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ABSTRACT

Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions
can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion
of the density and temperature stratification.
Aims. We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior
of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible
stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective
penetration in this layer.
Methods. We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results
from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat
local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different
resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a
constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature.
Results. Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between
the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective
penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the
maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building
on established scalings for diffusion enhanced by large-scale convective motions, we propose a new form for the diffusion coefficient
that may be used for one-dimensional stellar evolution calculations in the large Péclet number regime. These results should contribute
to the 321D link.

Key words. methods: numerical – convection – stars: interiors – stars: low-mass – stars: evolution

1. Introduction

Convection is a fundamental stellar process which underlies heat
transport, mixing, shear, and the dynamo. During many phases
of stellar evolution, a star’s interior is characterized by layers
that are convectively unstable. Outside of a convection zone are
layers that are stable to convection. Convective fluid motions can
cross the boundary between a convectively unstable region and
a neighboring stable region. When the Péclet number is large,
these convective motions slowly erode the density and thermal
stratification of the stable region. When this occurs, the process
is termed convective penetration. We study convective motions
that may contribute to convective penetration below a convection
zone, and thus can have an impact on the structure and evolution
of a star.

Studies of stellar evolution utilize one-dimensional calcula-
tions that evolve physical quantities as a function of the radial
position interior to a star. The effects of convection on other
physical quantities are typically modeled using stellar mixing
length theory, which depends on the local temperature gradi-
ent (e.g., Vitense 1953; Böhm-Vitense 1958; Abbett et al. 1997;
Trampedach 2010; Brandenburg 2016). The phenomenon of

convective penetration has been included in mixing length theory
in two competing ways, based on different non-local convection
theories. One is an overshooting length, expressed as a fraction
of the pressure scale height at the convective boundary, which
defines a region outside of the convection zone where the stellar
model assumes full convective mixing. The other is a region of
enhanced one-dimensional diffusivity (Noels et al. 2010; Zhang
2013), where the intensity of convective mixing changes with ra-
dius. Using statistical observations, this work addresses both of
these methods and thereby contributes to the 321D link.

Stellar convection is a nonlinear and non-local phenomenon.
The extent to which convective motions can extend beyond the
theoretical boundary of a convection zone is intuitively linked
to the local velocity, density, and temperature of the fluid at the
boundary1. In this work we will refer to convective flow struc-
tures that possess radial velocity as plumes, without invoking ge-
ometry or physics specific to plume studies. Plumes frequently
move a short distance beyond the convective boundary. Less

1 The local interplay of velocity, density, and temperature have been
related to buoyancy breaking of plumes (e.g., Latour et al. 1981;
Hughes & Proctor 1988; Spruit et al. 1990).

Article published by EDP Sciences A125, page 1 of 15

https://doi.org/10.1051/0004-6361/201630362
http://www.aanda.org
http://www.edpsciences.org


A&A 604, A125 (2017)

frequently, plumes penetrate the stable zone to a larger extent.
These plumes that extend deeper clearly have a greater effect on
the star, because they penetrate with larger momentum and affect
the stratification deeper inside the stable zone. Convective pene-
tration is therefore naturally a process in which the intermittency
is significant. A theoretical description of such flows should
be built upon statistics gathered by observing convective pen-
etration over long times. The Multidimensional Stellar Implicit
Code (MUSIC), which uses implicit time integration, allows us
to cover efficiently the long times necessary for converged statis-
tics on convective penetration. This work thus builds on earlier
explorations (e.g., Hurlburt et al. 1986, 1994; Brummell et al.
2002; Rogers & Glatzmaier 2005b; Rogers et al. 2006), which
simulate convective overshooting or penetration over shorter
times, typically between two and five convective turnover times.

In addition to observing the long-time behavior of convec-
tive penetration, a statistical treatment is necessary to model
meaningfully instances of large convective penetration. Extreme
value theory (EVT) is a statistical theory that has been widely
used to predict events that have large impacts. Examples are
record rainfall, floods, dangerously high winds, earthquakes, and
avalanches. For the case of convective flows penetrating a stable
zone, an analysis using extreme value theory is natural.

This work is structured as follows. In Sect. 2 we discuss the
young Sun model and the numerical framework of our simula-
tions. In Sect. 3 we examine convective penetration based on
simulation data that covers a range of times, and a range of dif-
ferent spatial resolutions and extents. Motivated by these results,
in Sect. 4 we introduce the framework of extreme value theory,
and compare statistical results for simulations in a truncated do-
main that model penetration due to local convection, and simu-
lations in a large domain that model penetration due to non-local
convection. In Sect. 5 we build on these statistical results to for-
mulate a one-dimensional radial diffusion coefficient that is rel-
evant in the large Péclet number limit. In Sect. 6 we summarize
and discuss the implications of these results.

2. Simulations

In this work we examine a model of a prototypical pre-main se-
quence star, the young Sun, using the numerical set-up bench-
marked in Goffrey et al. (2017). In Pratt et al. (2016) the struc-
ture and properties of the stellar model of the young Sun are
described in detail. Here we briefly summarize the salient fea-
tures of our simulations. We perform two-dimensional implicit
large eddy simulations (LES) of the young Sun using the MUSIC
code. The stellar radius of our young Sun model is approxi-
mately three times larger than the current Sun, it is one so-
lar mass, and has homogeneous chemical composition. The
radial profiles of density and temperature for the young Sun
model are typical for a pre-main sequence star that is no longer
accreting and is gradually contracting. The luminosity is in-
creasing with the interior radius. Based on the radial entropy
profile and an evaluation of the Schwarzschild criterion, a cen-
tral radiative zone is expected below a large convection zone.
This convection zone spans the outer 1.2 × 1011 cm of the to-
tal radius of 2.13 × 1011 cm. A layer exists between the con-
vection zone and the radiative zone, where mixing of convec-
tive flows into the radiative zone can take place. This layer is
the focus of our work, and is located far from the physically
complicated near-surface layers. In this layer, the stiffness (e.g.,
Hurlburt et al. 1994; Brummell et al. 2002; Rogers et al. 2006)
is approximately S ≈ 13. Our simulations do not include ad-
ditional stellar physics such as rotation, a tachocline, chemical

mixing, or magnetic fields, that we intentionally omit from our
statistical study of convective penetration. This simplifies the dy-
namics at the boundary between the interior radiative zone and
the convection zone, where we observe penetrative convective
motions. These additional effects may influence the results we
obtain. In three dimensions the shape of plumes may be different
from two dimensions (Schmalzl et al. 2004; van der Poel et al.
2015), and this could affect mixing properties. Rotation and
shear may tilt plumes, modifying the angle of penetration (e.g.
Brun et al. 2017). A magnetic field may shift the Schwarzschild
criteria (Gough & Tayler 1966) and fundamentally change the
mechanisms of plume braking (Hughes & Proctor 1988). These
additional physical effects will be explored in future work.

The MUSIC code solves the inviscid compressible hydro-
dynamic equations for density ρ, momentum ρu, and internal
energy ρe:

∂

∂t
ρ = −∇ · (ρu), (1)

∂

∂t
ρu = −∇ · (ρuu) − ∇p + ρg, (2)

∂

∂t
ρe = −∇ · (ρeu) + p∇ · u + ∇ · (χ∇T ), (3)

using a finite-volume method, a MUSCL scheme for interpo-
lation (Van Leer 1977), and a van Leer flux limiter (Van Leer
1974; Roe 1986). Time integration in the MUSIC code is fully
implicit, and uses a Jacobian free Newton-Krylov (JFNK) solver
(Knoll & Keyes 2004) with a variant of physics-based precondi-
tioning (Viallet et al. 2016). For all simulations examined in this
work, an adaptive time-step maintains a general CFL number of
ten, while a CFL number based on simple advection is restricted
to be 0.5. We find that this produces good convergence of rele-
vant basic quantities, such as the average kinetic energy.

