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Abstract

The “gravitational memory effect” due to an exact plane wave provides us with an elementary

description of the diffeomorphisms associated with the analogue of “soft gravitons for this non-

asymptotically flat system. We explain how the presence of the latter may be detected by observing

the motion of freely falling particles or other forms of gravitational wave detection. Numerical

calculations confirm the relevance of the first, second and third time integrals of the Riemann

tensor pointed out earlier. Solutions for various profiles are constructed. It is also shown how

to extend our treatment to Einstein-Maxwell plane waves and a midi-superspace quantization is

given.
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I. INTRODUCTION

The gravitational memory effect means, intuitively, that a short burst of gravitational

wave changes the separation of freely falling particles (viewed here as “detectors”) after the

wave has passed [1, 2]. The effect is potentially observable using LISA [3]; after the first

version of this paper was circulated, we were informed by P. Lasky that aLIGO might also

be able to detect memory associated with binary black hole mergers in the not-too-distant

future [5]. The effect would be observed indirectly if the B-mode is detected in the CMB [6].
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It is also relevant to recent work by Hawking, Perry, and Strominger [7, 8] on soft graviton

theorems in their attempt to resolve the “Information Paradox” of black hole physics.

Gravitational waves had long be thought to arise from periodic sources such as binary

star systems and were therefore expected to be detected through resonance. The novel idea

of observing a burst-like gravitational wave through the displacement of freely falling bodies

after the wave has passed was put forward in 1974 by Zel’dovich and Polnarev [1] who

suggested :

. . . another, nonresonance, type of detector is possible, consisting of two nonin-

teracting bodies (such as satellites). [ . . . ] the distance between a pair of free

bodies should change, and in principle this effect might possibly serve as a non-

resonance detector. [ . . . ] One should note that although the distance between

the free bodies will change, their relative velocity will actually become vanishingly

small as the flyby event concludes.

The idea of Zel’dovich and Polnarev was elaborated Braginsky and Grishchuk [2], who

introduced term “memory effect”. Both the title: “Kinematic resonance and the memory

effect in free mass gravitational antennas” and the abstract of the latter paper give a clear

idea of what is involved :

Consideration is given to two effects in the motion of free masses subjected to

gravitational waves, kinematic resonance and the memory effect. In kinematic

resonance, a systematic variation in the distance between the free masses occurs,

provided the masses are free in a suitable phase of the gravitational wave. In

the memory effect, the distance between a pair of bodies is different from the

initial distance in the presence of a gravitational radiation pulse. Some possible

applications [ . . . ] to detect gravitational radiation . . .

Braginsky and Grishchuk were clearly concerned with the motion of test masses (that is,

no back reaction) moving in a weak gravitational wave. Their analysis is at the linear level.

Two years later, Braginsky and Thorne [9] published a short Letter in Nature making a

distinction between two types of bursts, namely one without memory, and one with memory.

The same distinction has been made earlier in [10], but without the explicit introduction of

the memory concept.

In the 1990s a nonlinear form of memory was discovered, independently, by Christodoulou

[11, 12] and by Blanchet & Damour [13]. It arises from the contribution of the emitted

gravitational waves to the changing quadrupole and higher mass moments, cf. [10]. These

papers obtain a permanent displacement.

Since the mid-1990s, there have been many studies of plane gravitational waves. As far

as we are aware, few have dealt with the memory effect, and none with the concept of soft

gravitons. However after the first version of this paper appeared, our attention was brought

to two relevant papers of Harte, [14, 15]. Although mainly concerned with optics, attention

is drawn in [15] to a link with the memory effect that we shall elaborate later in this paper.
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In what follows we consider the effect of a fully non-linear plane gravitational wave on a

detector whose back reaction is negligible. This is done by considering geodesics in the exact

plane wave background. We argue that our approach, initiated in [16] following earlier work

by Souriau [17], is significantly simpler than those in [11–13], since it requires no knowledge

of the source, nor sophisticated understanding of non-linear partial differential equations.

Just simple calculation. It is based on the idea that far from the source we may approximate

the gravitational wave in the neighborhood of a detector by an exact plane wave.

We shall work in 3+1 spacetime dimensions although the discussion of this paper readily

generalises to higher spatial dimensions. The assumption of three spatial dimensions is an

obvious requirement for any discussion of physically realisable detectors such as LIGO and

LISA and moreover is also made in [7, 8]. However it has been pointed out that the boundary

conditions for asymptotically flat higher dimensional spacetimes differ considerably from

those in four spacetime dimensions [18] which probably means that the obvious generalisation

of the BMS group to higher dimensions [19] is not applicable.

A detailed analysis of weak sources at the linearised level analogous to that in three-

dimensions [10] indicates that there is no memory effect in higher dimensions [20]. Since

the analysis of the present paper reveals the importance of considering non-linear focussing

effects it may either be the case that these must be taken into account or our assumption

that at large distance plane waves are a good approximation to outgoing gravitational waves

fails in higher dimensions.

The plan of the paper is as follows. In section II we describe the basic geometry of

plane gravitational waves and the two most useful coordinate systems used to describe them

as well as the relation between them. One referred to as Brinkmann (B) coordinates [21]

is global and allows the general vacuum solution to be specified in terms of two arbitrary

functions of a single retarded time variable. The second, called Baldwin-Jeffery-Rosen (BJR)

coordinates [22, 23] depends upon the same single retarded time variable and are adapted

to a three-dimensional mutually commuting subset of the five independent Killing vectors

of plane wave spacetimes. This fact renders local calculations simpler than in Brinkmann

coordinates for which only a single Killing vector is manifest. The price to pay for this

simplification is that the metric is now specified by a 2 × 2 symmetric matrix giving the

metric on the transverse space which requires solving a coupled system of Sturm-Liouville

differential equations with no non-trivial global solution. This holds even in the locally flat

case, as we show explicitly.

Section III is concerned with how gravitational waves are detected. This is at the heart of

the gravitational memory effect and the detectability of soft gravitons. We consider how a

sandwich wave [i.e., one whose curvature vanishes outside a finite interval of retarded time]

affects freely falling particles initially at rest with respect to one another after the wave has

passed.

In III A and III B we recall how, in linear theory, this behaviour is encoded in integrals

of the Riemann curvature with respect to retarded time and how these integrals serve as a

diagnostic for the nature of the source. In sect. IV D we show how the memory effect may
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be illustrated by means of “Tissot” diagrams illustrating the effect of gravitational pulses

on a ring of freely falling particles.

Section IV is concerned with the detailed exact behavior of these geodesics in the exact

plane wave backgrounds. In sects. IV A and IV B we do this both in Brinkmann and in BJR

coordinates. In (B)-coordinates our study is numerical however in the latter case we can

proceed analytically : by virtue of Noether’s theorem, the spatial positions are independent

of retarded time. This has the consequence that for pulses, the memory effect is encoded

into a diffeomorphism (i.e. a coordinate transformation) taking a part of flat spacetime in

standard inertial coordinates into a patch of flat space in non-inertial BJR coordinates. In

field theory approaches to general relativity, such as those used in [7, 8], diffeomorphisms

or coordinate transformations are thought of as gravitational gauge transformations and

some gravitational gauge transformations of asymptotically flat spacetimes are associated

with soft gravitons. In sec. IV C. we argue that in our context, flat plane waves in BJR

coordinates correspond to soft gravitons in the asymptotically flat spacetimes.

In sec. V we relate our work to the light cone structure of plane gravitational waves and

a well-known analysis of Penrose.

In sec. VI we indicate how much of our work may be extended to exact solutions of

Einstein-Maxwell theory. In particular, we point out that the coupled system has the Carroll

symmetry identified recently [16] for pure gravitational waves.

Up to this point, our work has been purely classical. In sec. VII we turn to possible

implications for the quantum theory by considering a midi superspace (sec VII A) made up

of plane gravitational waves and the associated space of quantum states.

In the analogous case of electromagnetic waves there is an elaborate theory of polarization

and the photon states specified by Stoke’s parameters correspond to points on what is called

the Poincaré sphere which carries a Pancharatnam connection. In VII B we show how this

formalism may be smoothly carried over to the case of gravitons.

The subject of plane gravitational waves has a long history and many contributions and

reviews distributed over many different journals in many different languages. In reviewing

the material necessary for an exact and comprehensible understanding of the memory ef-

fect and its relation to the concept of soft gravitons we have felt it necessary on the one

hand to incorporate sufficient material perhaps well known to experts to make our account

self-contained for non-experts while on the other hand giving sufficient credit to the pio-

neers of the field without overwhelming the reader with an unmanageable list of all every

contribution.

Some of the results presented here appear in summary in [24].

