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ABSTRACT
We clarify that a result recently stated by Kaiser is contained in a theorem of Buchert and Ehlers
that is widely known for its main result: that there is no global kinematical backreaction in
Newtonian cosmology. Kaiser cites this paper, re-derives parts of the theorem, but incompletely
restates its content. He makes further claims, which cannot be proven beyond the limited
context of Newtonian cosmology. We also discuss recent papers of Rácz et al. and Roukema,
who claim the existence of global backreaction within the Newtonian framework.
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1 AV E R AG E P RO P E RT I E S O F N E W TO N I A N
M O D E L S

In a recent paper Kaiser (2017b, hereafter K17) considers, as
do Buchert & Ehlers (1997, hereafter BE – see also Ehlers &
Buchert 1997), the Euler–Poisson system in the fluid approxima-
tion for a ‘dust’ matter model in the mean field approximation of
Newtonian gravity, equations (2) and (3) in K17 [cf. point (B) be-
low]. Buchert and Ehlers performed spatial averaging of the kine-
matical scalars of the system to obtain the following general expan-
sion law, given in BE, equation (B4):
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where aD ∝ V
1/3
D denotes the volume scalefactor of any compact

averaging domain D with volume VD , 〈·〉D := 1/VD
∫
D dV · the

averaging operator, u the peculiar-velocity field (with its shear σ̂ ij

and vorticity ω̂ij ), defined with respect to a global reference back-
ground flow, usually taken to be a Hubble flow (and Kaiser recalls
correctly that this reference flow is a priori not fixed to be a Hubble
flow). Omitting global shear � and global vorticity � of the model
universe, we arrive at the result of Kaiser (i.e. the kinematical back-
reaction term, equation (9), in K17).1

Kaiser (K17, appendix A) re-derives the result of BE stating that
‘we show how this may be obtained directly’. Inspection of his
derivation shows, however, that it is essentially identical to the line

�E-mail: buchert@ens-lyon.fr
1 The three corrections (1a), (1b) and (1c) in Buchert (2017a) of Kaiser’s re-
derivation of part of BE’s results in Kaiser (2017a) have now been included
(apart from the erroneous factor 3/2 in K17, equation (9), which should read
2/3) after consulting (Buchert 2017a) (N. Kaiser, private communication),
except that Kaiser still claims that his derivation is more general.

of reasoning of BE, but less straightforward. Kaiser obtains a linear,
background-dependent term that (as he now appreciates, see foot-
note 1) is zero. The direct derivation of BE does not lead to such a
zero term. Follow-up papers and reviews also provided complemen-
tary derivations and thorough discussions of the properties of the
kinematical backreaction term (e.g. Buchert 2000a; Buchert 2008,
section 3; Buchert & Räsänen 2012, section 2.5).

The result (1) is valid for all compact domains from an infinites-
imal domain up to any scale, e.g. up to the boundary of a compact
model universe, and the second term in the second line of (1) is
there on all scales. Kaiser’s paper titled Why there is no Newtonian
backreaction is an improvement over the title There is no kinematic
backreaction of (Kaiser 2017a), but still overstates and misleadingly
interprets the content of the BE theorem for the following reasons:

(A) What BE showed, and what Kaiser re-derives, is that there
is no global kinematical backreaction in Newtonian cosmology for
boundary-free compact model universes.2 There is, however, kine-
matical backreaction, describing cosmic variance of the deviations
from the assumed reference background, as Kaiser correctly states,
and which is explored in the paper by Buchert et al. (2000). Thus,
the suggestion that there is ‘no Newtonian backreaction’ per se
is not supported by the text. Kinematical backreaction is present
in Newtonian models in the interior of, e.g. a three-torus model3

