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ABSTRACT

We present measurements of the growth rate of cosmological structure from the modelling of the anisotropic galaxy clustering mea-
sured in the final data release of the VIPERS survey. The analysis is carried out in configuration space and based on measurements
of the first two even multipole moments of the anisotropic galaxy auto-correlation function, in two redshift bins spanning the range
0.5 < z < 1.2. We provide robust and cosmology-independent corrections for the VIPERS angular selection function, allowing
recovery of the underlying clustering amplitude at the percent level down to the Mpc scale. We discuss several improvements on the
non-linear modelling of redshift-space distortions (RSD) and perform detailed tests of a variety of approaches against a set of realistic
VIPERS-like mock realisations. This includes using novel fitting functions to describe the velocity divergence and density power
spectra Pθθ and Pδθ that appear in RSD models. These tests show that we are able to measure the growth rate with negligible bias
down to separations of 5 h−1Mpc. Interestingly, the application to real data shows a weaker sensitivity to the details of non-linear RSD
corrections compared to mock results. We obtain consistent values for the growth rate times the matter power spectrum normalisation
parameter of fσ8 = 0.55 ± 0.12 and 0.40 ± 0.11 at effective redshifts of z = 0.6 and z = 0.86 respectively. These results are in
agreement with standard cosmology predictions assuming Einstein gravity in a ΛCDM background.
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1. Introduction

The discovery of the accelerated expansion of the Universe in
the late stages of the 20th Century has given us a self-consistent
standard cosmological model, which is in close agreement with
virtually all current cosmological observations. Multiple lines
of evidence, from cosmic microwave background anisotropies
(Hinshaw et al. 2012; Planck Collaboration et al. 2015), baryon
acoustic oscillations in the galaxy distribution (Beutler et al.
2011; Blake et al. 2011; Anderson et al. 2012), to SNe Ia lu-
minosity distances (Riess et al. 1998; Perlmutter et al. 1999),

Send offprint requests to: A. Pezzotta,
e-mail: andrea.pezzotta@brera.inaf.it
? Based on observations collected at the European Southern Obser-

vatory, Cerro Paranal, Chile, using the Very Large Telescope under
programs 182.A-0886 and partly 070.A-9007. Also based on obser-
vations obtained with MegaPrime/MegaCam, a joint project of CFHT
and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT),
which is operated by the National Research Council (NRC) of Canada,
the Institut National des Sciences de l’Univers of the Centre National
de la Recherche Scientifique (CNRS) of France, and the University of
Hawaii. This work is based in part on data products produced at TER-
APIX and the Canadian Astronomy Data Centre as part of the Canada-
France-Hawaii Telescope Legacy Survey, a collaborative project of
NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/.

require most of the energy content of the Universe to be in form
of a repulsive ‘dark energy’ that is empirically close in behaviour
to the classical cosmological constant (see e.g. Weinberg et al.
2013 for some history and a review of current constraints). The
nature of dark energy is naturally a question of huge interest,
with possibilities ranging from a fixed vacuum energy density
with equation of state w = P/ρc2 = −1, to dynamical models
based on evolving scalar fields varying both in space and time.
Such models motivate an effort to measure w and its evolution.
But independently of the outcome of this exercise, it remains the
puzzle that a very large vacuum density seems to be necessary
– so the much smaller observed value therefore requires a chal-
lenging degree of fine tuning (Weinberg 1989).

A more radical explanation for the observed acceleration
could be that the theory of gravity itself is modified on cosmo-
logical scales (Carroll et al. 2004; Jain & Khoury 2010; Clifton
2011). Commonly discussed alternatives include f (R) gravity,
where the gravitational Lagrangian is made more complicated
than a simple Ricci scalar R; chameleon models that invoke
a fifth fundamental force to drive the acceleration; and DGP
(Dvali-Gabadadze-Porrati) models, which postulate a higher-
dimensional Minkowski space-time, within which the ordinary
3+1 space-time is embedded. For an appropriate choice of
model parameters, dark energy and modified gravity can both
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reproduce the observed expansion history H(z). In principle this
degeneracy can be lifted by measuring the growth rate of cos-
mic structure. Modifications of gravity involve a variation in the
strength of the gravitational force with scale or environment, and
thus a key question is whether density fluctuations are growing
at the rate predicted by models involving General Relativity and
a homogeneous dark energy.