MUSIC simulations are designed to contribute to the 321D
link (Arnett 2014; Arnett & Meakin 2009), the effort to improve
one-dimensional stellar evolution models by studying critical
short phases using stellar hydrodynamics in two and three di-
mensions. One aspect that makes our simulations relevant to the
321D link is the use of an equation of state and realistic opaci-
ties standard in one-dimensional stellar evolution calculations.
Opacities are interpolated from the OPAL (Iglesias & Rogers
1996) and Ferguson et al. (2005) tables, which cover a range in
temperature suitable for the description of the entire structure
of a low-mass star. The compressible hydrodynamic equations,
given by Eqs. (1)−(3), are closed by determining the pressure
p(ρ, e) and temperature T (ρ, e) from a tabulated equation of state
for a solar composition mixture. This equation of state accounts
for partial ionization of atomic species by solving the Saha equa-
tion, and neglects partial degeneracy of electrons; it is suitable
for the description of our solar model at a young age. The initial
state for MUSIC simulations is produced using data extracted
from a one-dimensional model calculated using the Lyon stel-
lar evolution code (Baraffe & El Eid 1991; Baraffe et al. 1997,
1998), which uses the same opacities and equation of state im-
plemented in MUSIC. In Eq. (2), g is the gravitational accelera-
tion, a spherically-symmetric vector identical to that used in the
stellar evolution code, and not evolved in our simulations.

The thermal diffusivity in MUSIC is also realistic for the
young Sun model, and has not been enhanced. In Eq. (3) the ther-
mal conductivity χ = 16σT 3/3κ̄ρ is defined using the Stefan-
Boltzmann constant σ and the Rosseland mean opacity κ̄. An
artificially high thermal diffusivity is a key issue that has been
found to cause differences between mixing length theory and
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Table 1. Parameters for two-dimensional compressible hydrodynamic simulations of the young Sun.

Rin Rout ∆r (10−4/R) Lin Lout τconv(106 s) Time span (τconv) Surface radiation
Local
YS0 0.31 0.67 14 5.82 × 10−2 1.93 2.52 ± 0.60 525 constant
YS1 0.31 0.67 7 5.82 × 10−2 1.93 3.31 ± 0.36 152 constant
YS2 0.31 0.67 3.5 5.82 × 10−2 1.93 3.59 ± 0.37 35 constant
Non-local
YS3 0.10 0.97 14 5.37 × 10−3 2.32 1.19 ± 0.15 143 constant
YS4 0.10 0.97 7 5.37 × 10−3 2.32 1.22 ± 0.21 71 constant
YS5 0.10 0.97 3.5 5.37 × 10−3 2.32 1.03 ± 0.05 5 constant
YS6 0.21 1.00 14 3.36 × 10−2 2.32 0.67 ± 0.09 197 varying

Notes. The inner and outer radius of the spherical shell, and the radial resolution in the convection zone are given in units of the total radius of the
young Sun R. The luminosity on the inner and outer radii are given in units of the solar luminosity, 3.839 × 1033 erg/s. The convective turnover
time τconv, and the total time span for each simulation is summarized. The method of radiation of internal energy at the surface is also indicated.
Simulations that test set-ups for local convection and non-local convection are included.

numerical results (Rempel 2004), and can result in structural
changes for a star. Despite these consequences, enhancing the
thermal diffusivity has become a conventional step in numer-
ical studies of convective overshooting (Browning et al. 2004;
Rogers et al. 2006; Tian et al. 2009; Strugarek et al. 2011), be-
cause it allows the star to more rapidly achieve energy balance
by shortening the Kelvin-Helmholtz time scale. For the young
Sun model considered here, the Kelvin-Helmholtz time scale is
several orders of magnitude greater than its convective turnover
time. Thus although the young Sun model has not achieved en-
ergy balance, during the time that our simulations span, there is
no measured change in the thermal profile, and the convection
may be considered to be in steady state.

When a realistically small thermal diffusivity is used, a
high resolution is typically required to resolve the correspond-
ing small-scale temperature fluctuations. No attempt is made to
fully resolve the small scales related to the realistically small
thermal diffusivity that we use; we rely on the implicit large
eddy simulation paradigm to approximate the effect of this
small-scale dissipation. Our use of the realistic thermal diffu-
sivity for the young Sun model allows us to study convective
penetration because it produces a large Péclet number; this
is discussed fully in Sect. 2.2. In MUSIC, numerical trunca-
tion errors contribute to both the viscosity and thermal diffu-
sivity. Because MUSIC simulations also use an explicit ther-
mal diffusivity related to the thermal conductivity in Eq. (3),
the Prandtl number is expected to be everywhere less than
one. The characteristic length scales, velocities, viscosity, and
thermal diffusivity vary throughout the radius of a star. The
viscosity and thermal diffusivity may also be dependent on
local dynamics, the wavenumber, and the estimation method
(Domaradzki et al. 2003; Zhou et al. 2014; Radice et al. 2015;
Schranner et al. 2015; Zhou & Thornber 2016). For these rea-
sons, the Rayleigh number and Reynolds number are not speci-
fied in a general sense for our simulations.

2.1. Spherical-shell geometry and boundary conditions

Equations (1)−(3) are solved in a two-dimensional spherical
shell using spherical coordinates: radius r and colatitude θ. A
two-dimensional geometry has been chosen in order to allow us
to produce a long time series of data that also has a satisfactory
resolution near the bottom of the convection zone. Convective
penetration is the result of large-scale convection, and our sim-
ulations do not model the significantly three-dimensional effects

of turbulence, rotation, or magnetic fields present in a realistic
star. Therefore a two-dimensional simulation provides an ap-
proximation to three-dimensional stellar convection. It has long
been recognized that two-dimensional stellar simulations result
in higher velocity magnitudes than three-dimensional simula-
tions (Muthsam et al. 1995; Meakin & Arnett 2007). However,
because our simulations do not approach the high velocities real-
istic to a star, the difference between two- and three-dimensional
velocities do not seriously detract from a study of the form of
convective penetration.

The placement of boundaries and the choice of boundary
conditions affect the physical outcome of a hydrodynamic sim-
ulation. We use boundary conditions targeted to maintain the
original radial profiles of density and temperature of the one-
dimensional stellar evolution model of the young Sun. Each sim-
ulation volume begins at 20◦ from the north pole, and ends 20◦
before the south pole, allowing for a wide convection zone with
multiple descending and ascending plumes. Periodicity is im-
posed on all physical quantities at the boundaries in θ. Radial
boundaries require more sophisticated treatment. In velocity, we
impose non-penetrative and stress-free boundary conditions on
the radial boundaries. The energy flux and luminosity are held
constant at the inner radial boundary at the value of the energy
flux at that radius in the one-dimensional stellar evolution calcu-
lation. Typically we hold the energy flux and surface luminosity
constant on the outer radial boundary as well; the surface lumi-
nosity of our model for the young Sun is 2.32 times the lumi-
nosity of the current Sun. An alternative is to allow the surface
to radiate energy with the local surface temperature. In this case
the energy flux varies as σT 4

s where σ is the Stefan-Boltzmann
constant and Ts(θ, t) is the temperature along the surface. This
boundary condition can only be effectively used when the tem-
perature gradient near the surface is sufficiently resolved; oth-
erwise it results in artificially high cooling rates. On the inner
radial boundary of the spherical shell, a constant radial deriva-
tive on the density is imposed, as discussed in Pratt et al. (2016).
At the outer radial boundary a hydrostatic equilibrium boundary
condition (Grimm-Strele et al. 2015) that maintains hydrostatic
equilibrium by assuming constant internal energy and constant
radial acceleration due to gravity in the boundary cells is applied
to the density.