(and the expectation values of the peculiar-velocity invariants are

2 We shall explain this in point (C). Note that kinematical backreaction
also vanishes for spherical regions embedded into a reference background
Buchert, Kerscher & Sicka 2000, Buchert 2011, section 7.2. This latter
provides a compact proof of the Newton iron sphere theorem. Kaiser quotes
instead the work of Einstein & Straus (1945), which is out of context. That
backreaction vanishes for a single spherical region is well known.
3 Kaiser confuses the scale-dependent volume expansion rate HD with the
background expansion rate H. It is trivial that ‘There is no Newtonian back-
reaction on a(t) from structure’ (K17), but there is Newtonian backreaction
on aD(t) from structure, except on the global scale where aD(t) reduces to
a(t). Kaiser discusses how the equation for a(t) can be chosen to recover
the usual Newtonian equations for point particles, but this does not imply
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in general non-zero on regional domains). The term QD in (1) can
be expressed in terms of Minkowski Functionals (Buchert 2000a,
section 1.11), (Buchert 2008, section 3.1.2). These functionals de-
scribe morphological properties of the density distribution and
depend on all correlation functions of a density field arising out
of smoothing a point-like distribution. Consequently, even small-
amplitude interior backreaction terms are important in characteriz-
ing the cosmic web.

(B) Kaiser, in K17, section 2, leaves the impression that a more
elementary approach using discrete particles leads to the same result
as that obtained from the Euler–Poisson system for a dust fluid in
the mean field approximation. This impression comes from the
comparison of the Newtonian equation of motion for particles with
the Euler equation (while K17 re-derives the main result, equation 9,
within a fluid mechanical approach, section 3 and appendix A).
Such an approach has been discussed by Ellis & Gibbons (2014),
who show4 that a set of central configuration constraints has to
be also satisfied. It should be clear that the general link between a
particle approach and the governing fluid equations is more subtle:
Starting from discrete particles, coarse-graining the Klimontovich
density in phase space and taking velocity moments leads to extra
anisotropic multistream stresses modifying the Euler equation, and
deviations from mean field gravity modifying the Poisson equation
(see e.g. Buchert & Domı́nguez 2005) not done in K17 and BE.
This also leads to extra backreaction terms.5 There is no ‘significant
advance over the approach followed e.g. in BE’ (K17): purely space-
dependent arguments already assume the vanishing of the above
terms.6 Only including these terms would render the result more
general.7

(C) Kaiser omits a discussion of the uniqueness of solutions to
the Poisson equation. This problem, discussed in BE, is crucial to
Newtonian cosmology since we have to specify boundary condi-
tions. BE considered various possibilities, including cases where
kinematical backreaction does not globally vanish (Charlier-type
models), among them the possibility of introducing a background
and deviations thereof defined on a three-torus. BE also discuss
why the latter is the only relevant possibility for Newtonian cos-
mological models (apart from Charlier-type models without a ho-
mogeneity scale). To show this, we recall that the Poisson equation
does not uniquely define the potential. It is unique if we require
square integrability of the potential in the case of R

3. [The sum in
K17, equation (5), is in general divergent, a problem of which
Newton and Einstein were well aware (see e.g. Ellis & Gib-
bons 2014, section 1.1, and references therein).] The possibility
of a square integrable potential over R

3 is, however, irrelevant for
cosmology. The potential is also unique if the spatial average of the

that the average motion of the point particles follows the same a(t). This
dismisses the non-local aspect of averaging contained in aD(t).
4 Kaiser now cites this paper without pointing out the limitations explained
by Ellis & Gibbons (2014).
5 In general relativity, the averaged equations have been given by including
isotropic stresses (Buchert 2001).
6 Recall that in situations of multiple streams, space-dependent variables
cease to be functions and we have to move to a description in phase space.
7 Keeping the mean field assumption, it is straightforward to include velocity
dispersion: Taking velocity moments of the phase-space density, the Euler–
Jeans equation replaces the Euler equation featuring multistream stresses
�ij. The additional source, − 1

�
∂

∂xj
�ij =: −�i , results in a divergence

term, −〈∂�k/∂xk〉D , adding to the kinematical backreaction term in (1),
and leaving the main result of BE on the global vanishing of the kinematical
backreaction term unchanged. There is no such term in Kaiser’s derivation.