II. PLANE GRAVITATIONAL WAVES

We begin by reviewing some facts about plane waves [17, 21–44].
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A. Brinkmann and Baldwin-Jeffery-Rosen coordinates

There are two commonly used coordinate systems for plane gravitational waves, namely :

• Brinkmann Coordinates (B) [21, 26] for which the metric is1

g = δij dX
idXj + 2dUdV +Kij(U)X iXj dU2, (II.1)

where the symmetric and traceless 2×2 matrix with components Kij(U) characterizes

the profile of the wave. The only non-vanishing components of the Riemann tensor

are, up to symmetry,2

RiUjU(U) = −Kij(U). (II.2)

For suitable Kij the Brinkmann coordinates (X, U, V ), which are harmonic, are global

[27, 28]. The general form of their profile is then

Kij(U)X iXj =
1

2
A+(U)

(
(X1)2 − (X2)2

)
+A×(U)X1X2, (II.3)

where A+ and A× are the amplitude of the + and × polarization state.

Aside from their astrophysical applications to gravitational radiation, plane waves, in

arbitrary spacetime dimensions, provide a general framework in which any “natural”

non-relativistic dynamical system with a configuration space of dimension n may be

“Eisenhart” lifted to a system of null geodesics in an (n + 2) dimensional Lorentzian

spacetime endowed with a covariantly constant null Killing vector field ξ = ∂V [45–

48]. Conversely, a null reduction along the orbits of such “Bargmann” spacetimes

gives rise to a possibly time-dependent dynamical system on an n-dimensional con-

figuration space. From the “Bargmann” point of view, the metric (II.1) describes a

non-relativistic particle subjected to an (attractive or repulsive) harmonic (and gen-

erally time-dependent and anisotropic) oscillator potential.

• Baldwin-Jeffery-Rosen Coordinates (BJR) [22, 23, 29], for which

g = aij(u) dxidxj + 2du dv, (II.4)

where the 2×2 matrix a(u) = (aij(u)) is strictly positive. The BJR coordinates (x, u, v)

are not harmonic and are typically not global, but exhibit coordinate singularities

[17, 23, 27, 28, 31, 34], — a fact which gave rise to much confusion in the early days

of the subject. Our investigations below provide further clarification of this issue.

1 Equation (II.1) gives the most general form of a pp-wave only in D = 4 total dimension; further compo-

nents arise also if D ≥ 5 [21]. In this paper, we limit ourselves to D = 4.
2 We use the convention Rµνρσ = 2∂[ρΓ

µ
σ]ν + · · · ; indices are lowered according to Rµνρσ = gµλR

λ
νρσ.
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The relation between the two coordinates systems is given by [16, 39]

X = P (u) x, U = u, V = v − 1

4
x · ȧ(u)x, (II.5)

with 3,

a(u) = P (u)TP (u), (II.6)

where P satisfies

P̈ = K P. (II.7)

For a given matrix K, this is a second-order ODE of the Sturm-Liouville type for P , which

implies that P T Ṗ − Ṗ TP = const. Then the initial values of Ṗ and of P may be chosen so

that the constant vanishes,

P T Ṗ − Ṗ TP = 0. (II.8)

The mapping (II.5) transforms the quadratic “potential” Kij(U)X iXj in (II.1) into a time-

dependent transverse metric (II.6) and vice versa. The relation is

K =
1

2
P
(
ḃ+

1

2
b2
)
P−1, b = a−1ȧ. (II.9)

B. Plane waves in BJR coordinates

Up to symmetry, the only non-zero components of the Riemann tensor are,

Ruiuj = −1

2

(
ä− 1

2
ȧa−1ȧ

)
ij
, (II.10)

yielding the Ricci tensor, whose only nonzero component is (II.9),

Ruu = −1

2
Tr

(
ḃ+

1

2
b2
)

with b = a−1ȧ. (II.11)

The most general flat metric obtained by solving the equation Ruiuj = 0. With initial

conditions

a0 = a(u0) and ȧ0 = ȧ(u0) (II.12)

we find

a(u) =

(
a0 +

1

2
(u− u0)ȧ0

)
a−10

(
a0 +

1

2
(u− u0)ȧ0

)
, (II.13)

from which we infer that

a(u) = a
1
2
0

(
1 + (u− u0)c0

)2
a

1
2
0 where c0 =

1

2
a
− 1

2
0 ȧ0 a

− 1
2

0 (II.14)

3 The dot stands everywhere for the derivative w.r.t. u.
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where a
1
2
0 is a (symmetric) square-root of the positive matrix a0.

If, in particular, the initial conditions in (II.12) are a0 = 1 and ȧ0 = 0, then we obtain

flat spacetime in inertial coordinates, for which a(u) = 1 for all u. More generally, (II.14)

allows us to recast, in any flat region, the metric (II.4) into standard Minkowskian form by

a change of coordinates, (x, u, v) 7→ (x̂, û, v̂). For

x̂ = (1 + (u− u0)c0) a
1
2
0 x, (II.15a)

û = u, (II.15b)

v̂ = v − 1

2
x ·
(
a

1
2
0 c0 (1 + (u− u0)c0) a

1
2
0 x
)
, (II.15c)

whose inverse is

x = a
− 1

2
0 (1 + (u− u0)c0)−1 x̂, (II.16a)

u = û, (II.16b)

v = v̂ +
1

2
x̂ ·
(
c0 (1 + (u− u0)c0)−1 x̂

)
, (II.16c)

one readily finds indeed that

g = dx · a(u)dx + 2du dv = dx̂ · dx̂ + 2dû dv̂. (II.17)

We will call (x̂, û, v̂) a manifestly flat BJR coordinate chart.

Two metrics related by a coordinate transformation, i.e., by a diffeomorphism, are usually

regarded as equivalent.

However as it stands, this statement is not very precise. One needs to specify how the

diffeomorphism f acts on the spacetime {M, g} under consideration. If it is the identity

outside a compact set within the spacetime manifold M (which we assume to be non-

compact), then one typically assumes then the two spacetimes {M, g} and {M, f ?g}, where

f ? denotes pull back, are physically equivalent, i.e. “mere coordinate transformations of one

another”.

However if the diffeomorphism f does not vanish outside a compact set and does not tend

in some appropriate sense to the identity at “infinity”, more care is required. For example

in (suitably defined) asymptotically flat spacetimes, there is a class of of distinguished coor-

dinate systems related by the subset of diffeomorphisms which do not tend to the identity

at infinity, but which nevertheless take asymptotically flat spacetimes to asymptotically flat

spacetimes 4. The set of such diffeomorphisms is referred to as the asymptotic symmetry

group. These include the translations and boosts.

4 One should beware that confusion can arise if the class of permissible diffeomorphisms are not viewed

actively. In discussing the elementary geometry of Euclidean space, the metric tensor in Cartesian co-

ordinates and in spherical coordinates differ substantially, as do the coordinate functions themselves at

large radius. However viewed passively a “change of coordinates” merely relabels the points which are

left fixed.
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Solutions of the Einstein equations which differ by such diffeomorphisms are not usually

thought of as physically identical since they could, for example, describe two black holes

moving towards one another.

In 3 + 1 spacetime dimensions the asymptotic symmetry is well known to be the infinite

dimensional BMS group. Spacetimes which differ by the action of elements of the BMS group

are typically regarded as physically distinct. This is especially so in scattering theory, both

at the classical level and in attempts to construct a perturbative quantum version in which

the S-matrix plays an important role, the classical theory being described by tree-diagrams.
5

Since in this approach gravitational waves carrying arbitrarily small energy have to be

considered, the quantum theory has to address certain difficulties, specifically infinite quan-

tities which arise even in electromagnetic theory in Minkowski spacetime where they are

ascribed to the presence of so-called soft (i.e. zero energy) photons. At the quantum level

these soft quanta are frequently assigned states in the quantum Hilbert space. At the

classical level these soft photons carry vanishing electromagnetic fields and so differ only by

electromagnetic gauge transformations which however do not tend to the identity at infinity,

“at infinity” being, in this case, a neighbourhood of the conformal boundary of Minkowski

spacetime 6. The work of [7, 8] is an attempt to make use of much earlier work by them-

selves and others (referred to in detail in their papers ), which extends the ideas and results

obtained for photons to gravitons.

The starting point of [7, 8] (which has not been without its critics [77–79]), was to

consider asymptotically flat spacetimes and the BMS group. The idea of the present paper

is to consider a much simpler situation: plane wave spacetimes. In the present case the

diffeomorphism defined by (II.15)–(II.16) does not tend to identity as |x| or |u| tend to

infinity. Moreover, since every metric tensor given by (II.14) is locally flat, it is tempting to

regard them, in the language of quantum field theory, as ground states or vacua.