Consider the suite of two-dimensional simulations of
spherical-shell convection summarized in Table 1. For all of
these simulations, the table lists radial grid spacing and the ra-
dial extent of the spherical shell in units of the total stellar
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Fig. 1. Typical time snapshots of radial velocity in simulation YS2 (left), YS5 (middle), and YS6 (right). The zero point is colored black, while
inward flows are gray and outward flows are red.

radius R. Rogers et al. (2006) report using a grid of Nr × Nθ =
2048 × 1500, with 620 grid cells in the radiative zone to study
convective overshooting in the current Sun. By comparison, in
simulation YS5 we use a grid of Nr × Nθ = 2432 × 2048 with
922 grid cells in the radiative zone to study convective pene-
tration in the young Sun. The large section of the radiative zone
simulated at high resolution is useful to precisely resolve convec-
tive penetration in the young Sun, which has a larger convection
zone than the current Sun.

Table 1 provides the parameters of simulations YS0-6, which
consist of three different sets of simulations. Simulations YS0-2
model convection in the local approximation, using a spherical
shell of limited radial extent around the penetration layer. These
simulations are designed to examine penetration due to convec-
tion that arises and is dynamically limited to the layer around
the bottom of the convection zone, similar to a box-in-a-star ap-
proach. Simulations YS3-5 model convection in the non-local
approximation, using a spherical shell that includes nearly the
whole star, terminating in the near-surface layers. These simu-
lations are designed to examine penetration due to convection
that is dynamically accurate to the large convection zone of the
young Sun model, where convective dynamics may interact non-
locally across more than half of the stellar radius. Among each
of these sets of simulations, three different resolutions are exam-
ined for otherwise identical physical set-ups and for boundary
conditions that include a constant energy flux at the outer sur-
face. In MUSIC simulations, which do not include an explicit
viscosity, higher resolution produces higher characteristic veloc-
ities in the convection zone. Thus these different resolution sim-
ulations are performed to show the robustness of our statistical
results with respect to convective velocities. An additional simu-
lation YS6 is performed in order to isolate the effect of allowing
the energy flux at the stellar surface to vary according to the lo-
cal temperature. A typical snapshot of the radial velocity in each

of these simulation volumes is shown in Fig. 1. The effect of the
placement of the simulation boundaries and the boundary con-
ditions imposed on the properties of convection was examined
in Pratt et al. (2016). In this work we examine exclusively the
penetration of plumes below the convection zone.

For each simulation, Table 1 provides a time span in units of
the convective turnover time of that simulation. This time span
indicates a period after steady convection has developed, during
which the global kinetic energy of the system is approximately
constant. The average radial structure of the star’s density and
temperature does not evolve over this period. All time-averages
and other statistics are calculated over this time span.

2.2. Characterization based on the Péclet number

The Péclet number is a nondimensional ratio that measures the
relative importance of two physical effects that determine the
deceleration of a fluid element entering a layer that is stable
to convection: advection and thermal diffusion. Therefore it is
standardly used to distinguish between convective overshooting
and convective penetration. Low Péclet numbers (Pe ≤ 1) indi-
cate that thermal diffusion is the dominant process and convec-
tive motions overshoot the convection zone without significantly
changing the stratification of the stable layer; high Péclet num-
bers indicate penetration can take place, a process where convec-
tive fluid motions modify the thermal and density stratification
in the stable layer outside the convection zone (e.g., Zahn 1991).
The Péclet number is typically defined

Pe = vrmshp/α, (4)
α = χ/ρcP. (5)

Here the pressure scale height hp represents a characteristic
length scale, and the root-mean-square velocity vRMS represents
a characteristic convective velocity. The thermal diffusivity α is
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Fig. 2. Radial profile of the time-averaged and horizontally-volume-
averaged Péclet number, as defined by Eq. (4), from simulation YS4.
The contribution to the thermal diffusivity by numerical truncations are
not included in this profile. The heavy vertical black line marks the
boundary between the stable radiative zone and the convection zone,
determined from the radial profile of entropy and the Schwarzschild
criterion produced by the one-dimensional stellar model.

produced from our tabulated equation of state, using the defini-
tion of the thermal conductivity χ in Eq. (3), and the specific heat
capacity at constant pressure cP. Numerical truncation errors due
to the finite resolution of a simulation can increase this thermal
diffusivity.

In our simulations, radial profiles of temperature and ther-
mal diffusivity are taken directly from the model of the young
Sun produced by a one-dimensional stellar evolution calculation.
Because of this, and because we use a realistically small thermal
diffusivity, the Péclet number is much greater than one in the
area of interest at the bottom of the convection zone, and convec-
tive penetration is expected. Figure 2 shows the average radial
profile of the Péclet number in simulation YS4. Neglecting the
contributions to thermal diffusivity from numerical truncation,
the Péclet number is O(107) – O(108) in the layer at the bot-
tom of the convection zone for all of the simulations in Table 1.
By perturbing the background state we are able to measure an
approximate effective thermal diffusivity. We find that while nu-
merical truncation errors increase the effective thermal diffusiv-
ity beyond the value implied by the explicit physical thermal dif-
fusivity, our simulations are still in the Pe � 1 regime. A Péclet
number larger than one is expected; Péclet numbers are gener-
ally higher in low and medium mass stars, like the young Sun
model, than for higher mass stars (e.g. Meynet & Maeder 2000).
Péclet numbers are also expected to be much higher in stel-
lar interiors than in the near-surface layers. In addition to these
physical points, two-dimensional hydrodynamic simulations are
known for producing somewhat higher Péclet numbers because
they exhibit higher velocities than three dimensional simulations
(Muthsam et al. 1995; Meakin & Arnett 2007).

Based on the Péclet number, we define convective motions
that cross beyond the boundary of the convection zone to be
convective penetration. Indeed in test simulations where the

Kelvin-Helmholtz time scale of the young Sun is artificially low-
ered by the use of an enhanced thermal diffusivity and corre-
sponding increased luminosity, we observe penetrative motions
that change the density and thermal stratification of the star.
However in the simulations presented in this work, the Kelvin-
Helmholtz time scale is many orders of magnitude larger than the
characteristic time scale associated with convective motions2.
Therefore we do not observe erosion of the stellar structure due
to convective penetration; the temperature and density profiles
are approximately constant during our simulations. We do study
penetrative flows that have the potential to change stellar struc-
ture. However our study may also have implications for convec-
tive overshooting motions in the low Péclet number regime.