Among observational methods to estimate the growth rate of
structure, redshift-space distortions (RSD) in the clustering pat-
tern of galaxies (Kaiser 1987) have assumed a growing impor-
tance in the last decade (e.g. Guzzo et al. 2008). RSD arise when
the Doppler effect of galaxy peculiar velocities supplements the
isotropic Hubble expansion. Peculiar velocities are inevitably
associated with gravitational growth of inhomogeneities, which
can be described by the logarithmic growth rate of density per-
turbations:

f ≡
d ln δ
d ln a

, (1)

where δ is the fractional density fluctuation, and a is the cos-
mic scale factor. For many (but not all) theories of gravity, this
growth rate can be well approximated by an empirical relation as
f (z) = [Ω(z)]γ (Peebles 1980; Lahav et al. 1991), provided the
fluctuations are in the linear regime and in the growing mode.
For Einstein gravity, γ ' 0.55; but this parameter can vary
by around 0.1 between different commonly-discussed models of
late-time dark energy and modified gravity (Dvali et al. 2000;
Linder & Cahn 2007). Measurements of linear RSD from galaxy
redshift surveys constrain the combination β = f /b, where b is
an unknown linear galaxy bias parameter. But the real-space
galaxy autocorrelation function, b2ξmass, is observable – so this
can be eliminated to yield an estimate of a quantity that purely
concerns dark matter: fσ8, with σ8 being the rms linear matter
fluctuations within spheres of radius 8 h−1Mpc.

Unfortunately, extracting the linear RSD signal from galaxy
redshift surveys is non-trivial, because much of the RSD sig-
nal lies on quasi-linear and non-linear scales. A simple and
widely-used extension of the linear Kaiser model is the ‘disper-
sion model’ (Peacock & Dodds 1994), which accounts for radial
convolution by a random velocity dispersion plus non-linear cor-
rections to the real-space power spectrum. This model was suc-
cessfully applied to several galaxy surveys in the past (Peacock
et al. 2001; Guzzo et al. 2008), but is insufficiently accurate to
be trusted when the precision allowed by the data goes below
10% (Okumura & Jing 2011, Bianchi et al. 2012; see also the
companion paper by Wilson et al. 2017). There have been a
number of attempts to derive improved RSD models. As shown
by Scoccimarro (2004), the dispersion model is a simplification
of the original streaming model (Peebles 1980; Fisher 1995), in
which the full redshift-space correlation function is obtained by
convolution with a proper scale-dependent pairwise velocity dis-
tribution. But predicting this distribution function is hard (e.g.
Bianchi et al. 2015; Uhlemann et al. 2015), and typical appli-
cations simplify the problem by adopting a (scale-dependent)
Gaussian pairwise distribution function (e.g. Reid et al. 2012).
Scoccimarro (2004) proposed an influential alternative, in which
the linear Kaiser term is generalised by including the velocity
and velocity-density power spectra. This concept was extended
by the TNS model (Taruya et al. 2010), which takes better into
account the non-linear coupling between the density and the ve-
locity field. This model is currently considered as one of the best
descriptions of RSD down to the quasi-linear regime.

These theoretical developments have been stimulated by a
growing number of new measurements from larger datasets.