As we recalled above, in theories with no massless excitations one usually regards all

such “gauge equivalent” vacua as equivalent. But in theories with massless excitations it

is customary to regard such vacua related by gauge transformations which do not tend to

identity at infinity as non-equivalent, differing by the presence of “soft” (i.e., zero-energy)

quanta. Such claims are often supported by a canonical or Hamiltonian treatment in which

the soft states are associated with charges or moment maps which may be expressed as sur-

faces integrals “at infinity” which, for asymptotically flat spacetimes, are 2-surface integrals

5 One might object that strictly from a rigorous point of view, no S-matrix exists in quantum fields theories

based on standard Fock space constructions of their Hilbert spaces [80] and even classically the soundness

so-called Lorentz Covariant approaches has often been questioned on causality grounds (see e.g. [81]) but

in this paper we shall set aside such doubts.
6 We are grateful to Piotr Bizon [82] for informing us of what appears to the first mention of a memory

effect in the electromagnetic case [83]. We subsequently learnt from Malcolm Perry [84] that an even

earlier though not very explicit mention may well come from Mott in a paper in which he computed the

number of photons produced in Rutherford scattering [85].
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evaluated on the conformal boundary. This has been done in the asymptotically flat case in

[7, 8, 86].

In the present case the massless excitations correspond, at the quantum level, to gravitons

and so one may regard the metrics given by (II.14) as “dressed by soft gravitons”, (i.e.

carrying vanishing energy) the dressing being affected by the pulse of gravitational radiation

itself made up of “hard” (i.e. carrying non-vanishing energy) gravitons. This interpretation

is consistent with that given in [7, 8] in the asymptotically flat case.

To confirm this suggestion in full mathematical detail would require a detailed treatment

of what one means by “at infinity” for plane gravitational waves, their conformal boundary

(c.f. [87]), a canonical or Hamiltonian treatment, the identification of possible moment maps

defined as 2-surface integrals “at infinity”. This is an interesting and demanding challenge

for the future. For the present we shall content ourselves with fleshing out some aspects

of plane gravitational waves which (we feel) make our suggestion plausible at the physical

level. As partial compensation we note that being based on exact solutions of the Einstein

equations our results evade the strictures of [81] alluded to earlier.

We will consider sandwich waves i.e. gravitational waves which are flat outside the

sandwich but not inside, i.e. for u ∈ [ui, uf ]. Our point here is that flat spacetimes both in

the “before-zone” u < ui and in the “after-zone” u > uf [34] are non-equivalent.

Inside a sandwich wave we only have Ricci-flatness cf. (II.11),

Tr

(
ḃ+

1

2
b2
)

= 0. (II.18)

By (II.9) this is precisely the tracelessness of K.

BJR coordinates are convenient for comparing the standard linear theory in transverse

traceless gauge with the fully non-linear theory. For plane waves in linear theory one has a

metric of the form (II.4) with

aij = δij + hij(u) + . . . (II.19)

Thus

Pij(u) = δij +
1

2
hij(u) + . . . , Kij(u) =

1

2
ḧij(u) + . . . (II.20)

Thus after the wave has passed, i.e. if Kij = 0, we have hij(u) = h0ij + uh1ij where h0ij
and h1ij are independent of u. If h1ij = 0 we have the metric # (5.19) of Favata [4] in his

discussion of the possibilities of detecting the memory effect with interferometers and his

#(5.20) transforming to manifestly flat coordinates. These agree with (II.13) and (II.15).

Note that generically hij is linear in u.

To see that the BJR coordinates are indeed necessarily singular as stated, let us define

χ =
(

det a
) 1

4 > 0 & γ = χ−2a, (II.21)

so that b = γ−1γ̇ + 2χ−1χ̇1. Since det γ = 1, we readily obtain Tr(γ−1γ̇) = 0; this allows us

to show that (II.18) is equivalent to the Sturm-Liouville equation

χ̈+ ω2(u)χ = 0, ω2(u) =
1

8
Tr
(
(γ−1γ̇)2

)
(II.22)
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which thus guarantees that the vacuum Einstein equations are satisfied for an otherwise

arbitrary choice of the unimodular symmetric 2× 2 matrix,

γ(u) =

 α(u) β(u)

β(u) (1 + β(u)2)/α(u)

 . (II.23)

Thus the matrix a(u) depends on two arbitrary functions α(u) and β(u), see Eqn (II.23)

and [16].

The positivity of the matrix (γ−1γ̇)2 implies that ω2 in (II.22) is positive; the equation

describes therefore an attractive oscillator with a time-dependent frequency. It follows that

χ(u) is a concave function, χ̈ < 0, which in turn implies the vanishing of χ for some using > ui,

χ(using) = 0, (II.24)

signalling a singularity of the metric (II.4). Choosing a(u) = diag(a11, a22), for example, we

find,

ω2(u) =
1

16

(
ȧ11
a11
− ȧ22
a22

)2

(II.25)

and the Sturm-Liouville equation (II.22) becomes

ä11
a11

+
ä22
a22
− 1

2
(
ȧ211
a211

+
ȧ222
a222

) = 0. (II.26)

Expressed in terms of the matrix P , this is simply,

P̈11

P11

+
P̈22

P22

= 0 (II.27)

which is indeed TrK = 0 since P̈P−1 = K.

(a) (b)

FIG. 1: (a) χ = (det a)1/4 and (b) ω2 in (II.22), respectively, calculated numerically for A+ = A3
+

confirm that, in BJR coordinates, the metric becomes singular at using.

While we can not solve the non-linear equation (II.27) in general, we may proceed differ-

ently : starting with some physically relevant profile in Brinkmann coordinates and solving
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(II.7) numerically allows us to calculate the matrix a and to plot χ(u) and ω2(u) in (II.21)

and (II.22). This confirms the existence of a using > ui such that the metric becomes singu-

lar, χ(using) = 0. For the choice A× = 0 , A+ = A3
+ in (IV.9) [justified in the next section],

for example, χ and ω2 are plotted in Fig.1.

III. DETECTION OF THE MEMORY EFFECT

A. Detection theory

We turn now to the question of the detectability of soft gravitons. As pointed out in

the pioneering papers of Pirani [30, 31] knowledge of the relative motion of freely falling

particles in time-dependent gravitational fields is essential for our understanding of gravi-

tational radiation and its detection. In practical devices the “particles”, such as mirrors in

interferometers, or the individual atoms in old fashioned bar detectors are never truly freely

falling since they are subject to various forces holding them in place. Nevertheless it is the

relative motions induced by external time dependent gravitational influences which are what

is actually detected.

Let us consider two infinitesimally close geodesics, Xµ
1 and Xµ

2 = Xµ
1 + ηµ, whose unit

tangent vector is
dxα

dτ
, where τ is their common proper time. The quantity ηµ is referred to

as the connecting vector. Theories of detectors start with the equation of geodesic deviation

(or Jacobi equation) 7,
D2ηµ

dτ 2
+Rµ

ανβ

dxα

dτ

dxβ

dτ
ην = 0 , (III.1)

and then modify it with elastic and damping terms (see, e.g., eqn 4 of [10]). The connecting

vector satisfies

gµν
dxµ

dτ
ην = 0. (III.2)

The geodesic deviation has been studied by Griffiths and Podolsky [37]. For the central

geodesic given by U = τ , V = −1
2
τ ,X1 = X2 = 0 , their equations may be cast in the form

d2η1

dU2
=

1

2
A+(U)η1 +

1

2
A×(U)η2 , (III.3a)

d2η2

dU2
= −1

2
A+(U)η2 +

1

2
A×(U)η1 , (III.3b)

d2η3

dU2
= 0 . (III.3c)

Given A+(U) and A×(U), this is a system of second order linear differential equations for

ηi as a function of U , and hence τ . Within a tubular neighborhood of any geodesic one may

7 For any tensorial quantity T ...... , we put
DT ......
dτ

= T ......;ν
dxν

dτ
.
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introduce a Fermi coordinate system (x0, xi) in which the metric is locally flat and t = x0

coincides with proper time τ along the geodesic. In such a local coordinate system at rest

with respect to a freely falling detector, the acceleration of the separation ηi in such a local

coordinate system frame at rest with respect to is subject to a forcing term

−Ri
0j0 η

j , (III.4)

where 0 labels the time direction and and i, j the spatial directions. For a more detailed

discussion of Fermi coordinates in plane gravitational wave spacetimes see [49].

In fact, since, if li is the time averaged separation, both the change xi = ηi − li in sepa-

ration and the curvatures are typically small, one may approximate the geodesic deviation

equation by,
d2xi

dt2
= −Ri

0j0l
j. (III.5)

Thus supposing ẋi is initially zero, one has an induced velocity

vi(t) =
dxi

dt
= −

∫ t

ti

dt′Ri
0j0(t

′)lj . (III.6)

Now in linear theory

Ri0j0 =
G

3r

d4Dij

dt4
(t− r) , (III.7)

where Dij is the quadrupole of the source, r its distance and u = t − r is retarded time.