Over the last decade it has become common to refer to the
mixing at the boundary of a convection zone as turbulent en-
trainment (e.g. Meakin & Arnett 2007). We note that convec-
tive penetration has long been considered a type of entrainment
in which mixing is due to large-scale convective motions (e.g.
Tennekes & Driedonks 1981), and that in a physical star, mixing
at a boundary may be due to a combination of fluid effects in-
cluding convection, turbulence, and also shear (e.g. Jonker et al.
2013). Generally in LES of stellar convection, the range of scales
that correspond to turbulent mixing include scales considerably
smaller than the grid spacing of the simulation. Indeed for all of
the simulations considered in this work, flows are expected to be
in the laminar regime with moderate Reynolds numbers, and the
effect of turbulent entrainment is not targeted.

3. Results: the penetration depth

3.1. Determination of the extent of convective penetration

Historically several different definitions have been used for the
depth of convective penetration. Broadly speaking, a physical
quantity is sought that either drops to a low level, or changes
sign where convective motions cease. To measure the penetra-
tion depth using a quantity that drops to a low level, an arbi-
trary percentage of the quantity is chosen. An example of such
a quantity is the kinetic energy density 1

2ρu
2. In several earlier

works, the point where convective motions cease has been de-
fined as the point where the kinetic energy density reaches 1%
(Brummell et al. 2002), or 5% (Rogers et al. 2006) of its peak
value near the bottom of the convection zone.

In our simulations, difficulty with this type of measure-
ment arises after convective plumes interact with the underly-
ing radiative region. Convective penetration and overshooting
generate a spectrum of waves in the radiative zone that prop-
agate in the angular direction and feed back on the convec-
tive plumes. These waves have been identified as internal grav-
ity waves in many cases (Hurlburt et al. 1986; Andersen 1994;
Dintrans et al. 2003; Rogers & Glatzmaier 2005a; Rogers et al.
2006; Lecoanet & Quataert 2013; Shiode et al. 2013; Brun et al.
2013; Alvan et al. 2014, 2015; Pinçon et al. 2016). We observe
waves in the radiative zone evolving over tens of convective
turnover times, and they spoil an evaluation of a percentage of
the peak convection zone kinetic energy density. This problem
is clear from the long-time-average of the kinetic energy density
shown in Fig. 3 for simulation YS3. In this long-time average,
these waves appear as a small peak in the kinetic energy den-
sity at a radius 0.35 < r/R < 0.4, precisely in the region where
plumes that have a large penetration depth terminate. A second

2 The timescale for thermal evolution of the young Sun model esti-
mated to be on the order of 4 Myr, or O(108) τconv.
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Fig. 3. Radial profile of the time-averaged and horizontally volume-
averaged kinetic energy, 1

2ρu
2, scaled to its maximum, from simulation

YS3. The heavy vertical black line marks the convective boundary.

issue arises when we observe steady convection over tens of con-
vective turnover times: the peak value of the kinetic energy den-
sity near the bottom of the convection zone evolves. Thus a cri-
terion based on a percentage of the peak value changes during
the long time span of our simulations.

For these reasons it is advantageous to base the penetration
depth on a quantity that changes sign at the point in the radiative
zone where convective motions cease. Two such quantities have
been proposed (as discussed in, e.g. Hurlburt et al. 1986, 1994;
Ziegler & Rüdiger 2003; Rogers et al. 2006; Tian et al. 2009;
Chan et al. 2010): the vertical kinetic energy flux and the ver-
tical heat flux. We examine both of these measures, and compare
the results. The vertical kinetic energy flux Fk is defined as

Fk =
1
2
urρu

2, (6)

where ρ is the density, and u is the velocity. The penetration layer
can be defined by the region of positive vertical kinetic energy
flux. A radial profile of the vertical kinetic energy flux, calcu-
lated by averaging both in time and using a volume weighted-
average in the horizontal (θ) direction, is shown in Fig. 4 for
simulation YS4. Previous works have used this type of averaged
profile to determine the penetration depth. In Fig. 4, the vertical
kinetic energy flux exhibits a smooth positive peak; the width of
the layer where convective mixing takes place is well defined,
but small. In any time-snapshot, larger penetration may be iden-
tified at particular angles.

The second criteria used to measure the penetration depth is
the vertical heat flux:

Fc = ρur(δT )cP, (7)

where the temperature perturbation δT is defined relative to
a time and horizontally volume-averaged temperature profile.
Although the time and horizontally volume-averaged tempera-
ture profile is allowed to evolve during our simulations, it does
not change substantially; this simplifies the calculation of the
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Fig. 4. Radial profile of the time-averaged and horizontally volume-
averaged vertical kinetic energy flux Fk defined in Eq. (6), and vertical
heat flux Fc defined in Eq. (7) for simulation YS4. Both of these fluxes
have been normalized to their absolute maximum value. The heavy ver-
tical black line marks the convective boundary.

temperature perturbation. A layer defined by convective pene-
tration is associated with negative vertical heat flux. Figure 4
also shows the time-averaged and horizontally volume-averaged
vertical heat flux for simulation YS4. The penetration layer is
clearly identifiable as the negative peak of vertical heat flux sur-
rounding the bottom of the convection zone. There is signif-
icant discrepancy between the penetration depth defined from
the averaged vertical kinetic energy flux and the averaged ver-
tical heat flux. Because of this, we examine both measures in
detail. We note that the use of Lagrangian coherent structures
(e.g. Hadjighasem et al. 2016) to define the shape of convective
plumes offers an alternative way to understand this discrepancy.

Horizontal and time averages have been used historically to
define the width of the penetration layer. However the full statis-
tics of convective penetration have not been previously exam-
ined, nor has the use of a simple average to represent them been
specifically justified. Straightforward averages can mask contri-
butions from the intermittent convective plumes that penetrate
deeper into the stable radiative zone than the average plume.
The distribution of penetration lengths may not be symmetric,
or may have other relevant features that are not captured by
a mean. Just such intermittent plumes can have a potentially
larger impact on the physics of the penetration layer. Indeed
Christensen-Dalsgaard et al. (2011) find that consideration of
temporal and spatial inhomogeneity of overshooting could lead
to a thermal profile that agrees with observations from helio-
seismology. We therefore approach the full statistics of pene-
trating plumes with the goal of quantifying the contributions of
intermittency.

3.2. Shape of the penetration layer

Using the first zero of the vertical kinetic energy flux and the
vertical heat flux in the stable zone as our criteria, we examine
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Fig. 5. Angular structure of the penetration layer at three arbitrary times spread throughout simulation YS5. The penetration depth in this illustration
is determined by zeros of the vertical kinetic energy flux. The boundary between the convection zone and the stable radiative zone is indicated by a
solid black line. The vertical axis is in units of the pressure scale height hp at this boundary. A dashed black line indicates the average penetration
depth at this time.

