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Abstract.

Most of the literature on general relativity over the last century assumes that the

cosmological constant Λ is zero. However, by now independent observations have

led to a consensus that the dynamics of the universe is best described by Einstein’s

equations with a small but positive Λ. Interestingly, this requires a drastic revision

of conceptual frameworks commonly used in general relativity, no matter how small Λ

is. We first explain why, and then summarize the current status of generalizations of

these frameworks to include a positive Λ, focusing on gravitational waves.

PACS numbers: 04.70.Bw, 04.25.dg, 04.20.Cv

1. Introduction

Hundred years ago, Einstein brought about a paradigm shift in our understanding of

space, time and gravitation. Perhaps the most striking implications of the new paradigm

occur via emergence of gravitational waves as ripples in spacetime geometry; through

the formation of black holes due to gravitational collapse; and in cosmology where

spacetime geometry now becomes dynamical. Literature in these areas has generally

used Einstein’s equations with zero cosmological constant, Λ. However, by now there

is strong observational evidence that ‘dark energy’ dominates the energy budget of

the universe [1, 2]. The dynamical effect of dark energy is an accelerated expansion.

The simplest –and currently the best– strategy is to model dark energy via a ‘small’

but positive Λ. In this paper we adopt this viewpoint for brevity. However, our

considerations would remain valid if there were another mechanism responsible for the

accelerated expansion, so long as this expansion continues to the infinite future.

It turns out that presence of a positive Λ has a deep conceptual impact on all three

areas mentioned above because the limit Λ→ 0 is discontinuous. New and qualitatively

different structures appear if Λ is positive, no matter how small it is, requiring us to

revise the very foundations of our understanding of several aspects of strong field gravity

[3]. The purpose of this Key Issues Review is to bring these features to forefront.
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Figure 1. Penrose diagrams depicting gravitational collapse of a spherical star A.

Left Panel: The familiar Λ=0 case. B is the black hole region and (green) arrows show

light rays (credit: Jose Jaramillo and Eric Gourgoulhon). B.Right Panel: Λ > 0

case. The collapsing body is visible only from points in the future of the cosmological

horizon represented by the diagonal line. Dashed (red) arrows represent integral curves

of the static Killing field.

Let us begin with standard cosmology with spatially flat, homogeneous, isotropic

spacetimes. If Λ=0, the past of the world line of an eternal cosmic observer would

cover all of spacetime, as in Minkowski space. If Λ > 0, on the other hand, there are

cosmological horizons: the past contains only a spatially finite portion of spacetime. At

the surface of last scattering, this portion is a ball of radius ∼ 17.3 Mpc, while at the

onset of inflation (say with the Starobinsky potential) the ball has radius∼ 5.3×10−26cm

[4], some 13 orders of magnitude smaller than the size of a proton. A cosmic observer

will not be able to receive any signals sent from outside these balls, no matter how long

she waits. Therefore, unlike in the Λ=0 case, initial conditions in this tiny ball at the

onset of inflation determine everything that a cosmic observer can ever hope to observe!

For black holes, one also encounters unforeseen situations [5, 6]. Fig. 1 shows the

difference in the Λ=0 case (left panel) and Λ > 0 case (right panel). In the second

case, spacetime is incomplete to the right. This is because while the Kruskal extension

of the Schwarzschild spacetime has a single black hole (and a single white hole) the

complete Schwarzschild-de Sitter spacetime has an infinite number of black holes (and

white holes). In the Schwarzschild-de Sitter case, the standard strategy is to arrive at a

single black (and white) hole by using a discrete isometry to make an identification. This

isometry is not available in the case of a single collapsing star. Since spacetime is ‘open’

at the dashed line to the right, it is not sufficient to impose the ‘no incoming radiation’

condition on I− in the classical theory. Similarly in the analysis of the Hawking effect,

one can no longer use I− to specify the incoming vacuum state.