Note that in linear theory and to the approximation we are using, there is no distinction

between upper and lower spatial indices. Thus for many plausible sources such as

• gravitational collapse of a previously time independent object to form a black hole

• or a gravitational flyby

the forcing term would be confined to a finite interval ti ≤ t ≤ tf of time : it is pulse-like

referred to as a sandwich wave [27, 28, 36]. It follows that while the separation ηi may

have been constant before the arrival of the pulse, it will nevertheless, in general, be time

dependent after the pulse. In fact it was pointed out in [10] that, at the linear level, the

three time integrals of the signal,

I(3) =
(
I
(3)
ij

)
=

∫ tf

ti

dt

∫ t

ti

dt′
∫ t′

ti

dt′′R0i0j(t
′′) (III.8a)

I(2) =
(
I
(2)
ij

)
=

∫ tf

ti

dt

∫ t

ti

dt′R0i0j(t
′) (III.8b)

I(1) =
(
I
(1)
ij

)
=

∫ tf

ti

dtR0i0j(t) (III.8c)

should vanish in the collapse case, since
dDij

dt
would vanish initially and finally. By contrast,

in the flyby case only the last integral needs to vanish, since initially and finally Dij could

be expected to be quadratic in time and hence only
dD3

ij

dt3
would vanish initially and finally.
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The analyses of Zel’dovich and Polnarev, and of Braginsky and Grishchuk is entirely at

the linear level and as far as the source is concerned, they simply use the analogue of (III.7)

for the metric perturbation. Using transverse traceless or radiation gauge 8 one has

hTTij ∝
1

r

d2

dt2
Dij(t− r) . (III.9)

Now from (III.9) we have

R0i0j ∝
d2hTTij
dt2

. (III.10)

Thus
d2xi

dt2
∝ −

d2hTTij
dt2

lj (III.11)

which is consistent with

xi ∝ hTTij l
j . (III.12)

Braginsky and Grishchuk also suggest (their equation (7)) that flyby’s should have Dij

quadratic in time. Braginsky and Thorne [9] makes a distinction between two types of bursts,

one without memory and one with memory, expressed in terms of a linearised description

of the gravitational perturbation in transverse traceless gauge hTTij rather than the gauge-

invariant Riemann tensor components R0i0j. Thus :

• For Gravitational-wave burst without memory hTTij is non-zero only in a finite interval

ti < t < tf

• while for Gravitational-wave burst with memory, hTTij = constant for t > tf .

From (III.10) it follows that for bursts without memory the two integrals I1 and I2 in (III.8)

should vanish, while for signals with memory, only I1 needs to vanish.

To test these ideas we shall consider pulses constructed from Gaussians, and their integrals

and derivatives. While not strictly sandwich waves, their curvatures vanish rapidly outside

the width of the Gaussian.

1. For a flyby the Dij could be the third integral of a Gaussian and hence Kij would be

the derivative of a Gaussian, see (IV.5) below.

2. The system considered by Thorne and Braginsky could be the second derivative of a

Gaussian, (IV.7).

3. For a collapse one could take Dij(u) ∝ −erfc(u), minus the complementary Error

Function. Thus the Riemann tensor or equivalently Kij would be the third derivative

of a Gaussian, (IV.9).

8 In fact their equation (1) is a plane wave in BJR coordinates with Tr(a) = 2 which they regard as a small

perturbation of flat space, i.e. when aij = δij . They write aij = δij + hij .
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B. Memory via Hamilton-Jacobi theory in BJR coordinates

Since it is central to an understanding of the physical reality of the memory effect, we

shall begin by giving a self-contained account of the motion of freely falling particles using

the Hamilton-Jacobi method in BJR coordinates. The results agrees with the derivation in

[13, 16], but is included for the sake of making the paper self-contained. We thus need to

solve:

gµν∂µS∂νS = 2c ,
dxµ

dτ
= gµν∂νS . (III.13)

The coordinates v, xi are ignorable and we may separate variables

2 ∂uS∂vS + aij∂iS∂iS = 2c, S = G(u) + vpv + xipi,

where pv, pi are constants and the motion is reduced to quadratures,

dxi

dτ
= aijpj ,

dv

dτ
= Ġ ,

du

dτ
= pv (III.14)

where τ is proper time. It follows that particles which have initially constant coordinates x,

have x constant for all times for which the coordinates are well-defined. This is key to our

approach to the memory effect.

In BJR coordinates we may obtain flat spacetime for u ≤ ui by setting aij = δij. Thus

before the pulse arrives we may make this choice. It is consistent with the Einstein vacuum

equations which state that the trace of the right hand side of (II.9) should vanish. However

clearly from (II.9), we will not have aij = δij after the pulse has passed.

At the linear level

äij ≈ 2Kij , (III.15)

and in Brinkmann coordinates as an exact statement [16] Kij = −RiUjU and so at linear

level (see (II.10)) we have,

äij≈− 2Ruiuj (III.16)

which is the analogue of (III.10) in BJR gauge. We have 1
2
bij(uf ) ≈

∫ uf

ui

duKij(u) . Since in

linear theory bij ≈ ȧij,

aij(u) ≈ δij + 2

∫ u

ui

du′
∫ u′

ui

du′′Kij(u
′′) . (III.17)

The particles are at rest in this coordinate system; however their distances apart will be

different after the pulse has passed i.e. for u > uf if the metric is different and hence if the

double integral in (III.17) is non-zero.

This, then, is the linear memory effect in BJR coordinates. A persistent change in the

metric means a persistent change in separation. A similar conclusion in the optical context

was reached in [15].

Now it is clear how this works at the non-linear level. The equation (II.9) provides a

non-linear second order differential equation for aij and with initial conditions that aij = δij
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before the arrival of the pulse. This means that in general aij 6= δij after the pulse has passed

and so the distance between nearby freely falling particles has altered. At the linear level we

can express the shift in terms of integrals of the Riemann tensor introduced in [10]. In the

full non-linear case (II.9) has no obvious explicit solution but in a perturbation expansion,

it seems clear that many more such iterated integrals will crop up. In fact, after the first

version of this paper was circulated, we were informed that this is indeed the case, see sec.

4.1.1 of [15]. In later sections we shall explore the relevant solutions both numerically and

analytically.

IV. GEODESICS

A. Geodesics in Brinkmann coordinates

Brinkmann coordinates, (II.1), are convenient for a numerical study. For simplicity, we

only consider the + polarization, for which

Kij(U)X iXj =
1

2
A+(U)

(
(X1)2 − (X2)2

)
. (IV.1)

The geodesics are solution of the uncoupled system

d2X1

dU2
− 1

2
A+X

1 = 0, (IV.2a)

d2X2

dU2
+

1

2
A+X

2 = 0, (IV.2b)

d2V

dU2
+

1

4

dA+

dU

(
(X1)2 − (X2)2

)
+A+

(
X1dX

1

dU
−X2dX

2

dU

)
= 0 . (IV.2c)

Fixing the initial conditions X(U0) = X0 and Ẋ(U0) = Ẋ0, the projection of the 4D

worldline to the transverse plane is therefore independent of the choice of V (U0) = V0, i.e.,

independent of whether the motion is timelike, lightlike or spacelike.

The geodesic deviation equations of Griffiths and Podolsky’s, (III.3) can be rederived

from ours here. For ηi = X i
2 − X i

1, i = 1, 2, this follows from the linearity of the first two

equations in (IV.2). As to the third one, Eq. (IV.2c) entails that

d2(V2 − V1)
dU2

= −1

4

dA+

dU
((X1

2 )2 − (X1
1 )2 − (X2

2 )2 + (X2
1 )2)

+A+

(
X1

2

dX1
2

dU
−X1

1

dX1
1

dU
−X2

2

dX2
2

dU
−X2

1

dX2
1

dU

)
= −1

4

dA+

dU

(
(η1)2 − (η2)2

)
+A+

(
η1η̇1 − η2η̇2

)
if one assumes that X i

1 = 0, i.e., ηi = X i
2. The Jacobi deviation equation being linear in ηµ,

we can conclude that d2η3/dU2 = d2(V2 − V1)/dU2 = 0.
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The system (IV.2) can be solved once A+(U) is given. Analytic solutions can be obtained

in particular cases only, though, therefore we study our equations numerically. An insight

into what happens, is gained by considering Gaussians and their integrals and derivatives.

The colors refer, in all Figs.3-5-6-7, to identical initial conditions X1
0 = X2

0 = V0 = .5, 1, 1.5

at U0 << 0.

