconstruct an effective com-
pleteness mask and corresponding uncertainties. As expected, in
the example tested in this work, uncertainties in recovered com-
pleteness masks are largest in regions where stellar contamina-
tions of the target distribution are also large.

In Section 4.3, we have studied the impact of foreground and
target contaminations on the inference of three dimensional den-
sity fields from galaxy surveys. To do that we have contrasted a
run with and without foreground treatment. Ignoring foreground
effects when inferring density fields yields excessive large scale
power particularly in regions most affected by such contamina-
tions. In contrast detailed Bayesian treatment of foreground sys-
tematics yields inferred density fields showing a homogeneous
distribution of power across the inference domain. It must be re-
marked that if foreground contaminations are not explicitly mod-
elled within the data model, then their effects will be attributed
to a real signal.

This result is also in agreement with inferred cosmological
posterior power-spectra, as presented in section 4.4. The inferred
power-spectrum of the run without foreground treatment agrees
with the visual impression obtained from corresponding three
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dimensional density fields. In particular it reflects the observed
excess in large scale power. Ignoring foreground effects may
further lead to an overall bias across the entire Fourier domain
with respect to the true underlying power-spectrum. In contrast
detailed Bayesian foreground treatment yields inferred power-
spectra in agreement with respect to the underlying fiducial truth
over the entire range of Fourier modes, as considered in this
work.

We have further tested the impact of different foreground
effects on the inference of power-spectrum amplitudes by esti-
mating their correlations with foreground template coefficients
throughout the full Fourier range. These results show that cor-
relations and anti-correlations can amount up to ten percent
throughout large ranges in Fourier space.

The ARES algorithm also accounts for artificial mode cou-
pling between power-spectrum amplitudes as introduced by sur-
vey geometries and completeness masks. To demonstrate that
fact we have estimated the correlation matrix of power-spectrum
amplitudes from our Markov runs. These tests show that residual
artificial mode coupling is typically much less than ten percent.
These results indicate the validity of the algorithm in scenarios
with heavily masked data. We are currently using our method to
process the actual BOSS data, which will presented in our com-
panion paper (Lavaux & Jasche 2017).

As demonstrated in this work detailed treatment of fore-
ground and target contamination is essential to recover unbiased
estimates of three dimensional density fields and corresponding
cosmological power-spectra from present and next generation
surveys. The proposed ARES algorithm provides a joint and sta-
tistically rigorous Bayesian inference framework to achieve this
goal and prevent misinterpretation of observations.
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Appendix A: Sampling foreground coefficients

In this appendix, we derive the sampling procedure for a single foreground template coefficient αk. As described in Section 2.3, the
full joint distribution of all template coefficients may be sampled by performing a sequential iterative block sampling procedure. In
the absence of any a priori information on the foreground coefficient αk we follow a maximally conservative approach by assuming
a uniform prior distribution. Using Equation (8)), the logarithm of the conditional posterior distribution for a foreground coefficient
in a single galaxy catalogue can then be written as:

logP
(
αk |{αn} \ αk, {Ni}, {δi}, {N̄}

)
= −

1
2

v∑
i=0

[
Ni − N̄ Mi ({αn}) Ri (1 + Di b δi)

]2

N̄ Mi ({αn}) Ri
−

1
2

log
(
N̄ Mi ({αn}) Ri

)
. (A.1)

We can simplify notation by noting that different foreground templates contribute multiplicatively an effective survey response
operator. We can therefore collapse all multiplicative foreground contributions, except the one currently under consideration, into
the effective survey response operator given as:

R̃i = N̄Ri

∏
n\k

(1 − αnFn,i) , (A.2)

where k labels the currently considered foreground template and we have used Equation (4) to factorize foreground contributions.
We further introduce the vector:

Ai = R̃i(1 + Di b δi) . (A.3)

Given this notation the conditional posterior distribution for αk simplifies to:

logP
(
αk |{αn} \ αk, {Ni}, {δi}, {N̄}

)
= −

1
2

v∑
i=0

[
Ni − (1 − αkFk,i) Ai

]2

(1 − αkFk,i) R̃i
−

1
2

log
[
(1 − αkFk,i) R̃i

]
. (A.4)

The expression can be further compressed by introducing the following indexed quantities:

Bi = Ni − Ai, (A.5)
Ck,i = Ai Fk,i, and (A.6)

γk,i = Fk,i R̃i . (A.7)

Consequently the conditional posterior distribution can be expressed as:

log
(
P

(
αk |{αn} \ αk, {Ni}, {δi}, {N̄},

))
= −

1
2

v∑
i=0

(
Bi + αkCk,i

)2(
R̃i − αkγk,i

) − 1
2

log
(
R̃i − αkγk,i

)
. (A.8)

In order for Equation (A.8) to represent a proper probability distribution the following positivity requirement for the variances needs
to hold:

∀i, R̃i − αkγk,i > 0 (A.9)