the depth of convective penetration for simulations YS0-5, de-
scribed in Table 1. In hydrodynamic simulations without rota-
tion, the penetration is statistically independent of the colati-
tude θ. However at any instant in time the depth that plumes
penetrate beyond the convection zone varies in θ, defining the
structure of the penetration layer. Three typical snapshots that
illustrate the shape of plumes penetrating into the radiative zone
are shown in Fig. 5. In this figure, the bottom of the convection
zone, established by the entropy profile and the Schwarzschild
criterion, is shown as a thick horizontal line. The depth of

convective penetration at any angular position in the spherical
shell, based on the zero point of the vertical kinetic energy flux,
is shown as a shaded area below this line. At the angular res-
olution of simulation YS5, penetrating plumes often fill several
grid spaces. A general penetration depth calculated by a straight-
forward average in angle is indicated by the dashed horizontal
line in each case; indeed we find that in Fig. 5a, for example,
an average will hide the physically important more deeply pen-
etrating plumes at approximately 40◦ and approximately 150◦.
This figure is calculated from the vertical kinetic energy flux; a
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Fig. 6. PDF of the penetration position, ro, based on plumes penetrating at all angles and sampled at a fixed time interval throughout the full time
span of each simulation indicated in Table 1. a) Penetration depth calculated from the vertical kinetic energy flux for the local convection simu-
lations YS0-2. b) Penetration depth calculated from the vertical kinetic energy flux in the non-local convection simulations YS3-5. c) Penetration
depth calculated from the vertical heat flux in the local convection simulations YS0-2. d) Penetration depth calculated from the vertical heat flux
in the non-local convection simulations YS3-5. The heavy vertical black line marks the convective boundary.

qualitatively similar picture is produced from the vertical heat
flux. We see similar pictures for each of the simulations consid-
ered in this work, independent of the resolution or boundary con-
ditions used. Comparing with three-dimensional hydrodynamic
simulations during steady convection, we also observe similar
pictures, although statistics based on long-times are not avail-
able for three-dimensional stellar convection.

To build a statistical model of convective penetration, we first
consider the extent that plumes penetrate into the radiative zone
at each angle defined in our simulation grid, and we sample the
simulation data at a fixed time interval identical for each sim-
ulation. This fixed time interval is on the order of τconv/103, a
value selected to capture the fastest moving plumes entering the
penetration layer. We define the penetration position ro as the
position where convective motions cease based on either of our
criteria. Figure 6 shows the probability density function (PDF) of
this penetration position for each set of simulations. Each PDF is
calculated using bins of equal size, which are identical for each

set of simulations, and is properly normalized. From these PDFs,
two important observations can be made. First, the PDFs possess
either a multi-modal shape or a significant shoulder. This iden-
tifies two distinct layers within the region below the bottom of
the convection zone. Immediately below the convection zone is
a shallow layer where weak plumes frequently penetrate the ra-
diative zone. Below this layer is a second layer where stronger
plumes penetrate, and more dramatically affect the stable radia-
tive zone. This strong penetration occurs with a typical probabil-
ity between approximately 1/2 and 1/7th of the shallow layer.
The second important observation arises from the probability
of larger penetration: these PDFs have a heavy tail that is non-
Gaussian in appearance. Both of these observations suggest that
a straightforward average does not accurately describe the data.

Unlike the averaged profiles, the PDFs obtained based on the
zeroes of the vertical kinetic energy flux and the zeroes of the
vertical heat flux in Fig. 6 yield characteristically similar results.
The PDFs calculated from the vertical heat flux are slightly more
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sharply peaked for small penetration extent than those calcu-
lated from the vertical kinetic energy flux. However, the peaks
and shoulders are present and their approximate positions are
unchanged regardless of the physical criterium used.

Meaningful differences between the PDFs calculated for the
local simulations YS0-2 and the non-local simulations YS3-5 are
clear from Fig. 6. The PDF of the non-local simulations show
that penetration in simulations YS3-5 reaches deeper into the ra-
diative zone. In addition, the multi-model behavior of the PDFs
and the heavy tail is more significant. This may be directly re-
lated to the higher velocities that arise for identically-resolved
simulations when a large portion of the star is simulated, as re-
ported by Pratt et al. (2016). Additional effects, such as the larger
range of spatial scales of plumes that appear in the non-local
simulations, may also be responsible, but are more difficult to
quantify.

4. Extreme value statistics of maximal convective
penetration

4.1. Formulation

The heavy tails evident in Fig. 6 motivate a more detailed statis-
tical examination to characterize the depth of convective pene-
tration that is meaningful for modeling stellar evolution. To pur-
sue this, we define a maximal penetration depth to be the lowest
position in the radiative zone that is reached at a given time:

rmax(t) = minθ (ro(θ, t)) . (8)

Here we select the minimum over data at different angles, at the
same time. In Fig. 7 the PDF of this maximal penetration depth
is compared with the PDF of the penetration depth of all plumes
(as shown in Fig. 6) and the time- and horizontally volume-
averaged Péclet number. The Péclet number reaches a minimum
near the bottom of the convection zone, above r/R = 0.4. Be-
tween 0.35 < r/R < 0.4, however, the Péclet number raises
again; this is the signature of waves excited by convective pene-
tration, that form in a narrow band in radius below the convection
zone in the young Sun. The rms velocity profile and the rms ra-
dial velocity profile are impacted by the velocity of the waves
in this radial range. The PDF of the maximal penetration depth
correlates with the position where the Péclet number has a max-
imum due to these waves. The quantity rmax thus pinpoints an
important physical consequence of convective penetration, while
the PDF of the penetration depth for all plumes ro does not.

Because the PDF of the maximal penetration depth targets
the waves that are the most obvious dynamical effect of pene-
tration, it is reasonable to suggest that it should determine the
relevant penetration length (or overshooting length) for stellar
evolution calculations. We therefore define a maximal penetra-
tion length to be the difference between the maximal penetration
depth and the convective boundary:

∆rmax(t) = maxθ |ro(t) − rB| . (9)

Here rB is the radial position of the convective boundary and the
maximum is taken over all angles θ at a single time t. Although
in this work we treat penetration below a convection zone, the
absolute value allows us to refer to penetration above or below a
convective boundary. This construction allows us to focus on the
larger amount of convective penetration that is likely to influence
stellar structure.

The maximal penetration length ∆rmax could be used
straightforwardly as an overshooting length in simulations of
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Fig. 7. PDF of the convective penetration depth for all plumes ro (dashed
line), PDF of the maximal penetration depth at any time rmax (solid line),
and the time- and horizontally volume-averaged Péclet number (dotted
line) for simulation YS4. Each of these quantities is vertically shifted
and scaled for comparison. The convective boundary is delineated by a
heavy vertical line.

stellar evolution. A simple average of Eq. (9) produces an over-
shooting length `ov ∼ 0.3hp in our simulations, where hp is
the pressure scale height at the convective boundary. A calcu-
lation of an overshooting length based on a time and horizon-
tally averaged profile of the vertical kinetic energy flux, as in
Fig. 4, produces a much smaller overshooting length, `ov ∼

0.1hp from our simulations. In recent years stellar calculations
have adopted overshooting lengths in a wide range 0.05hp ≤

`ov ≤ 0.4hp (Basu 1997; Chen & Han 2002; Brummell et al.
2002; Rogers et al. 2006; Politano et al. 2010; Liu et al. 2012;
Montalbán et al. 2013; Jin et al. 2015), which includes both of
these values. Both of these values are consistent with previ-
ously reported results for simulations with a similar stiffness to
the young Sun (Brummell et al. 2002; Rogers et al. 2006). Those
earlier results demonstrate that the overshooting length is depen-
dent on the Prandtl number, the Rayleigh number, and the res-
olution of the simulation, as well as the stiffness. However our
analysis suggests that larger values of the overshooting length
than previously predicted would better reproduce the physics of
large Péclet number convective penetration in the interior of a
young low-mass star.