• We start with a toy example, assuming that the gravitational burst is a simple Gaus-

sian,

A+(U) = A0
+(U) ≡ 1

2
e−U

2

. (IV.3)

Then the integrals (III.8) are

I1 =

√
π

2
diag(1,−1), I2 = I3 =∞ diag(1,−1) . (IV.4)

The evolution of the profile and the geodesics are shown Fig.2 and 3, respectively.

FIG. 2: Evolution of the wave profile of a Gaussian burst.

FIG. 3: Evolution of geodesics for a Gaussian burst.

The variation of the relative (euclidean) distance ∆X(X,Y) = |X − Y| and of the

relative velocity ∆Ẋ = |Ẋ− Ẏ| are depicted in Fig.4. The latter could in principle be

observed through the Doppler effect [2].

• For a flyby the quadrupole of the source, Dij in (III.7) would be the third integral of a

Gaussian and hence A+(U) would be proportional to the first derivative of a Gaussian,

A+(U) = A1
+(U) ≡ 1

2

d(e−U
2
)

dU
. (IV.5)
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(a) (b)

FIG. 4: In the Gaussian case, (a) Two particles initially at rest recede from each other after the

wave has passed. Their distance, ∆X , increases roughly linearly in the after-zone. (b) The relative

velocity, ∆Ẋ , jumps to an approximately constant but non-zero value.

The integrals (III.8) are now

I1 = 0, I2 =

√
π

2
diag(1,−1) I3 =∞ diag(1,−1), (IV.6)

consistently with the interpretation as flyby, cf. sec. III. The geodesics are depicted

in FIG.5.

FIG. 5: Evolution of geodesics for the first derivative of a Gaussian, eqn. (IV.5), appropriate for

flyby.

• The system considered by Braginsky and Thorne [9] would seem to correspond to the

second derivative of a Gaussian,

A+(U) = A2
+(U) ≡ 1

2

d2(e−U
2
)

dU2
, (IV.7)

The integrals (III.8) are now,

I1 = I2 = 0, I3 =

√
π

2
diag(1,−1). (IV.8)

The geodesics are shown in FIG.6.
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FIG. 6: The system considered by Thorne and Braginsky corresponds to the second derivative of a

Gaussian, (IV.7).

• In the early seventies when it was claimed that gravitational wave bursts had been

discovered [50] it was suggested that for gravitational collapse the quadrupole mo-

mentum could be modeled by the fourth derivative of the error function −erfc [10],

yielding,

A+(U) = A3
+(U) ≡ 1

2

d3(e−U
2
)

dU3
. (IV.9)

All integrals in (III.8) vanish now,

I1 = I2 = I3 = 0, (IV.10)

as expected for gravitational collapse, cf. sec. III. The evolution is presented in FIG.7.

FIG. 7: Geodesics for particles initially at rest for A3
+(U) in (IV.9), modelling gravitational col-

lapse.

B. Geodesics in BJR coordinates

Further insight can be gained by working in BJR coordinates (x, u, v) used in (II.4).

Plane gravitational waves (II.1) or (II.4) have a 5-dimensional isometry group [28], which

has been identified recently as the Carroll group with broken rotations [16], implemented on

space-time as

x → x +H(u) b + c,

u → u,

v → v − b · x− 1
2
b ·H(u) b + f,

(IV.11)
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with b, r ∈ R2 and f ∈ R, where H(u) is the symmetric 2× 2 matrix,

H(u) =

∫ u

u0

a(t)−1dt. (IV.12)

Here a(u) is the transverse-space metric in (II.4) [17].

Noether’s theorem associates with the Carroll symmetry 5 conserved quantities, associ-

ated to these isometries. For the geodesic flow parametrized by some s, they are [17, 24]

p = a(u)
dx

ds
, k = x(u)−H(u)p, µ =

du

ds
. (IV.13)

An extra constant of the motion we identify with the kinetic energy, is

e =
1

2
gµν

dxµ

ds

dxν

ds
=

1

2

dx

ds
· a(u(s))

dx

ds
+ µ

dv

ds
. (IV.14)

Geodesics are timelike/lightlike/spacelike, depending on the sign of e. Timelike means

e < 0, implying that µ 6= 0 since a(u) > 0; the same condition holds also for null geodesics,

e = 0. Therefore from now on we put µ = 1, which amounts to choosing u as parameter.

Then the quantities listed in (IV.13) are interpreted as conserved linear momentum, boost-

momentum and “µ” 9.

The geodesics may be expressed using the Noetherian quantities above, [16, 17] via

x(u) = H(u)p + k, v(u) = −1

2
p ·H(u)p + e u+ d, (IV.15)

where d is a constant of integration. These equations are consistent with (III.14) with

pv = 1, as expected. Note that once the values of the conserved quantities are chosen, the

only quantity to calculate here is the matrix-valued function H(u) in (IV.12). Thus the

latter determines both the action of the isometries and the evolution of causal geodesics. In

flat Minkowski space with the choice u0 = 0 we have H(u) = u1, yielding free motion

x(u) = up + k, v(u) =

(
−1

2
|p|2 + e

)
u+ v0. (IV.16)

Returning to the general case, the isometries act on the constants of the motion as

(p,k, e, d)→ (p + b,k + c, e, d+ f − b · k), (IV.17)

leaving e invariant [16, 17]. They can be used therefore to “straighten out” a geodesic by

carrying it to one with p = 0, k = x0 and d = 0, yielding

x(u) = x0 = const., v = e u, (IV.18)

shown on FIG.8. Therefore we have, for each sign of e, just one type of “vertical” geodesic

[17, 34]. Conversely, any geodesic is obtained from one of form (IV.18) by an isometry.

9 When viewed as a Bargmann space of a non-relativistic particle in one lower dimension, µ (chosen here

to be unity) is indeed interpreted as the mass.
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FIG. 8: Each geodesic can be “straightened-out” by a suitable action of the (Carroll) isometry

group.

C. The geodesics in the flat before-zone or after-zone

We first study the geodesics in the flat space-time zones outside a sandwich by making

use of the results of Section II B.

Let us suppose that a(u) = 1 in the “before-zone” [34] i.e. for u < ui ; then the concavity

of the function χ(u) mentioned above implies that the BJR coordinate system suffers a

singularity at some time using such that χ(using) = 0, as illustrated on Fig.1. Note that using
may lie in or outside the sandwich [ui, uf ]. This coordinate system, used in eqns (IV.15), is

therefore legitimate for u < using only, which we will assume henceforth.

Consider a system of particles at rest (“detectors”, or “dust” [17]) in the before-zone.

Their geodesics are given, in natural flat BJR coordinates, by

x̂ = x̂0 & v̂ = e (û− û0) + v̂0 (IV.19)

which identifies the quantities x̂0 and v̂0 as initial values.

For the flat metric (II.14) with general initial condition matrix c0 6= 0, the matrix (IV.12)

is,

H(u) = −a−
1
2

0 c−10

[
(1 + (u− u0)c0)−1 − 1

]
a
− 1

2
0 . (IV.20)

Then a further tedious calculation yields the first integrals p,k and d in (IV.15), namely

p = −a
1
2
0 c0x̂0, k = a

− 1
2

0 x̂0, d = v̂0 − e û0 +
1

2
x̂0 · c0x̂0. (IV.21)

Moreover, another lengthy calculation yields, using (IV.21) and (IV.19), that the geodesics

(IV.15) are expressed, in original BJR coordinates, as
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x(u) =
[
−H(u) a

1
2
0 c0 + a

− 1
2

0

]
x̂, (IV.22a)

u = û, (IV.22b)

v(u) = v̂ +
1

2
x̂ ·
[
c0 − c0a

1
2
0H(u) a

1
2
0 c0

]
x̂. (IV.22c)

These equations may be extended into the sandwich (provided the singularity be avoided)

using H(u) given by (IV.12). Note that eqns (II.21) and (II.22) hold everywhere including

the inside-zone.

In the new BJR coordinate system given by (IV.22) (which we will still denote

by (x̂, û, v̂)), the metric can be recast into the form

g = dx · a(u)dx + 2du dv = dx̂ · â(u)dx̂ + 2dû dv̂, (IV.23a)

â(u) =
(
a
− 1

2
0 − c0a

1
2
0H(u)

)
a(u)

(
a
− 1

2
0 −H(u)a

1
2
0 c0

)
, (IV.23b)

cf. (II.14).

We would like to emphasise that the descriptions in Brinkmann and resp. in BJR coor-

dinates are consistent: numerical calculations show that pushing forward to B coordinates

a solution constructed in BJR coordinates yields a trajectory which coincides with the one

calculated independently in B coordinates, as long as the BJR coordinate system is regular.