Similarly it is required that:

∀i, R̃i > 0, (A.10)

which states that the survey response operator should be positive definite. To ensure these requirements we split the effective survey
response operator R̃i as follows:

R̃i = R̃′i,k + ωγk,i . (A.11)

By also requiring R̃′i,k > 0 we yield the following requirement for the scalar quantity ω:

R̃′i,k = R̃i − ωγk,i > 0, which brings to (A.12)

ω <
R̃i

γk,i
∀i . (A.13)

We therefore choose ω to be:

ω = min
i

(
R̃i

γk,i

)
. (A.14)
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Algorithm 1 Algorithm derived in Appendix A to sample the values of αk, the multiplicative coefficient attached the k-th foreground.
1: function sample_one_α (αk, R̃′, B,C, γ, ω, k)
2: ξ ← ω − αk
3: wk ← 0
4: zk ← 0
5: for i = 0→ (Length(B) − 1) do . we loop over all grid elements of B
6: ti ∼ G(µi,k, σ

2
i,k) . Here we generate a new value for the messenger field ti.

It is a simple normally distributed value centred on µi,k with a
variance σ2

i,k.
7: wk ← wk + (Bi −Ck,iω − ti)2/γk,i . Accumulate wk and zk.
8: zk ← zk + (Ck,i)2/γk,i
9: end for

10: ξ ∼ GIG(wk, zk) . We sample ξ from a GIG distribution.
11: αk ← ω − ξ . at that point we have generated a new αk from the conditional probability distribution in Equation (A.4).
12: return αk
13: end function

Given these definitions one can express the conditional posterior distribution as:

log
(
P

(
αk |{αn} \ αk, {Ni}, {δi}, {N̄},

))
= −

1
2

v∑
i=0

(
Bi + αkCk,i

)2

R̃′i,k + (ω − αk) γk,i
−

1
2

log
(
R̃′i,k + (ω − αk) γk,i

)
. (A.15)

Note that this distribution can be described conveniently as the marginalization over a set of auxiliary fields {ti}:

P
(
αk |{αn} \ αk, {Ni}, {δi}, {N̄},

)
∝

∏
i

∫ ∞

−∞

dti
e
− 1

2
∑v

i=0
(Bi+αkCk,i−ti)2

(ω−αk)γk,i√
2π (ω − αk) γk,i

e
− 1

2
t2i

R̃′i,k√
2π R̃′i,k

. (A.16)

This approach therefore follows a similar line of reasoning as discussed in our previous work when presenting a messenger field
Gibbs sampler (Jasche & Lavaux 2015). Here we propose to jointly sample the template coefficient parameter αk with the auxiliary
messenger field ti via a two step block sampling procedure. First we generate realizations of the messenger field ti conditional on
the current value of αk and then we draw a new value of αk conditional on the given realization of ti. We loop over this small block
ten times to ensure a minimal mixing of the variables. To simplify notation we introduce the following change of variable:

ξ = ω − αk . (A.17)

This yields the joint distribution:

P
(
ξ, {ti}|{αn} \ αk, {Ni}, {δi}, {N̄},

)
∝

∏
i

e−
1
2
∑v

i=0
(Bi+(ξ−ω)Cki−ti)2

ξγk,i√
2π ξγk,i

e
− 1

2
t2i

R̃′ik√
2π R̃′i,k

, (A.18)

As can be easily confirmed, sampling the messenger field ti amounts to simply generating normal random variates with following
means and variances:

µi,k =
R̃′i,k

ξγk,i + R̃′i,k

(
Bi + (ξ − ω) Ck,i

)
, (A.19)

and

σi,k =
R̃′i,k ξγk,i

ξγk,i + R̃′i,k
. (A.20)

To generate realizations of the ξ values, we introduce the following quantities:

wk =
∑

i

(
Bi −Ck,i ω − ti

)2

γk,i
=

∑
i

wk,i(ti) (A.21)

and

zk =
∑

i

(
Ck,i

)2

γki
=

∑
i

zk,i(ti) . (A.22)
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With this definition the conditional distribution to sample ξ turns into a generalized inverse Gaussian (GIG) distribution given as:

P
(
ξ|{ti}, {αn} \ αk, {Ni}, {δi}, {N̄},

)
∝

1

(ξ)
Nv
2

e−
1
2

(
wk
ξ +ξzk

)
, (A.23)

where Nv is the number of observed grid elements. The GIG distribution can be conveniently sampled with standard approaches
as described in the literature (see e.g. Dagpunar 1988). Finally to obtain a sample for the foreground coefficient αk we invert the
transformation in Equation (A.17):

αk = ω − ξ . (A.24)

The respective realizations of the ti field are not longer required and are immediately discarded, which amounts to a marginalization
over the ti values. An efficient sampling algorithm that avoids storing the full ti vector is proposed in Algorithm 1.

page 15 of 15