4.2. Application of extreme value theory

The maximal penetration length in Eq. (9) suggests concepts
from extreme value theory (Castillo et al. 2005). In extreme
value theory, unlike the central limit theorem that underlies much
of probability theory, the interest is not the central values of an
underlying distribution, but in accurately modeling the tails. The
centerpiece of extreme value theory is the generalized extreme
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Fig. 8. Cumulative distribution function F of the maximal penetration length, ∆rmax defined in Eq. (9). a) Maximal penetration length calculated
from the vertical kinetic energy flux for the local convection simulations YS0-2. b) Maximal penetration length calculated from the vertical kinetic
energy flux for the non-local convection simulations YS3-5. c) Maximal penetration length calculated from the vertical heat flux for the local
convection simulations YS0-2. d) Maximal penetration length calculated from the vertical heat flux for the non-local convection simulations
YS3-5. Data is shown as point symbols, while a fit to the GEVD form is shown as a line.

value distribution (GEVD), which can be used to model the prob-
ability of maximal events. The cumulative distribution function
(CDF) identified with the GEVD has the form:

F(x) = exp
(
−

(
1 + κ

( x − µ
λ

))−1/κ
)
· (10)

Here κ is commonly called the shape parameter, µ is the
location parameter, and λ is the scale parameter (see e.g.
Sect. 9.1.1 Eqs. (9.3) and (9.4) of Castillo et al. 2005;
Charras-Garrido & Lezaud 2013; Gomes & Guillou 2015). His-
torically the well-documented Frechét distribution corresponds
to a positive shape parameter κ > 0, the Weibull distribution cor-
responds to κ < 0, and the Gumbel distribution corresponds to
κ = 0. The shape parameter is related directly to the heaviness
of the tail of the underlying distribution. For this reason κ is also
sometimes called the extreme value index (EVI). For the Gumbel

case of κ = 0 the GEVD may be expressed in the simpler form:

F(x) = exp
[
− exp

(
−

( x − µ
λ

))]
· (11)

Thus the graph of the natural log of the negative natural log of F
will be a straight line if the distribution is of the Gumbel form.
It will curve downward if the distribution is of the Weibull form,
and upward if the distribution is of the Frechét form. When a
strict upper limit exists for the variable considered, the Weibull
case is predicted. Our maximal penetration length is defined so
that 0 < ∆rmax < 0.43R, meaning that convective plumes cannot
penetrate beyond the center of the star. Thus a Weibull distribu-
tion is expected.

The CDFs of the maximum penetration length for our sim-
ulations are shown in Fig. 8. The forms of the CDFs in Fig. 8
indeed appear to have slight downward curvature, consistent
with the Weibull form. For all of these CDFs, most data lie at
lower values of ∆rmax, and thus the distribution is clearest in
this region; a lack of data at high values of ∆rmax, due to the
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comparative rarity of highly penetrating plumes, may contribute
to the downward curvature in this region. However simulations
with different resolution produce remarkably similar CDFs, al-
though different resolutions produce different convective veloci-
ties, and different spans of time are examined. Increased resolu-
tion of a simulation leads to an improved characterization of the
physical flows. In a direct sense, it also leads to a larger sample
size over which our maximum is taken to define the length ∆rmax.
However in a fluid simulation the data sampled is not strictly in-
dependent, so that it is not clear to what extent a higher reso-
lution is related to an improvement in the use of extreme value
theory, where taking a maximum over a large sample of indepen-
dent data is assumed. We do find that identical distributions are
produced when our data is sampled ten times less frequently in
time, on the order of the autocorrelation time of the flow at the
bottom of the convection zone.

To precisely determine the parameters of the GEVD for each
of our simulations, we use the package evd (Stephenson 2002;
Penalva et al. 2013) publicly available for R (The R Project for
Statistical Computing)3. Independently, we confirm these pa-
rameters using a nonlinear least squares fit to the GEVD. Al-
though in our fluid simulations the data is not strictly inde-
pendent, as assumed by extreme value theory, we find that the
GEVD provides an excellent fit. The shape, location, and scale
parameters resulting from our fit are summarized in Table 2. In
the table a value of κ = 0 is indicated when the best fit is of
the Gumbel form. The value of the shape parameter κ is either
small and negative, or zero for all of our simulations. The avail-
able time-series of data for our highest resolution simulations
is shorter than for lower resolutions. Despite this, a statistically
significant trend is observed in which the value of κ is explic-
itly zero in the high resolution, high velocity simulations YS4
and YS5. Based on this observation, we predict that the Weibull
characterization of our distributions should converge toward the
simpler Gumbel distribution at high resolution, realistic stellar
velocities, and when stellar convection is observed over long
times.

4.3. Radiation with the local surface temperature

To understand whether the treatment of the surface produces dif-
ferent results for convective penetration, we perform an addi-
tional simulation YS6. This simulation has identical resolution to
simulations YS0 (local convection) and YS3 (non-local convec-
tion), but in simulation YS6 the near-surface layers are included
and the surface of the star is allowed to radiate energy with the
local surface temperature. The PDF of the penetration depth of
all plumes, ro, for YS6 is highly similar to simulation YS3; this
comparison is shown in Fig. 9. The penetration depth calculated
from the vertical kinetic energy flux in Fig. 9a reveals a slightly
larger probability of penetration between 0.39 < r < 0.42 than
in simulation YS3. The penetration depth calculated from the
vertical heat flux in Fig. 9b reveals a slightly larger probabil-
ity of penetration between 0.42 < r < 0.43 than in simulation
YS3. Although each of these simulations is observed over more
than a hundred convective turnover times, the small difference in
the statistics may still result from the limited length of time that
these simulations are observed, particularly because convective
penetration is intermittent.

The parameters for the GEVD of the maximal penetration
length in simulation YS6 are included in Table 2. For both the

3 The R Project for Statistical Computing: https://cran.
r-project.org/
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Fig. 9. PDF of the penetration extent of all plumes, ro. a) Penetration
depth calculated from the vertical kinetic energy flux. b) Penetration
depth calculated from the vertical heat flux. The convective boundary is
delineated by a heavy vertical line.

vertical kinetic energy flux and the vertical heat flux criteria,
the GEVD for simulation YS6 is best fit by a Gumbel distribu-
tion. The treatment of the surface in simulation YS6 is physically
more accurate than in YS3. That these two different treatments of
the surface radiation produce similar results may be due to the
fact that both treat the surface only approximately and neglect
important physical effects. However the variable surface radia-
tion in YS6 leads to higher velocity throughout the convection
zone compared with either simulation YS3 or YS0; this was ob-
served in Pratt et al. (2016). This is a significant observation, be-
cause it reinforces the finding that the overshooting length is not
solely linked to the velocity of structures entering the penetra-
tion layer (Schmitt et al. 1984; Hurlburt et al. 1994; Saikia et al.
2000; Zahn 2000).

5. Determination of a diffusion coefficient
for convection

5.1. Background

Convective overshooting and penetration have long been mod-
eled by analyzing the enhanced diffusion in the penetration
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Table 2. Parameters for the generalized extreme value distribution of maximal convective penetration length ∆rmax.