D. Tissot Indicatrices and Gravitational Waves

Textbooks providing an account of the action gravitational waves on a ring of freely falling

particles are often illustrated by a series of time-frames showing how the ring is squashed and

stretched as the wave passes over it. See, e.g., [35]. This representation has an interesting

connection with Tissot’s indicatrix [51, 52], which was originally introduced in cartography

to illustrate the distortions brought about by map projections.

Suppose we have a projection φ : S2 → R2 from surface of the earth to a flat sheet of

paper equipped with Cartesian coordinates x, y; let gxx(x, y), gxy(x, y) = gyx(x, y), gyy(x, y)

be the components of the push forward to the flat sheet of paper of the curved metric on

the earth’s surface. Tissot’s indicatrix at the point p ∈ S2 with coordinates (xp, yp) is the

ellipse

gxx(xp, yp)x
2 + 2gxy(xp, yp)xy + gyy(xp, yp)y

2 = 1 (IV.24)

and is the image under φ of the unit disc in the tangent space of S2 [51, 52].

If for some reason the metric of the surface of the earth varied with time then so would

Tissot’s indicatrix:

gxx(xp, yp, t)x
2 + 2gxy(xp, yp, t)xy + gyy(xp, xp, t)y

2 = 1 (IV.25)
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Returning to gravitational waves, we note that the two-dimensional sections of the wave

fronts at constant time in Brinkmann coordinates are given by U = const., V = const.;

in Cartesian coordinates X i carry a flat, time independent Euclidean metric. These are

mapped into two dimensional sections of the wave fronts at constant times in BJR co-

ordinates u = const., v = const. by X i = P i
j (u)xj as in (II.5), which carry a flat time-

dependent Euclidean metric aij(u) in xi coordinates. Note that these two-surfaces do not in

general coincide in spacetime since while U and u are identical, V and v differ.

The family of timelike geodesics xi = const. do not have X i = const. in Brinkmann

coordinates. This means that an initially (i.e., before the pulse) circular disc of geodesics

in X i coordinates, X · X ≤ 1 for U < Ui, projects to a time independent circle in xi

coordinates, x · x ≤ 1 for all u, i.e., even during and after the sandwich, u ≥ ui, However

their inverse image in Brinkmann coordinates is a time dependent ellipse,

1 = x · x = X · (PP T )−1X. (IV.26)

Since in Brinkmann coordinates the metric is Euclidean, the coordinates represent proper

distance measured within that two-surface.

The deformation of the Tissot circle is illustrated by the spacetime diagram in Fig.9 for

the linear polarization A+(U) = d(e−U
2
)/dU, A×(U) = 0 appropriate to model flyby, as

argued above.. Similar diagrams could be obtained for circular polarization, and also for

non burst-like profiles as in the case of primordial gravitational waves. The deformation

FIG. 9: Tissot space-time diagram for the linear polarization A+(U) = d(e−U
2
)/dU, A×(U) = 0,

for values u = −3 (purple), u = −1.5 (blue); u = 0 (green); u = 1.5 (orange); u = 3 (red).

starts before u = 0, since the burst has a finite thickness. A similar diagram is presented in

[24] in the gravitation-collapse case A+(U) = d3(e−U
2
)/dU3.
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E. Permanent displacements ?

Eqn. (IV.15) implies that BJR solutions with p = 0 are trivial for any profile,

x(u) = x0, v = e (u− u0) + v0 (IV.27)

for all u i.e., in the before, inside and after-zones. This happens in particular for particles

which are at rest in the before-zone whose conserved momentum vanishes because p = aẋ,

cf. (IV.13). It is worth emphasizing that the memory effect does arise even in this case :

non-trivial behavior in B coordinates arises entirely from the relation [16]

X(u) = P (u− u0) x0. (IV.28)

But such particles are not in general at rest in the after zone because Ṗ 6= 0 in general

– whereas some important papers on the memory effect [1, 2, 11] predict precisely that:

particles at rest in the before zone could end up at rest but displaced in the afterzone.

Indeed according to some authorities, this is taken as a definition of the memory effect.

A possible indication that this might not be possible comes from the particular cases

studied in sect. IV A which show constant but non-zero asymptotic velocity in the afterzone

(except for x0 = 0). Moreover, the relative velocities depend on x0, contradicting the

expectations of Zel’dovich and Polnarev [1] cited in the Introduction.

One may ask whether one may have a smooth interpolation between P (u) = 1 in the

before zone and a constant diagonal matrix P∞ 6= 1 in the afterzone, for example, is there

a smooth function f(u) s.t.

P (u) = (1− f(u))1 + f(u)P∞ with f(u) =

 0 u ≤ ui

1 u ≥ uf
? (IV.29)

If we further assume that P∞ is diagonal, P∞ = diag(π1, π2) with π1,2 = const. 6= 1 we find

that,

K(u) = P̈ .P−1 = f̈(u) diag
( −1 + π1

1− f + π1f
,
−1 + π2

1− f + π2f

)
(IV.30)

In order to satisfy the vacuum Einstein equations K must be traceless which is however

readily seen to contradict the assumption that f is smooth: f(u) should be linear with non-

zero slope in the inside zone, joined by horizontal lines in the before and after zones and

therefore non-differentiable at u = ui, uf .

If this rather special example could be generalised, one might conclude that no static

displacement is possible unless some sort of impulsive waves with non-smooth profiles are

considered [17, 25, 43, 44].
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V. NULL GEODESICS, LIGHT CONES AND GLOBAL GEOMETRY

A. The memory effect and optics

So far we have only considered freely falling particles. However, as remarked in [15],

the memory effect also influences the motion of light. One way to see this is to recall that

Maxwell’s equations in a curved vacuum spacetime may be interpreted as flat spacetime

electrodynamics in an “impedance-matched” medium. Using the results of [16] we see that

in BJR coordinates the permittivity εab and permeability µab (with εab = µab) satisfy εab =

µab = δab before the gravitational wave arrives but after it has passed they are given by

εij =
√

det a(u)
(
a(u)−1

)ij
, ε33 =

√
det a(u), ε3i = 0, (V.1)

and since εij 6= δij, the wave has left a memory on the effective optical medium.

B. Light cones and causality

In an insightful account of the global geometry of plane gravitational waves Penrose [36]

showed that in general they are not globally hyperbolic and as a consequence they cannot

be isometrically embedded into a higher dimensional flat space with a just a single time

coordinate [36]. Penrose mainly worked in Brinkmann coordinates [21] although he does

allude to the existence of BJR coordinates which he ascribes to Rosen [23].

Penrose obtains, for a sandwich wave, the formula

V = Fij(U)X iXj + V0 (V.2)

for the light cone of a point p = (X0, U0, V0), where the symmetric matrix F with components

Fij ≈ (U − U0)
−1δij near p must satisfy

Ḟ + F 2 −K = 0. (V.3)

Penrose considers the case when p is located in the flat region before the pulse arrives. He

shows that the metric F becomes singular within a finite amount of u time [17]. This allows

him to obtain his non-global hyperbolicity result. He points out that this phenomenon is

closely related to the singularity of BJR coordinates discussed by [23, 27, 28].

Penrose’s results are readily rederived by translating our result from BJR to Brinkmann

coordinates. Null geodesics are characterized by

e =
1

2
gµν ẋ

µẋν = 0. (V.4)

Special null geodesics, defined by the vanishing of the linear momentum, p = 0, are thus

simply

x(u) = x0, v(u) = v0. (V.5)
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Moreover, (II.5) gives us the image of the special null geodesics (V.5), namely

X(U) = P (U) x0, (V.6a)

V (U) = v0 −
1

2
X · ṖP−1X. (V.6b)

Then the 3-dimensional light-cone in R4 generated by null geodesics through some point is

thus defined by the equation

V = v0 −
1

2
X · F X, (V.7)

where F = ṖP−1 satisfies (V.3) in view of (II.7). Our equations above thus reproduce

(VII.1) and (VII.2) of [36] up to a factor 1
2

and a sign, due to different conventions.

Null geodesics in plane gravitational waves have recently received an extended study

in [14, 15].

VI. EXACT EINSTEIN-MAXWELL PLANE WAVES

Exact Einstein-Maxwell plane waves were first considered in [22] in BJR coordinates.