These included in particular the 6dfGS (Beutler et al. 2012),
WiggleZ (e.g. Blake et al. 2011; Contreras et al. 2013) and BOSS
(e.g. Reid et al. 2014; Beutler et al. 2016; Satpathy et al. 2016;
Sanchez et al. 2016; Grieb et al. 2016). The present paper is one
in a series aimed at extending this RSD work to higher redshifts
by analysing the final PDR-2 release of the VIMOS Public Ex-
tragalactic Redshift Survey (VIPERS, Guzzo et al. 2014; Garilli
et al. 2014; Scodeggio et al. 2016). This survey has collected
redshifts for about 90 000 galaxies in the range 0.4 . z . 1.2
with sampling and volume comparable to those of local surveys,
such as the Two-degree Field Galaxy Redshift Survey (2dFGRS)
at z ' 0.1 (Colless et al. 2001). The prime original goal of
VIPERS was an accurate measurement of the growth rate of
structure at redshift around unity. An early measurement was
performed using the Public Data Release 1 (PDR-1: Garilli et al.
2014), setting a reference measurement of fσ8 at z = 0.8 (de
la Torre et al. 2013). Having nearly doubled the sample, this
analysis is now revisited, and expanded in a number of ways. de
la Torre et al. (2016) performs a configuration space joint anal-
ysis involving RSD and galaxy-galaxy lensing, while Wilson
et al. (2017) develops a direct Fourier-space approach coupled
with the so-called ‘clipping’ linearisation of the density field;
with a similar aim, Mohammad et al. (2017) identifies optimal
sub-classes of RSD tracers, focusing on luminous blue galax-
ies; the analysis presented here uses the configuration-space in-
formation contained in the first two even multipole moments of
the anisotropic correlation function, implementing the currently
most advanced non-linear corrections and testing their perfor-
mances on VIPERS-like mocks.

The paper is organised as follows. In Sect. 2 we give a de-
scription of the final VIPERS dataset and of the corresponding
mock catalogues used throughout the analysis, while in Sect. 3
we describe the estimation of the two-point correlation function
of galaxies in redshift space. Section 4 describes the target se-
lection biases and how these are mitigated. In Sect. 5 we present
the VIPERS measurements. The error estimates are described
in Sect. 6 along with the fitting procedure. Section 7 gives a
description of the RSD models that are used in Sect. 8 to under-
stand the level of systematics in the recovery of the growth rate
of structure. The results are presented in Sect. 9 and discussed
in Sect. 10 with our conclusions.

Throughout this analysis, if not specified otherwise, we
assume a fiducial flat ΛCDM cosmological model with
(Ωm,Ωb, ns) = (0.30, 0.045, 0.96) and parametrise the Hubble
constant as H0 = 100 h km s−1Mpc−1.

2. The VIPERS survey

2.1. Observations

The VIPERS survey covers an overall area of 23.5 deg2 over
the W1 and W4 fields of the Canada-France-Hawaii Telescope
Legacy Survey Wide (CFHTLS-Wide). The VIMOS multi-
object spectrograph (Le Fèvre et al. 2003) was used to cover
these two fields with a mosaic of 288 pointings, 192 in W1 and
96 in W4 (see Fig. 1). Galaxies are selected from the CFHTLS
catalogue to a faint limit of iAB = 22.5, applying an additional
(r− i) vs (u− g) colour pre-selection that efficiently and robustly
removes galaxies at z < 0.5. Coupled with a highly optimised
observing strategy (Scodeggio et al. 2009), this doubles the mean
galaxy sampling efficiency in the redshift range of interest, com-
pared to a purely magnitude-limited sample, bringing it to 47%.

Spectra are collected at moderate resolution (R ' 220) using
the LR Red grism, providing a wavelength coverage of 5500-
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Fig. 1. Footprint of the VIPERS observations within the W1 (top) and W4 (bottom) fields, as reconstructed from the final galaxy sample. The
VIMOS pointings and quadrants are marked by black rectangles. Galaxies are colour-coded according to their value of the Target Sampling Rate
(TSR: see Sect. 4), which can be considered as a proxy for the inverse of the projected galaxy density field. Empty rectangles correspond to failed
quadrants, for which the spectroscopic mask insertion failed or was incorrect, leading to no data being collected.

9500Å. The typical redshift error for the sample of reliable
redshifts is σz = 0.00054(1 + z), which corresponds to an er-
ror on a galaxy peculiar velocity at any redshift of 163 km s−1.
These and other details are given in the full PDR-2 release ac-
companying paper (Scodeggio et al. 2016). A discussion of the
data reduction and management infrastructure was presented in
Garilli et al. (2014), while a complete description of the survey
design and target selection was given in the survey description
paper (Guzzo et al. 2014). The dataset used in this paper is an
early version of the PDR-2 data, from which it differs by a few
hundred redshifts revised during the very last period before the
release. In total it includes 89 022 objects with measured red-
shifts. As in all statistical analyses of the VIPERS data, only
measurements with quality flags 2 to 9 inclusive are used, corre-
sponding to a sample with a redshift confirmation rate of 96.1%
(for a description of the quality flag scheme, see Scodeggio et al.
2016).