Thus, unforeseen issues arise in cosmology and black hole physics. In this

brief review we focus on gravitational waves whose discovery in 2015 by the LIGO

collaboration has revolutionized the field. In section 2 we summarize the key conceptual
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difficulties introduced by a positive Λ and in section 3 the current status of their

resolution. Section 4 illustrates the outlook through examples.

2. Gravitational waves: Even a tiny Λ casts a long shadow

Let us begin by recalling how gravitational waves are described in the Λ=0 case. Already

in the years 1916-18, Einstein showed that general relativity (GR) admits gravitational

waves in the linearized approximation and derived the celebrated quadrupole formula.

However, two decades later, he suggested that this result was an artifact of linearization

and gravitational waves do not exist in the full, nonlinear theory [7]! Confusion on the

reality of gravitational waves in full GR persisted until the 1960s [8] primarily because

what seemed like ‘wave-like propagation’ in one coordinate system could disappear

in another. It was finally dispelled through the work of Bondi, Sachs, Trautmann

and others [9, 10] who introduced a conceptual framework to extract gauge invariant

information in waves by moving away from sources in null directions. Penrose [11]

geometrized this framework by introducing a conformal completion of spacetime with

boundary, I, that represents null infinity and serves as the natural arena to analyze

gravitational radiation. In particular, there is a coordinate invariant field on I, now

called the Bondi news tensor Nab [12], that characterizes the presence of gravitational

waves. Thus, for example, the condition Nab = 0 on past null infinity I− succinctly

captures the physical requirement that there is no incoming gravitational radiation. In

addition, I has become an essential ingredient in the description of isolated systems,

particularly black holes, both in classical and quantum gravity.

The new framework also brought out an unforeseen feature. Spacetimes admitting

Penrose’s completion are asymptotically flat in the sense that the physical metric gab
approaches a Minkowski metric ηab in a precise manner. However, in presence of

gravitational waves —i.e., whenNab 6= 0 at I— ηab is not unique. Given one such ηab, we

can obtain a new Minkowski metric η′ab by performing an ‘angle dependent translation’,

e.g. t → t′ = t + f(θ, φ), to which gab asymptotes in the same manner. As a result,

the asymptotic symmetry group is not the Poincaré group but an infinite dimensional

generalization B thereof, obtained, so to say, by consistently putting together Poincaré

groups of all Minkowski metrics to which gab approaches. B is called the Bondi, Metzner,

Sachs (BMS) group. However, B does admit a unique, 4-dimensional Abelian normal

subgroup T , the group of translations [13], just as the Poincaré group does. Therefore

the notion of energy-momentum is well defined at null infinity.

For definiteness, let us work with future null infinity, I+. A 2-sphere cross section

C of I+ (given by u = const in Bondi coordinates) represents a ‘retarded instant of

time’. Given a cross section C and a BMS time-translation ta on I+, one can define

a ‘gravitational charge integral’ Qt[C] that represents the energy defined by ta at the

retarded instant of time corresponding to C, called the Bondi-energy. There is a balance

law: Given any two cross-sections C1, C2 on I+ as depicted on the left Panel of Fig. 2,
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Figure 2. Penrose diagrams of a binary system emitting gravitational waves. A. Left

Panel: Λ=0 case, where I is null. B.Right Panel Λ > 0 case, where I is space-like.

E+(i−) is the past horizon and E−(i+) the future horizon for the star.

the difference in the corresponding Bondi energies is given by [9, 11, 12]:

Qt[C2]−Qt[C1] =
1

κ

∫
∆I+

α|Nab|2 d3I+ + matter energy flux =: Ft[∆I+] , (1)

where ∆I+ is the region of I+ bounded by C1 and C2 and α > 0 is a function

representing the given BMS translation ta. The right hand side, the flux Ft[∆I+] of the

Bondi energy carried by gravitational waves across ∆I+, is manifestly positive. These

results established reality of gravitational waves in full GR and provided powerful tools

to extract physics from dynamics of isolated systems. For example, in simulations of

black hole mergers, one calculates the Bondi 3-momentum carried by gravitational waves

to determine the ‘kick’ received by the final black hole [14].