Location parameter µ Scale parameter λ Shape parameter κ
Vertical kinetic energy flux

YS0 1.34 × 10−2 ± 6 × 10−6 4.60 × 10−3 ± 3 × 10−6 −0.133 ± 6 × 10−4

YS1 1.63 × 10−2 ± 5 × 10−6 2.50 × 10−3 ± 1 × 10−6 −0.115 ± 1 × 10−3

YS2 1.51 × 10−2 ± 1 × 10−5 1.84 × 10−3 ± 3 × 10−6 −0.10 ± 3 × 10−3

YS3 5.01 × 10−2 ± 4 × 10−5 8.87 × 10−3 ± 3 × 10−5 −0.21 ± 1 × 10−3

YS4 5.11 × 10−2 ± 7 × 10−5 9.40 × 10−3 ± 4 × 10−5 0
YS5 5.55 × 10−2 ± 1 × 10−4 7.46 × 10−3 ± 8 × 10−5 0
YS6 6.34 × 10−2 ± 1 × 10−4 1.71 × 10−2 ± 1 × 10−4 0
Vertical heat flux
YS0 6.22 × 10−3 ± 5 × 10−6 5.68 × 10−3 ± 4 × 10−6 0
YS1 1.59 × 10−2 ± 6 × 10−6 3.13 × 10−3 ± 1 · 10−6 −0.21 ± 1 × 10−6

YS2 1.46 × 10−2 ± 2 × 10−6 2.72 × 10−3 ± 2 × 10−6 −0.20 ± 1 × 10−3

YS3 3.55 × 10−2 ± 5 × 10−5 1.20 × 10−2 ± 3 × 10−5 0
YS4 5.49 × 10−2 ± 8 × 10−5 1.28 × 10−2 ± 5 × 10−5 0
YS5 2.46 × 10−2 ± 1 × 10−4 7.52 × 10−3 ± 8 × 10−5 0
YS6 3.70 × 10−2 ± 3 × 10−5 8.52 × 10−3 ± 2 × 10−5 0

Notes. Parameters µ and λ are given in units of R, the stellar radius. The shape parameter κ is nondimensional. Errors provided are the standard
error of the fit.

layer due to intermittent convective flows (e.g. as described by
Freytag et al. 2010; Noels et al. 2010; Zhang 2013). Such mod-
els are based on the definition of a one-dimensional diffusion
coefficient, as in

∂A(r, t)
∂t

=
1
r2

∂

∂r
Dr2 ∂

∂r
A(r, t). (12)

Here A is any scalar quantity, and D is a diffusion coefficient.
Based on dimensional arguments, a diffusion coefficient has typ-
ically been estimated for astrophysical applications by either a
characteristic length scale multiplied by a characteristic veloc-
ity scale (e.g. Van Ballegooijen 1982; Andrássy & Spruit 2015),
or a characteristic squared velocity multiplied by a characteristic
time scale.

Equation (12) typically describes processes like molecular
diffusion, and does not explicitly account for additional mixing
due to large-scale convective motions, which enhance diffusion.
In the setting of steady two-dimensional large-scale convection4,
the relation between the diffusion coefficient and the Péclet num-
ber of a convective flow has been studied in both the small and
large Péclet number regimes (Moffatt 1983; Rosenbluth et al.
1987; Shraiman 1987; Haynes & Vanneste 2014). In the small
Péclet number regime this relation has been analytically and nu-
merically shown to be:

D(r) = D0

(
1 + c1Pe(r)2

)
. (13)

Here D is the enhanced diffusion coefficient and D0 is the diffu-
sion coefficient based on small-scale diffusive processes, which
may be molecular diffusion in a liquid, or small-scale turbulent
diffusion in a fluid. The constant c1 is related to the aspect ra-
tio of the convection rolls. In the large Péclet number regime the
corresponding relation is:

D(r) = c2D0Pe(r)1/2, (14)

where c2 is a constant based on the aspect ratio of the convec-
tion cells. Rosenbluth et al. (1987) evaluate c2 for a wide range

4 No similar scaling is available in the more complex three-
dimensional situation.

of possible convection roll aspect ratios, and find that c2 ∼ O(1)
with only small variation. The enhanced diffusion coefficients in
Eqs. (13) and (14) are derived for an ideal setting rather than stel-
lar convection, but are suggestive of diffusive scalings relevant to
different Péclet number regimes.

Near the surface of a star, the small Péclet number limit is
most appropriate; the Péclet number in simulations of this layer
has been reported to be of order one. In this setting, Eq. (13) in-
dicates that an enhancement of the diffusion coefficient depen-
dent on the squared Péclet number is reasonable. If the ther-
mal diffusivity and characteristic length scale are assumed to
be approximately constant, the Péclet number is proportional
to the velocity. This situation can be related directly to the en-
hanced diffusivity proposed by Freytag et al. (1996). In their
radiation hydrodynamics simulations, Freytag et al. (1996) ob-
serve exponential decay of the rms radial velocity beyond the
boundary of the convection zone. They use this result to de-
fine a piecewise-continuous diffusion coefficient that is constant
in the convection zone. Beyond the convection boundary, the
piecewise-continuous diffusion coefficient is defined using the
Ansatz that it should decay exponentially as the velocity:

DF96(r) = v2
Bτ exp (−2(rB − r)/hv). (15)

Here vB and rB are the rms radial velocity at the convec-
tive boundary, and the position of the convective boundary,
respectively. The pressure scale-height hp at the convective
boundary is used to define the characteristic time scale τ =
hp/vB and the velocity scale-height at the convective bound-
ary hv = f hp, where f is a constant of proportionality. The
exponentially decaying diffusion coefficient of Eq. (15) has
been incorporated in several stellar evolution codes, including
MESA (Paxton et al. 2013), ATON 3.1 (Ventura et al. 2008), and
GARSTEC (Weiss & Schlattl 2008).

5.2. Diffusion coefficient in the large Péclet number regime

In contrast with the early simulations examined by Freytag et al.
(1996), in our comparatively high-resolution young Sun simula-
tions the lower convective boundary is in the large Péclet number
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Fig. 10. Time-averaged and horizontally volume-averaged rms radial
velocity near the bottom of the convection zone in simulation YS4. The
time-averaged and horizontally volume-averaged square-root of the Pé-
clet number is shown, scaled and shifted, for comparison. The heavy
vertical black line marks the convective boundary.

regime. For this physically and numerically distinct case, we ob-
serve that the rms radial velocity does not decay exponentially
beyond the convective boundary. The decay of the natural log of
rms radial velocity is shown in Fig. 10, and it does not decay lin-
early with radius in the penetration layer. Motivated by Eq. (14),
we examine the square-root of the Péclet number in this figure
in addition to the rms radial velocity, and find that predictably it
exhibits a trend of decay outside the convection zone similar to
the rms radial velocity. The observed departure from exponen-
tial decay motivates our proposal of a new form for the diffusion
coefficient for stellar interiors in the large Péclet number regime.