source vanishes. Introducing a background and deviations thereof
allows one to consider periodic peculiar-velocity fields and density
contrasts with a vanishing average of the source of Poisson’s equa-
tion for a periodic peculiar-potential (a three-torus model). This
architecture, being identical to that of Newtonian N-body simula-
tions, implies that the peculiar-potential exists and is unique apart
from the addition of a solution of the Laplace equation, whose only
periodic solutions are spatially constant. This constant term can be
removed by the translation invariance of Newton’s equations and
set to zero without loss of generality.
In general relativity (GR), these problems do not arise and a model
universe (that is, in general, background-free) is not restricted to
obey this global constraint. In addition, the kinematical backreaction
variable couples to the averaged intrinsic curvature (section 3.2.2 ff
in Buchert 2008), removing the ‘Newtonian anchor’ (section 3.2.3
in Buchert 2008; section 2.5 in Buchert 2000a), which enforces the
vanishing of structure averages globally on an assumed background.
This is the reason why the globally vanishing backreaction in New-
tonian cosmology is ‘by construction’: Kaiser misinterprets this
insightful remark and notes that ‘... QD tends to zero very rapidly
in the limit of large volumes regardless of whether the structure is
assumed to be periodic’. As we pointed out above, periodicity is
a necessary element of the architecture of Newtonian models ap-
plied to cosmology; by the very definition of QD , the term decays
rapidly with volume, but it is crucial that it has to vanish exactly on
the periodicity scale. We note the importance of a non-vanishing but
small QD for the evolution of averaged scalar curvature in the GR
context, see the recent paper by Bolejko (2017a), who illustrates
this by employing exact GR solutions. Scale-dependent deviations
from an assumed background are unavoidable.8

2 C O N C L U D I N G R E M A R K S A N D D I S C U S S I O N

We conclude that there is no new result in K17. Known for 20 yr, the
result of BE is key to Newtonian cosmology, and is uncontroversial
among researchers working on backreaction problems.

However, Kaiser’s re-statement that Newtonian models cannot
lead to non-vanishing backreaction is correct globally, and relevant
for the rebuttal of recent work by Rácz et al. (2017) on backre-
action calculated within the Newtonian framework. We therefore
discuss this latter work, as well as a recent complementary work by
Roukema (2017), and we point out why the conclusions drawn from
these models on the possibility of global backreaction contradicts
the result of BE.

Since kinematical backreaction is non-vanishing in the interior of
a Newtonian simulation, and attains substantial values by going to
smaller but still cosmologically relevant scales (Buchert et al. 2000),
it is unsurprising that Rácz et al. (2017) re-discover expansion vari-
ance by implementing a multiscale volume partitioning in N-body
simulations. These toy-simulations may be interpreted to illustrate
the effect on differential expansion properties, and only on a re-
stricted range of scales. It is clear, however, and a consequence of
the theorem (1), that there cannot be backreaction in these simula-
tions globally.

The key-issue to understand this fact is the non-local nature of
the gravitational interaction. Rácz et al. (2017) adopt assumptions
on individual domains of the global model universe. In their paper,

8 In GR, this holds globally and can be traced back to first principles like
the non-conservation of intrinsic curvature (equation (13) in Buchert 2000b,
Buchert (2008) and Buchert & Carfora 2008).
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the assumption of vanishing backreaction within a spherical ideal-
ization of domains is adopted. The non-locality of gravitation that is
reflected by global constraints (boundary conditions in Newtonian
cosmology and propagating spatial constraints in GR 3+1–foliated
models) assures, however, that any property of the regional domain
is ‘known’ to the rest of the model universe. Thus, any approxi-
mate assumption made must be rendered consistent with the whole
model universe. Otherwise, an error is introduced that – as in the
case of Rácz et al. (2017) – results in a fictitious global contribu-
tion of backreaction. To avoid this error, the generic situation has
to be implemented, accounting in particular for backreaction on
regional domains (i.e. deviations from spherical symmetry). It is
of equal importance that the domains of the volume partition are
be joined properly to obtain consistency with the global constraint.
Furthermore, although an evolution of the background away from
a homogeneous Hubble flow is a generic property of GR cosmolo-
gies on any scale,9 it lacks a physical basis within the Newtonian
framework.

The separate universe conjecture (Dai, Pajer & Schmidt 2015,
and references therein), i.e. making restrictive assumptions on re-
gional domains and considering the region to evolve separated from
the environment, has to be put under careful scrutiny, especially in
non-linear modelling attempts.