The Bondi-Sachs framework was introduced half a century ago [9]. Yet, it has still

not been fully extended to the Λ > 0 case because the rich structure at I+ used in the

Λ=0 theory does not admit a direct generalization. Some of the conceptual difficulties

have been noted over the last decade (see, e.g., [15, 16]). However, the full extent of the

problem became clear only two years ago [6] when systematic attempts at extending the

framework to the Λ > 0 case began. The extension of Einstein’s quadrupole formula

was obtained only last year and it is only very recently that an analog of the Bondi news

was identified using cosmological horizons H± as ‘local I± (See Fig. 3.) It provides a

gauge invariant characterization of gravitational waves at H+.

The first key difference is that while I+ is null if Λ = 0, it is space-like if Λ > 0

irrespective of its value (see the right panel in Fig. 2). Thus the limit Λ → 0 is

discontinuous. This fact has deep implications for asymptotic symmetries. Since the

normal na to a null surface is also tangential to it, in the Λ=0 case I+ comes naturally

ruled by the integral curves of na. Therefore, asymptotic symmetries have to preserve

this ruling. Secondly, because I+ is null, the intrinsic metric qab on I+ is in effect a

2-sphere metric and therefore belongs to the unique conformal class of metrics that a 2-

sphere admits. This additional structure reduces the asymptotic symmetry group from
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Diff(I+), the group of all diffeomorphisms of I+, to B, which has richer structure. By

contrast, in the Λ > 0 case, since I+ is space-like, its normal is transverse to it. So we

lose the ruling; the intrinsic metric qab now has signature (+,+,+), whence its conformal

class is arbitrary. Therefore, the asymptotic symmetry group is now full Diff(I+). In

particular, it does not admit a preferred 4-dimensional subgroup that can be thought

of as ‘translations’. Consequently, we lose the ability to unambiguously identify energy-

momentum: We have neither the analog of the Bondi 4-momentum ‘charges’ nor the

analog of the energy-momentum carried away by gravitational waves.

One might imagine generalizing the construction and associating ‘charge integrals’

Qξ[C] with any vector field ξa on I+, i.e., with every generator of Diff(I+). Furthermore,

field equations naturally suggest a candidate [17, 6]:

Qξ[C] =
( 3

Λ

) 1
2 1

8πG

∮
C

(Eab + Tqab) ξ
a dSb , (2)

where Eab and T are fields representing the asymptotic electric part of the Weyl tensor

and trace of the matter stress-energy tensor. However, interpretation of these ‘charges’

is obscure since ξa is arbitrary. Furthermore, one finds that in the Schwarzschild-de

Sitter spacetime which has neither matter nor gravitational waves, the ‘charges’ Qξ[C]

are not conserved for a general ξa. This casts a serious doubt on their physical relevance.

Boundary conditions used in the Λ > 0 case parallel those in the Λ=0 case [11, 6].

Nonetheless, while in the asymptotically flat case the physical metric gab approaches a

Minkowski metric –albeit not a unique one– in the Λ > 0 case, it need not approach any

de Sitter metric g̊ab near I [18, 3]. Are the boundary conditions perhaps too weak? A

natural strategy is to strengthen them by asking, in addition, that the intrinsic metric

qab on I+ be conformally flat, as in de Sitter spacetime. Then gab does approach a de

Sitter metric g̊ab near I+. Furthermore, the asymptotic symmetry group is reduced from

the infinite dimensional Diff(I+) to the 10 dimensional de Sitter group, GdS, allowing

us to introduce the notion of de Sitter energy-momentum and angular momentum. In

Kerr-de Sitter spacetimes only two of the ten ‘charges’ of Eq. (2) are non-zero and they

yield the expected ‘mass’ and ‘angular momentum’ [6]. So, at first sight the strategy

seems to be successful. However, now infinitesimal generators ξa of GdS are conformal

Killing fields of qab. As a consequence, in general spacetimes which have no matter flux

at I+, all ten de Sitter ‘charges’ Qξ[C] are absolutely conserved, i.e., are independent of

the choice of the cross-section. In this class of space-times, gravitational waves in them

cannot carry away energy, momentum or angular momentum!