Here we shall follow [53]. For the sake of comparison, we will temporarily adhere to their

signature conventions. Their metric in Brinkmann coordinates is

g = −δij dX idXj + dUdV −K(X, U)dU2. (VI.1)

Their vector potential is taken to be

A = Ai(U)dX i = d(AiX
i)−X iA′i(U)dU . (VI.2)

In fact we shall find it useful to use the last term on the rhs of (VI.2) which differs from

Ai(U)dX i by a gauge transformation. The Maxwell field,

F = A′i(U)dU ∧ dX i , (VI.3)

solves ? dF = 0. Then the Einstein equation is equivalent to

∂2K

∂X i∂X i
= 4GA′iA

′
i, (VI.4)

where G is Newton’s constant and we are using Heaviside units (4πε0 = 1). We choose the

solution

K(X, U) = A+(U)
(
(X1)2 − (X2)2

)
+ 2A×(U)X1X2 + 8G|A′(U)|2

(
(X1)2 + (X2)2

)
(VI.5)

which merely differs from (II.3) in an additional quadratic (in Bargmann language, a “time

dependent oscillator” [46, 47, 54]) term.

The passage to BJR coordinates proceeds in a way similar to the pure gravity case, (II.5).
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Note that since the gravitational wave and the electromagnetic wave are essentially inde-

pendent in Brinkmann coordinates, we can specify A+(U), A×(U) and Ai(U) independently.

There is no graviton-photon or photon-graviton conversion, even though the metric has back-

reacted to the presence of the electromagnetic field.

This looks very different in the BJR coordinates, though, in which no simple “Super-

position Principle” holds. A special case is that one can superpose polarization states in

Brinkmann coordinates, but not in a literal fashion in BJR coordinates [55–57].

As pointed out in [53] the coupled Einstein-Maxwell system has five Killing fields, three

of which mutually commute – in fact, the generators of the isometry group found for a pure

plane gravitational wave [16] – namely the Carroll group with broken rotations, implemented

as in (IV.11).

The proof is straightforward : everything we developed here and in our previous paper [16]

goes through unchanged. The metric a = (aij(u)) is related to the wavefront K = (Kij(u))

in the usual manner ; the only difference is that the tracelessness of K is replaced by (VI.4).

But this doesn’t affect the general form of the metric, cf. (II.4), whose isometries span the

Carroll group in 2 + 1 dimensions with broken rotations.

VII. MIDI-SUPERSPACE QUANTIZATION OF PLANE GRAVITATIONAL

WAVES

A. Midi-Superspace of plane gravitational waves

We have seen that the Midi-Superspace10 of Ricci flat plane gravitational waves is

parametrised by the two real functions A+(U) and A×(U). This is an infinite dimensional

vector space W and in what follows it will be convenient to assume that A+(U) and A×(U)

are in L2(R) so as to permit Fourier analysis. Thus we take

W = L2(R)⊕ L2(R) . (VII.1)

The rotation group SO(2) acts on W ,

X1 → cosαX1 + sinαX2

X2 → cosαX2 − sinαX1
⇒

A+ → cos 2αA+ − sin 2αA×
A× → cos 2αA× + sin 2αA+

. (VII.2)

10 Super-space was a term coined by Wheeler to denote the configuration space of all Riemannian 3-

metrics modulo diffeomorphisms. He thought of it as the natural arena for quantum gravity. Strictly

speaking, when one quantises, one passes to the reduced phase space, obtained by taking into account the

Hamiltonian and diffeomorphism constraints. This amounts to considering the space of Cauchy data, or

equivalently, classical histories, that is, classical solutions of the Einstein equations modulo diffeomorphism

equivalence. A symmetry reduction (but still with infinite dimensions), is called a midi-superspace. A

symmetry reduction to finite dimensions is called a mini-superspace. The reader may consult [58] for a

review.
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Thus W carries a helicity 2 representation of SO(2), as expected. Note that two metrics

related by a rotation are geometrically identical but we choose to distinguish them because

the action of the rotation does not tend to the identity at infinity. In other words we are

imagining some reference system “at infinity” relative to which it is meaningful to speak of

the orientation X1 −X2 space.

The real vector space W admits a symplectic form Ω. Let us introduce the notation

C = (A+,A×) for a general vector in W . Then for two vectors C1 and C2 we define

Ω(C1, C2) =

∫ ∞
−∞

(
A+1

dA+2

dU
−A+2

dA+1

dU
+A×1

dA×2
dU

−A×2
dA×1
dU

)
dU. (VII.3)

Note that if one regards V as the time coordinate, thenW is well defined and independent

of V and therefore the symplectic form Ω is independent of “time”. The hypersurfaces

U = const., while not null, act here as surrogates for Cauchy surfaces.11

In order to quantize this sector of quantum Einstein theory, we now pass to the com-

plexification WC of the classical real symplectic vector space W and to extend Ω to WC in

a C-linear fashion. This enables us to endow WC with a sesqui-linear form

〈C|C〉 =
i

2
Ω(C̄, C) , (VII.4)

where C̄ denotes the complex conjugate of C. However 〈C|C〉 is not positive definite. In order

to render Ω(C, C) positive definite, we must restrict 〈C|C〉 to a C-linear subspace H ⊂ WC

on which 〈C|C〉 is positive definite on which 〈A+|A×〉 is positive definite.

This is conventionally achieved in quantum field theory by restricting to functions inWC

which are “positive frequency” with respect to the coordinate U . If U is chosen to increase to

the future, then that means that A+ and A× only contain Fourier components with ω < 0.

One then has

WC = H⊕ H̄ . (VII.5)

The space of quantum states H in this sector of the entire Hilbert space of Einstein

Quantum Gravity may be identified with the vacuum Einstein equations which are analyt-

ically continued to complex values of the Brinkmann coordinates X1, X2, U, V which are

holomorphic in the lower half U -plane.

One might then envisage an entire free “one graviton” Hilbert space by considering grav-

itational waves moving in all possible directions but not interacting, the continuous direct

sum ∫
S2

sin θdθdφHn , (VII.6)

11 Our choice of the sign in front of 2dUdV in our metric complicates this because it implies that either

V or U decreases into the future! In order to ensure that g = −dT 2 + dZ2 + · · · we need to put

U = 1√
2
(Z + T ), V = 1√

2
(Z − T ) or vice versa, for example. Often U and V are thought of as retarded

and advanced times, i.e. U = T − Z and V = T + Z. This does not quite work with our conventions.
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where n ∈ S2 labels the direction in space of the plane -waves. Following the conventional

rules of perturbative quantum field theory one might then pass to the free Fock space

based on H. Free correlation functions would then be defined on symmetric products of

the complexified plane-wave spacetime. The inclusion of interactions then however presents

severe difficulties. Moreover, at the classical level spacetime singularities are encountered

when plane waves collide [59, 60] .

B. Stokes parameters and the Poincaré Sphere

The only covariant treatment of this is at the linear level and notationally rather compli-

cated [61]. A treatment of electromagnetic waves in a pp-wave background is given in [62].

See also [63]. Hence we shall follow the obvious analogy with the electromagnetic case. We

begin by stating our conventions about Fourier transforms. For a real valued function of

f(U) we define its Fourier transform f̃(ω) by

f̃(ω) =

∫ ∞
−∞

f(U)eiωUdU . (VII.7)

The Fourier inversion theorem states that

f(U) =
1

2π

∫ ∞
−∞

f̃(ω)e−iωUdω =
1

π

∫ ∞
0

Re
(
|f̃(ω)| cos

(
ωt− ψ(ω)

))
dω . (VII.8)

Now in the case of a coherent classical electromagnetic wave the transverse electric field has

two real components E1(U) and E2(U) with Fourier transforms Ẽ1(ω) and Ẽ2(ω) and we

shall take their gravitational analogues to be A+(U) and A×(U) with Fourier transforms

Ã+(ω) and Ã×(ω). From now on we shall work at fixed ω and suppress it in most of the

formulae which follow. We define the following four real Stokes parameters [64] which we

combine in a Stokes 4-vector Sµ given by

(S0, S1, S2, S3) = (|Ã+|2 + |Ã×|2, |Ã+|2 − |Ã×|2, 2Re Ã+Ã×, 2 Im Ã+Ã×). (VII.9)

It follows that

− (S0)2 + (S1)2 + (S2)2 + (S3)2 = ηµν S
µSν = 0 . (VII.10)

That is, for a coherent state, the Stokes 4-vector Sµ is a future directed null vector pass-

ing through the origin of an auxiliary Minkowski spacetime. For a statistical ensemble of

gravitational waves the definition of the Stokes 4-vector contains a statistical average or

expectation value denoted by E[ · ] , thus

Sµ = E
[
(|Ã+|2 + |Ã×|2, |Ã+|2 − |Ã×|2, 2Re Ã+Ã×, 2 Im Ã+Ã×)

]
. (VII.11)

It then follows that Sµ is future directed timelike or null, i.e.

− (S0)2 + (S1)2 + (S2)2 + (S3)2 ≤ 0 . (VII.12)
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It is possible to encode the Stokes 4-vector in a 2×2 hermitian matrix positive semi-definite

coherence matrix ρ which has some analogies to a density matrix in quantum mechanics.

Indeed if the ensemble is a quantum ensemble this analogy holds fairly closely.