Another example for an uncontrolled implementation of this
conjecture is the recent paper by Roukema (2017) that suggests
an alternative explanation for structure-emerging global backreac-
tion within the Newtonian framework. While Roukema (2017) uses
generic properties on subdomains, in particular including backreac-
tion on regional domains,10 he implements the assumption of ‘silent
virialization’11 by stabilizing collapsed domains with the conse-
quence of obtaining an excess global expansion over the assumed
background expansion. However, virialization in collisionless New-
tonian systems can be modelled exactly by including velocity dis-
persion, as is explained in point (B) of Section 1. This cannot lead
to a global backreaction, as explained in footnote 7.

Furthermore, it does not help to appeal to the algebraic similar-
ity between the Newtonian backreaction model of Buchert et al.
(2000) and the corresponding relativistic model of Buchert, Nayet
& Wiegand (2013) through the claim that ‘virialization’ induces an
excess of expansion in a ‘relativistically realistic’ (Roukema 2017)
situation, while the actual realization of the model is still confined
to the Newtonian setting.

9 The quantitative importance of the backreaction effect in GR is a result
of the observation that the average model evolves away from a predefined
FLRW (Friedmann–Lemaı̂tre–Robertson–Walker) background due to the
non-conservation of curvature (see footnote 8). A scale-dependent ‘back-
ground’ (affected by structure formation) has been investigated in the GR
context (Roy & Buchert 2012), together with global instability properties of
the FLRW model (Roy et al. 2011).
10 Roukema (2017) employs the analytical backreaction model of Buchert
et al. (2000) that is based on exact average properties, and an analytical
model for the evolution of inhomogeneities that has earlier been well-tested
against N-body simulations.
11 The word ‘silent’ here refers to the separate universe conjecture rather
than to so-called ‘silent model universes’ in GR, (cf. Bolejko 2017b, and
references therein) that have vanishing magnetic part of the Weyl tensor.
Note that even ‘silent model universes’ do not obey the separate universe
conjecture, since the spatial GR constraints and their consistent propagation
have to be obeyed, which again reflects the non-locality of the gravitational
interaction.

Also in relativistic N-body simulations (that include virializa-
tion), the spatial GR constraints and their propagation has to be
controlled, representing what in Newtonian theory are the bound-
ary conditions. These simulations may also face the constraints dis-
cussed here for Newtonian models, if periodic boundary conditions
on deviations from a fixed background model are implemented.

A promising route to background-free investigations of the av-
erage properties of GR universe models is furnished by multiscale
volume partitions that have been investigated during the last decade
(a comprehensive list of works may be found in recent reviews,
e.g. in Buchert & Räsänen 2012, Wiltshire 2014). In particular, the
exact volume partitioning formulas for GR models given in Buchert
& Carfora (2008) and Wiegand & Buchert (2010) can be profitably
used to demonstrate the consequences of any regional assumption
made. (The present debate motivated us to explicitly demonstrate
these consequences for an exact volume partition of Newtonian
models in a forthcoming paper.)

It may well be possible to model regional domains of the real
Universe using Newtonian equations, but this does not provide jus-
tification to model the entire observable Universe by a single Newto-
nian solution. Kaiser’s remarks appear to assume that small regions
combine into a single cosmology in a trivial way (i.e. that the ‘back-
ground’ of all small regions should be identical). A kaleidoscopic
modelling of the Universe by consecutive Newtonian domains re-
stricts the generality substantially, for example, by calculating the
average Ricci curvature of the model universe.

Kaiser’s discussion of the relevance of the BE theorem for GR
constitutes an opinion. More efforts to justify that the Universe
is everywhere close to the same background model have been in-
vested by Green & Wald (2014). However, their assumptions are
too restrictive to apply to cosmological backreaction: see (Buchert
et al. 2015) and references therein, which provide an extensive dis-
cussion of the physics of cosmological backreaction.

Finally, quoting statements of early papers that pioneered the
subject risks being anachronistic if developments in the literature
over the subsequent 15 yr are not taken into account. (The remarks
cited by Kaiser are still agreed upon today, but nuanced.)
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