To summarize, if we do not strengthen boundary conditions we have no way of

identifying quantities such as energy-momentum ‘charges’ and fluxes, needed to extract

physics of the given isolated system. Alternatively, we can strengthen the boundary

conditions and speak of de Sitter energy-momentum and angular momentum. But now

these quantities cannot be radiated away, signaling that the restriction is unreasonably

severe. There is a precise sense in which they are the Λ > 0 analogs of asymptotically flat

spacetimes in which the Bondi news Nab vanishes identically at I+ [6]. (In particular,

in this sub-class of asymptotically flat spacetimes, the BMS group B reduces to the



Implications of a positive cosmological constant for general relativity 6

Poincaré group, just as in the Λ > 0 case Diff(I+) reduces to the de Sitter group [12].)

Thus, there is a quandary if Λ is positive, no matter how tiny.

3. Gravitational waves with Λ > 0: Current status

In this section we will sketch the current status of the subject through a few illustrative

results, first in the linearized approximation and then in full, non-linear GR.

3.1. Linearized theory

1. Difficulties: We now have to linearize GR off de Sitter metric g̊ab rather than

Minkowski. Can we require that linearized perturbations should preserve conformal

flatness of de Sitter I+ to first order? Unfortunately this condition removes, by hand,

half the linearized fields which, in the language used in the cosmological perturbation

theory, correspond to ‘growing modes’. Furthermore, one finds that the remaining

perturbations do not carry fluxes Fξ across I+ for any generator ξa of Diff(I+) [19].

Thus, the requirement is too severe already in the linear approximation. However, even

without this requirement, we now have a preferred subgroup GdS of Diff(I+), induced

by the isometry group of g̊ab. Thus, the quandary we encountered in the full theory is

now bypassed because we have a de Sitter background.

But since I+ of g̊ab is space-like, other difficulties persist [19, 20]. For example:

(i) Every Killing field of g̊ab is space-like in a neighborhood of I+ including the one which

represents a time translation near the source (see Fig. 1B). Therefore, in stark contrast

with the situation in the Λ = 0 case, linearized gravitational (as well as electromagnetic)

waves can carry unboundedly large negative energy across I+.

(ii) In deriving the Λ = 0 quadrupole formula, one makes heavy use of 1/r expansions

and calculates the energy flux across r=const time-like cylinders which asymptote to I+

in the large r limit. In de Sitter spacetime, by contrast, such time-like cylinders approach

the past cosmological horizon E+(i−) rather than I+. For retarded solutions of interest,

the energy flux across E+(i−) vanishes identically. Thus, a new approximation scheme

tailored to the de Sitter I+ is needed.

(iii) Because of the expansion of the universe, physical wavelengths of gravitational (and

electromagnetic) waves grow as they propagate away from sources and can vastly exceed

the curvature radius in the asymptotic region, making the standard high frequency

expansions (and the geometric optics approximation) untenable near I+.

2. The quadrupole formula: Because of such unforeseen difficulties, the problem of

generalizing Einstein’s quadrupole formula had remained open for a century. It has now

been resolved by appropriately modifying Einstein’s calculation to address these issues

[3, 20]. Specifically, one has to replace the 1/r approximation with a suitable ‘late-

time’, post-de Sitter approximation, and restrict oneself to sources that are ‘isolated’

in the sense that they remain within a spatially bounded world-tube whose physical

radius is smaller than the cosmological radius. Also, the derivation does not make
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use of a high frequency approximation. The end result is that Einstein’s formula

Pt(u0) = G
8π

∮
u=u0

d2S |
...