We set

ρ = E
[ |Ã+|2, Ã+Ã×
Ã+Ã×, |Ã×|2

] =
1

2

S0 + S1, S2 + iS3

S2 − iS3, S0 − S1

 . (VII.13)

As long as the Stokes 4-vector Sµ lies inside the future light cone the Hermitian matrix

ρ will be positive definite since tr ρ = S0 > 0 and det ρ = −1
4
ηµν S

µSν > 0. If the Stokes

4-vector lies on the light cone then det ρ = 0. If one introduces the Jones complex valued

2-vector [65]

J =

Ã+

Ã×

 , (VII.14)

then

ρ = E
[
JJ†

]
. (VII.15)

In the coherent case, the Poincaré sphere [66] is obtained by normalizing the Jones 2-vector

J†J = 1 , (VII.16)

since this implies that S0 = 1. The spinor geometry behind this construction has recently

been described in [67].

In the coherent electromagnetic case it is customary to describe the polarization states

by plotting the curve (E1, E2) = (Re Ẽ1e
−iωt,Re Ẽ2e

−iωt) in the (X1, X2) plane. If one

normalizes the Jones 2-vector

J =

Ẽ1e
−iωt

Ẽ2e
−iωt

 (VII.17)

such that that

J†J = |Ẽ1e
−iωt|2 + |Ẽ2e

−iωt|2 = 1 , (VII.18)

one may introduce parameters such that

J =

cos θ
2
ei(−ωt+δ1)

sin θ
2
ei(−ωt+δ2)

 (VII.19)

Now (VII.18) defines a unit three-sphere in four dimensional Euclidean space. As time

progresses points on the three sphere are moved along the orbits of the U(1) action J →
e−iωtJ . However the angle θ and the relative phase δ = δ2− δ1, −π ≤ δ ≤ π are unchanged.

As this happens, the electric vector (E1, E2) sweeps out an ellipse lying inside a rectangle of

sides (cos θ
2
, sin θ

2
) whose major axis makes an angle 1

2
arctan(tan θ cos δ) with the Ex axis.

If δ > 0. The polarization is right handed, if δ ≤ 0, left handed. The orbits in S3 are called

Hopf fibres and the space of such orbits is a the Poincaré sphere. Points on the north and
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south poles θ = ±π
2

respectively, correspond to plane polarised states and points on the

equator θ = 0 to circularly polarised states. The remaining states are elliptically polarised.

All but the plane polarised states have a “handedness”.

The foregoing theory may readily be adapted to the complex polarization gravitational

wave amplitudes Ã+e
−ωt and Ã×e−ωt. However there is no direct analogue of the electric

field vector other than the tensor KIJ and so the image of the electric vector executing an

ellipse does not seem to have a direct analogue. However an important aspect brought out

above is that gravitational waves also have a handedness. It is this handedness of primordial

gravitational waves which is responsible for the generation of the so-called “B-mode” of the

electromagnetic waves making up the Cosmic Background Radiation, whose presence is

predicted by theories of inflation [6].

The mechanism for the transfer of gravitational wave energy to electromagnetic wave

energy is the effect of gravitational waves described in the present paper on freely falling

electrically charged particles (free electrons in the primordial plasma around recombination

in the case of the CMB) envisaged as an abstract possibility in [68] 12. The charged particles

are necessary because, as we noted in the previous section, there is no direct conversion of

gravitational waves into electromagnetic waves. One might almost claim that if the B-mode

is observed then the gravitational memory effect will have albeit indirectly, observed.

The effect of a polarized monochromatic gravitational wave may be seen by solving the

equations of geodesic deviation (III.3) assuming

A+ = C+ sin(ωU) , A× = C× sin(ωU + φ) . (VII.20)

where the frequency ω, amplitudes C+ , C× and relative phase φ are constants.

We conclude by remarking on the analogy between the use of the Poincaré sphere and the

way a 2-state system, up to an over all phase, corresponds to the Bloch sphere [69]. However

depending upon the spin or helicity of the states the action of a physical rotation through

an angle α on the spheres will differ. For spin 1
2

one has δ → δ+ 2sα. For quantum systems

there is a notion of Berry or Aharonov-Bohm transport [70–72]. In the case of spin 1 states

this corresponds to parallel transport on complex projective space CP2 [73]. However in

the case of polarised states in optics this corresponds to Pancharatnam Transport [74–76].

Pancharatnam’s condition of maximum parallelism between two waves with Jones 2-vector’s

is J†J ′ ≥ 0 and in particular that J†J ′ ≥ 0 is real. If J and J + dJ are two neighboring

states we have by virtual of the normalization condition J†J = 1.

J†dJ + dJ†J = 0 (VII.21)

so we define Pancharatnam Parallel Transport of the phase by

J†dJ = 0 = J̄1dJ1 + J̄2dJ2 . (VII.22)

12 However it should be pointed out that these authors mention neither the CMB nor polarization effects.
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Now introduce the stereographic coordinate on S2 by

ζ =
J2
J1

= tan
θ

2
e−2iδ . (VII.23)

Pancharatnam’s rule for parallel transport reads

d lnZ1 +
ζ̄dζ

1 + |ζ|2
= 0 that is i(dτ + dδ1) +

ζ̄dζ

1 + |ζ|2
= 0 (VII.24)

which corresponds to the U(1) connection and curvature,

A = −i ζ̄dζ

1 + |ζ|2
and F = dA =

−idζ̄ ∧ dζ̄
(1 + |ζ|2)2

, (VII.25)

respectively Parallel transport around a simple closed curve γ enclosing a domain D produces

total holonomy ∫
D

F =
1

2
Ω , (VII.26)

where Ω is the solid angle subtended by the loop γ at the centre of the sphere. The factor

of 1
2

arises because A is the spin connection of the metric on S2, and satisfies the minimal

Dirac requirement: ∫
S2

F = 2π . (VII.27)

The Levi-Civita connection, whose curvature 2F = K is the Gauss curvature is twice as

large and its curvature 2F = K is the Gauss curvature (thought of as an so(2) valued

2-form) which satisfies the Gauss-Bonnet condition∫
S2

2F =

∫
S2

K = 4π . (VII.28)

VIII. CONCLUSION

In this paper we have clarified the physically important notions of “gravitational memory”

and of “soft graviton” in a simple and easily calculable model which nevertheless permits

a mathematically rigorous treatment which captures all the relevant physics. We present

exact solutions of Einstein’s equations describing plane gravitational waves of arbitrary

polarization in the two most useful coordinates. We obtained exact expressions for the

geodesics in both sets of coordinates. This allowed us to exhibit the action of a finite

duration pulse of gravitational radiation on of freely falling particles initially at rest in an

inertial coordinate system in a portion of flat Minkowski spacetime to the past of the pulse.

Integrating the geodesic equations in BJR coordinates became possibly due to their man-

ifest Carroll symmetry, (IV.11), leading to the conserved quantities (IV.13).

Plane gravitational waves long been known to have a 5-parameter isometry group [17, 28].

The generating Killing vectors have, in Brinkmann coordinates, the components of our P
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matrix (II.7) as coefficients [34, 40]. However, being solutions of a Sturm-Liouville equation,

these coefficients are not known in general.

In BJR coordinates the symmetry is manifest and the associated conserved quantities can

be calculated by calculating the matrix H in (IV.12). The price to pay is that it is now the

correspondence B ⇔ BJR that requires solving a Sturm-Liouville equation : the difficulty

is thus transferred to the transformation between the two sets of coordinates.

Particles initially at rest have vanishing momentum p = 0 and their trajectory in BJR

coordinates is therefore, for all smooth wave profiles, the simply straight one in (IV.18). Thus

after the pulse their transverse positions remain at rest in the non-inertial BJR coordinate

system. The memory effect is not lost however : it is encoded in the diffeomorphism which we

calculate explicitly, relating the past inertial coordinates to the future non-inertial coordinate

system. This diffeomorphism, which is in principle constructible from observations using

gravitational wave detectors, does not tend to identity at infinity.

Flat plane wave solutions of Einstein’s vacuum equations eqn (II.14) in non-inertial co-

ordinates, are more general than just Minkowski and may be thought of as soft gravitons

dressing the initial Minkowski vacuum state.

The extension to Einstein-Maxwell theory is straightforward and a midi-superspace quan-

tization can be given.

After this paper was submitted, we were informed of the related work of A. Lasenby [88],

who arrived, independently, at similar conclusions. He also called our attention at another

important reference on the velocity memory effect [89]. Our results here are fully consistent

with those of Grishchuk and Polnarev [89], and also with those of Bondi and Pirani [34], who

state that, after the wave have passed detectors originally at rest will move with constant

but not zero relative velocity.
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