Based on our statistical analysis in Sect. 4, we predict that
the maximal penetration length should match the profile of the
Gumbel distribution: exp (− exp (−x)). Figure 11 shows that the
radial profile of the square-root of the Péclet number closely
matches the form of the CDF of maximal penetration length. We
propose a diffusion coefficient of the form:

D(r) = D0PeB
1/2

(
1 − exp

(
− exp

(
−

(rB − r)/R − µ
λ

)))
· (16)

Here penetration beneath a convection zone is assumed, and PeB
is a characteristic Péclet number in the convection zone. In con-
structing this diffusion coefficient, we have used the identity:

F(rmax/R) = 1 − F(∆rmax/R), (17)

to relate the cumulative distribution functions of the maximal
penetration depth rmax and the maximal penetration length ∆rmax.
This identity allows us to express the diffusion coefficient in the
same form as Freytag et al. (1996), as a difference between the
radial coordinate and the position of the convective boundary
indicated by rB. The prefactor D0PeB

1/2 in Eq. (16) is represen-
tative of diffusion in the convection zone, and may be estimated

r/R
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Fig. 11. Time and horizontally volume-averaged square-root of the
Péclet number compared with the data for the cumulative distribution
function F(rmax/R) = 1−F(∆rmax/R) calculated from the vertical kinetic
energy flux. The best fit to this data from simulation YS4 is a Gumbel
distribution with the parameters indicated in Table 2. The Péclet number
has been normalized and shifted vertically. The dashed line indicates a
Péclet number that is also shifted in radius so that the common shape is
clear. The heavy vertical black line marks the convective boundary.

by comparison with stellar evolution models for convective dif-
fusion. Using mixing length theory, diffusion in the convection
zone is characterized by DMLT = 1/3 LMLT vMLT, where the
length scale is proportional to the pressure scale height5. The
values for µ and λ in Eq. (16) may be estimated from simula-
tions YS3-5 in Table 2. In units of the pressure scale height at
the base of the convection zone, hp ≈ 0.178 R, these parameters
give a range of

µ ≈ 0.035 – 0.05R = 0.2 – 0.3 hp, (18)
λ ≈ 0.007 – 0.01R = 0.04 – 0.055 hp. (19)

We note that µ is approximately equivalent to the maximal pene-
tration length estimated in Sect. 4. As with DF96, the diffusion co-
efficient in Eq. (16) should be applied only in the layer of the star
affected by convective penetration, so that it does not introduce
infinitesimally small amounts of mixing into deeper layers of
the star. This proposed diffusion coefficient is shown in Fig. 12,
calibrated using the mixing-length-theory diffusion coefficient,
DMLT, used to produce the young Sun model. Both DMLT, and
DF96 are shown for comparison. The mixing-length-theory diffu-
sion coefficient does not include any diffusion in the penetration
layer. A detailed comparison of the exponentially decaying dif-
fusion coefficient DF96 with our diffusion coefficient in Eq. (16)
naturally depends on the parameters that define the exponential
decay. These are commonly defined by treating the constant of
proportionality between the velocity scale-height and pressure

5 The one-dimensional model for the young Sun is produced using a
mixing length LMLT = 1.5 hp, which produces a diffusion coefficient of
DMLT ≈ 5 × 1013cm2/s in the convection zone.
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Fig. 12. Diffusion coefficient based on EVT proposed in Eq. (16)
compared with a diffusion coefficient defined from mixing length the-
ory DMLT, and the decaying exponential diffusion coefficient DF96 of
Freytag et al. (1996) defined in Eq. (15). Here the peak of the mixing
length theory diffusion coefficient has been used to calibrate diffusion
in the convection zone.

scale-height as a free parameter f ≤ 0.1 (e.g. Angelou et al.
2015). For these small values of f our diffusion coefficient mod-
els a higher level of diffusion throughout the penetration layer
than the exponentially decaying diffusion coefficient of DF96.
Because of the higher level of diffusion predicted, and the differ-
ent form of its decay below the convective boundary, it is worth
exploring the effect of this new diffusion coefficient on the abun-
dance of light elements like lithium and beryllium in solar-type
stars (Boesgaard 1976; Pinsonneault 1994), and to characterize
its observational signatures. In simulations that include magnetic
fields, this differing amount of diffusion due to convective pene-
tration may affect magnetic flux in the penetration layer, and thus
have consequences for the stellar dynamo (e.g. Nordlund et al.
1992; Rüdiger & Brandenburg 1995; Tobias et al. 2001; Rempel
2003; Brummell et al. 2010).

6. Summary and discussion

We have studied flows that penetrate below a convection zone
due to large-scale two-dimensional stellar convection in a pro-
totypical young low-mass star. We have analyzed and compared
convective penetration in two fundamental types of simulations:
(1) those that model local convection by truncating the spheri-
cal shell to a minimal radial layer around the convective bound-
ary, and (2) those that model non-local convection by simulating
nearly the whole star. For each of these situations we examine
stellar convection at three different resolutions, allowing us to
observe penetration relating to a range of characteristic convec-
tive velocities. To compare with our simulations that hold the
energy flux constant at the outer boundary, we also consider a
non-local convection simulation where the surface radiation is
allowed to vary with the surface temperature. This simulation is
characterized by higher velocities in the convection zone. Our
simulations do not account for rotation, shear flows, chemical

mixing, or magnetic fields. These processes may change the
properties of the flow at the convective boundary and alter the
quantitative results. Analysis of these effects will be explored in
future work.

Historically, a time and horizontally volume-averaged radial
profile of the vertical kinetic energy flux has often been used
to determine the depth of the penetration layer. Different results
are produced from a comparison of the time and horizontally
volume-averaged radial profiles of the vertical kinetic energy
flux with the vertical heat flux, a second way to define the pen-
etration layer. Here we show that when plumes at all angles and
sampled at a fixed time interval are considered, PDFs of convec-
tive penetration depth calculated from these two different fluxes
are characteristically similar. The PDFs are non-Gaussian, with
a heavy tail. Based on these PDFs, we define two distinct lay-
ers that form between the convection zone and the stable radia-
tive zone: a shallow layer where convective plumes frequently
penetrate, and a deeper layer where convective plumes penetrate
intermittently.

Motivated by the non-Gaussian character of convective pen-
etration, we examine the maximal penetration depth at any time.
The PDF of this quantity is centered closely around the posi-
tion where waves are excited by convective penetration in the
radiative zone. This suggests that the maximal penetration depth
is a physically significant length scale to define the penetration
layer. Based on a statistical analysis of our simulation data, we
determine that a reasonable estimate of the overshooting length
in the young Sun is `ov ∼ 0.3hp. We observe that the cumulative
distribution function of the maximal penetration length can be
modeled accurately by a Weibull distribution with a small shape
parameter. As both higher resolution and higher velocities are
examined, this Weibull distribution appears to converge toward
a Gumbel distribution. This approach toward measuring convec-
tive penetration is new. Further work is required to demonstrate
that it accurately describes convective penetration when rotation,
shear flows or magnetic fields are considered. However, it pro-
vides a promising avenue to quantify the mixing due to over-
shooting or penetration in stars. Analysis of the properties of
the waves generated by convective penetration into the radiative
zone will be explored in future work.

Building on these statistical results, as well as scalings
for two-dimensional convection, we propose a new form for
the convection-enhanced diffusion coefficient suitable for one-
dimensional stellar evolution calculations. Unlike the DF96 dif-
fusion coefficient (Freytag et al. 1996), our proposed diffusion
coefficient is targeted for the large Péclet number flows char-
acteristic of stellar interiors. This represents a step forward for
stellar evolution modeling, because the DF96 diffusion coefficient
has been broadly applied to both small and large Péclet num-
ber flows, outside of its range of demonstrated physical validity.
Follow-up studies to explore the effect of our diffusion coeffi-
cient in one-dimensional stellar evolution calculations are now
required to analyze possible differences that may result (Baraffe
et al., in prep.). Isolating observable signatures to discern the
structure of overshooting and penetration layers is currently a
challenge, but may also shed light on the differences between
these two forms of the diffusion coefficient.

In this work we have focused on identifying the amount of
mixing due to convective penetration, which can be modeled by
a simple diffusion coefficient. However convective penetration
also has a significant impact on the thermal profile of a pene-
tration layer. A complete model of penetration therefore should
include a treatment of heat transport relevant for stellar evolution
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calculations. Such a model is currently being pursued based on
the simulations presented.
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