Q
(TT)

ab (ρ)|2, for power emitted at a retarded time u = u0 is replaced

by [20]

Pt(u0) =
G

8π

∮
u=u0

d2S
[
RabR(TT)

ab

]
, (3)

where the ‘radiation field’ Rab on I+ is given by

Rab =
[ ...
Q

(ρ)

ab + (3Λ)
1
2 Q̈

(ρ)
ab + (2Λ/3) Q̇

(ρ)
ab + (Λ/3)

1
2 Q̈

(p)
ab + Λ Q̇

(p)
ab + 2(Λ/3)

3
2 Q

(p)
ab

]
(u0).

Here (TT) stands for ‘transverse-traceless’. The ‘pressure quadrupole moment’ Q
(p)
ab is

obtained by substituting pressure in place of density in the standard ‘mass’ quadrupole

moment Q
(ρ)
ab . As in the Λ = 0 case, the integral is over the 2-sphere cross-section of I+

defined by the retarded time u = u0, and the center of mass of the source follows an

integral curve of the world line of the Killing field ta used to define energy and power.

3. New features: This analysis brings out the following interesting points: (i)

From cosmology we know that unlike in Newton’s theory, pressure gravitates in general

relativity; now we learn that it also sources gravitational waves already at the lowest

post-Newtonian order. (ii) Because energy is associated with a Killing field ta of g̊ab,

and ta is (null and) future-directed on the cosmological horizon E−(i+), the energy flux

across E−(i+) is positive (see Fig. 2B). Because we are considering retarded solutions,

there is no flux across the past horizon of the source, E+(i−). Finally, flux of the t-

energy across I+ equals that across E−(i+) because energy associated with a Killing

field is conserved. Hence power radiated across I+ by a physical source is necessarily

positive even though in general gravitational waves can carry negative energy. (iii)

Eq. (3) provides Λ-corrections to Einstein’s formula. In particular, it tells us from

first principles that if the dynamical time scale τ associated with the source is small

compared to 1/
√

Λ, the error involved in neglecting the presence of Λ is small, of order

O(τ
√

Λ), even though the limit Λ→ 0 is fundamentally discontinuous.

Thus, in spite of the fact that the Λ > 0 framework is conceptually very different

from the more familiar one with Λ = 0, general expectations based on physical intuition

are borne out, but now from first principles, with a quantitative control on errors one

makes by setting Λ = 0.

3.2. Full general relativity

1. No incoming radiation condition: We cannot mimic the strategy of incorporating

this condition by requiring Nab = 0 at I− because for Λ > 0 we do not have the

analog of Bondi news, Nab there. But since isolated systems of interest remain in a

spatially bounded world-tube, they pierce I± at single points, i±. It is clear e.g. from

Fig 2B that an observer in the triangular region below the cosmological horizon E+(i−)

cannot receive a causal signal from the source. Therefore, to study this isolated system,

it suffices to restrict oneself to the upper triangle and ask that there be no incoming
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Figure 3. Proposal: Use H± as the arena to study gravitational waves in place of

I±.

radiation at its past boundary, E+(i−). Fortunately, since E+(i−) is null, we can make

use of the ‘isolated horizons’ framework [21] to do so.

Detailed investigation shows that the natural way to impose the requirement that

there be no incoming gravitational waves (or matter flux) is to ask that E+(i−) be a

weakly isolated horizon (WIH) [22]. Thus, in the Λ > 0 case, we can entirely forego

I−. Note that E+(i−) is a WIH not only in Kerr-de Sitter spacetimes but also in

numerical studies including the stellar collapse [5] depicted in Fig. 1B. Therefore, this

strategy also neatly bypasses the difficulty illustrated in Fig. 1B: If E+(i−) is a WIH,

we are guaranteed that the outgoing radiation near I+ is not contaminated by anything

entering from the region in the past of the cosmological horizon E+(i−).

2. Symmetries and ‘charges’ at the past boundary: The strategy of using E+(i−)

as the past boundary in place of I− also resolves this issue. The WIH structure enables

one to single out a time translation symmetry ta, and define the associated energy Qξ[C]

which is independent of the choice of the cross-section C because there is no matter or

gravitational radiation flux across E+(i−) [21]. If the intrinsic geometry of E+(i−) is

axi-symmetric, one can also define mass and angular multipoles [23] that carry detailed

information about the source configuration in the distant past.

3. ‘Local’ I±: In the discussion of the quadrupole formula, the energy flux could be

evaluated at I+ because we could isolate the appropriate ‘time translation’ ta using the

background de Sitter metric g̊ab. In full GR this has not been possible because, as we

saw in section 2, the physical metric need not approach g̊ab even at I+. Recall, however,

that in the linear approximation the energy flux could also be evaluated on H+, the

future half of the cosmological horizon E−(i+). This motivates the idea of replacing I±
with H± as the arena for gravitational waves in the Λ > 0 case (see Fig. 3). We can

regard H± as the ‘local I±, tailored to the isolated source under investigation.

With this replacement, the spacetime region of interest –the left triangle of Fig. 3–

is very similar to the asymptotically flat spacetime, depicted in Fig. 1A. Also, unlike

I± for Λ > 0, H± are null and ruled by their null normals, just as I± are for Λ = 0.

But there are also key differences because H± are proper submanifolds of the physical

spacetime, rather than boundaries. As a consequence, the structure on H− is more rigid
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than that on I− in the Λ = 0 case. In particular, it carries a preferred time translation.

The structure on H+, on the other hand, is less rigid than that on I+ in the Λ = 0

case: while the intrinsic metric on I+ is Lie dragged by the null normal na, the intrinsic

metric on H+ is truly dynamic. Nonetheless, since H+ intersects H− in a 2-sphere

cross-section C̄, one can systematically ‘drag’ the the time translation from H− to H+.

This is is a delicate, well-defined procedure, guided by physical requirements.

With this structure at hand, one uses an action principle based on null boundaries

[28] to define energy Qt[C] associated with 2-sphere cross sections of C:

Qt[C] = 1
κ

∮
C

[Θt + κt] , (4)

where Θt and κt are the expansion and the surface gravity defined by the ‘time-

translation symmetry’ ta on the horizon H+, and the balance law

Qt[C2]−Qt[C1] = 1
κ

∫
∆H+ α |σ(n)

ab |2 d3H+ + matter energy flux =: Ft[∆H
+] . (5)

Here ta = αna on H+, where na is the geodesic vector field tangential to H+, normalized

using the structure induced on C̄ by H−. Note that the integrand in the flux expression

is positive definite. Comparison with (1) tells us that σ
(n)
ab is the analog of the Bondi

news Nab in the Λ = 0 case: the condition σ
(n)
ab |H+ 6= 0 now provides us the desired gauge

invariant characterization of gravitational waves at H+ –the local I+. In a carefully

taken Λ → 0 limit, these expressions reproduce the standard ‘charge integral’ and

balance law for Bondi energy at I+ in the Λ = 0 case. Also, the ‘charge’ and flux

integrals (4) and (5) bear out physical expectations in the Vaidya evaporation of a

white hole, even though H+ is dynamical, with teleological features because of the

matter flux.

Results reported in Sec. 3.2, as well as those on a Hamiltonian formulation of GR

at I+ of asymptotically de Sitter spacetimes are being written up for publication. As of

now there is no completely satisfactory characterization of gravitational waves at I+.

4. Discussion

A key feature of GR with Λ > 0 is that no matter how far one recedes from an

isolated body, in contrast to the Λ = 0 case, spacetime curvature does not go to zero.

Consequently, much of our well-developed intuition from asymptotically flat space-times

does not carry over. Another difference lies in the topology of I±. In the Λ = 0 case, it

is S2×R for any isolated system, just as in Minkowski space. With Λ > 0, the topology

is S3 in de Sitter spacetime, but S2×R for an isolated star or black hole [6]. Because of

such qualitative differences, one cannot directly use the powerful mathematical results

on non-linear stability of de Sitter space-times [29] in the analysis of physical properties

of isolated systems with Λ > 0.

Such conceptual differences also give rise to new features in the theory of black

holes. The issue of uniqueness of Kerr-de Sitter black holes has still not been established

in 4 spacetime dimensions. Furthermore, non-rotating black holes also acquire new

features. First, because the space-time metric does not approach de Sitter metric near
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I+ in presence of radiation, unforeseen complications arise in the analysis of non-linear

stability of the Schwarzschild de Sitter space-time [24, 25]. Also, these black holes have

an unforeseen property: there is an upper bound on their mass: Mmax = 1/3G(Λ)1/2.

Numerical simulations show that attempts to form black holes of higher mass fail [26, 27].

In particular if tries to achieve this by colliding gravitational waves, they simply disperse

even when they have large amplitudes. The limit is observationally viable since, for

currently accepted value of Λ, Mmax is 12 orders of magnitude larger than the mass of the

heaviest supermassive black holes we know. As we noted in section 1, unforeseen issues

arise also in the discussion of black hole evaporation: One appears to be stuck in the

very first step of Hawking’s original analysis since I− is no longer the appropriate arena

to specify the incoming vacuum state in the spacetime of a collapsing star. However, one

can specify the incoming vacuum using H− –i.e., the ‘local I−’ (see Fig. 3). Because

there is a time translation group on H−, there is a well-defined notion of positive and

negative frequencies to define the incoming vacuum. It would be most interesting to see

how the value of Λ enters the final density matrix on H+ or I+.

Returning to gravitational waves, there is a number of open issues in mathematical

and numerical GR, geometrical analysis, and approximation methods. We will conclude

with an example. Is the energy ‘charge integral’ (4) positive under suitable physical

restrictions? These questions on positivity also arise at I+ where the ‘charge integrals’

can be introduced using a Hamiltonian formulation of GR. There are positive energy

theorems in the Λ > 0 case in the literature. However, they typically refer to the

absolutely conserved ‘charge’ at spatial infinity where gravitational waves do not reach

[30, 31, 32]. Furthermore, ‘energy’ they refer to is associated with conformal –rather

than a time translation– symmetry. Therefore, while the notion can be useful in

mathematical analysis, its physical meaning is unclear even in the Maxwell theory.

This is not the energy that is related to the properties of sources –time derivatives

of dipole moments in the Maxwell theory and of quadrupole moments in GR. The

generalization (3) of Einstein’s quadrupole formula refers to the energy associated with

a time-translation symmetry. Finally, in linearized GR we have explicit expressions of

corrections to Einstein’s quadrupole formula. In full GR, the theory of gravitational

waves using H± as ‘local’ I± is becoming mature. But since it requires that H+

be ‘sufficiently long’ to intersect E+(i−), we do not yet know if this approach allows

a sufficiently large class of examples. The Hamiltonian framework based on I+, by

contrast, is free of this potential limitation but so far it has not enabled one to obtain

expressions of local fluxes of energy carried by gravitational waves. As Eq. (3) suggests,

corrections to the Λ = 0 theory are likely to be negligible for sources of interest to

the current gravitational wave detectors. But it is possible that subtle effects induced

by Λ could be measured in the future [3]. From a theoretical perspective, there is the

more compelling motivation to address these issues: Since the accelerated expansion of

our universe is now well established, at a fundamental level we need to know how to

characterize gravitational waves and understand their properties within this paradigm,

before developing approximation methods, however important they may be in practice.
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