In the analysis presented here we shall analyse two redshift
sub-samples of the whole survey (W1 + W4) in the ranges 0.5 <
z < 0.7 and 0.7 < z < 1.2, including respectively 30 764 and
35 734 galaxies.

2.2. Redshift distribution

The redshift distribution of the galaxy sample is shown in Fig.
2. At z > 0.6, it follows the typical decay in the number of
objects expected for a magnitude-limited survey, while the rapid
fall of the counts at z < 0.5 is the result of the colour-colour
pre-selection. In de la Torre et al. (2013) it was shown that this
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Fig. 2. Redshift distribution of the final VIPERS galaxy sample. The
distributions of redshifts collected separately within the two CFHTLS
fields are plotted together with the combined distribution using differ-
ent colours. The red and purple solid lines show respectively the best
fit using the analytic template in Eq. (2) and the predicted Vmax pro-
file of the combined redshift distribution. The peculiar distribution of
the VIPERS galaxy sample differs from the typical expectation from a
magnitude-limited sample. This deviation is the result of the colour-
colour pre-selection adopted to reject most galaxies located at z < 0.5.

histogram can be modelled analytically by the functional form

N(z) = A
( z
z0

)α
exp

(
−

( z
z0

)β)
CSR(z) , (2)
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where A, z0, α and β are fitting parameters. The term
CSR(z) (Colour Sampling Rate) describes the colour-colour
pre-selection in terms of an error function transitioning be-
tween 0 and 1 around redshift z = 0.5, i.e. CSR(z) =(
1 − erf

[
b(zt − z)

])
/ 2 where the transition redshift zt and the

transition width b are free parameters. As shown in Scodeg-
gio et al. (2016), CSR(z) is unity for z ≥ 0.6, corresponding to a
purely magnitude-limited selection.

The best fit of Eq. 2 to the final VIPERS data is shown by
the red curve in Fig. 2. Such modelling of the redshift distri-
bution is an important and sensitive ingredient when estimating
galaxy clustering, as we discuss in Sect. 3 and in de la Torre et al.
(2013). We compare it with the Vmax technique (e.g. Cole 2011;
de la Torre et al. 2013) shown in Fig. 2 with the purple curve.
Although we find no significant difference in the resulting clus-
tering between the two methods, here we chose to use the Vmax
method, as in the companion paper of de la Torre et al. (2016).
A further method often used in the literature is that of smoothing
the observed redshift distribution with a Gaussian kernel (as for
instance in the parallel papers by Rota et al. 2016 and Wilson
et al. 2017).

2.3. Mock galaxy samples

In order to test the details of the analysis as well as the mod-
elling of RSD, we make use of a suite of mock galaxy cat-
alogues designed to be a realistic match to the VIPERS fi-
nal dataset. These have been constructed from the Big Mul-
tiDark N-body simulation (Klypin et al. 2016), which as-
sumes a flat ΛCDM cosmology with (Ωm,ΩΛ,Ωb, h, ns, σ8) =
(0.307, 0.693, 0.0482, 0.678, 0.960, 0.823) and covers a volume
of 15.625 h−3 Gpc3. The construction of the mock samples is de-
scribed in de la Torre et al. (2016) and is based on the method
detailed in de la Torre et al. (2013). We refer the reader to these
papers for details and only give a brief overview of the adopted
method in the following.

153 independent lightcones have been extracted from the
simulation volume, which follow the geometry of the VIPERS
W1+W4 fields. The dark matter haloes identified in the simu-
lation have been populated with galaxies using the halo occu-
pation distribution (HOD) technique. Because of the halo mass
resolution of the simulation which is too large to host the faintest
galaxies observed in VIPERS, the method of de la Torre & Pea-
cock (2013) has been applied to reconstruct haloes below the
resolution limit. Each halo has then been populated with galax-
ies according to its mass as described by the HOD. The latter has
been calibrated directly on the VIPERS data as presented in de la
Torre et al. (2013). To obtain fully realistic VIPERS mocks one
needs to reproduce the VIPERS survey selection function. This
has been done following several steps. First, the magnitude cut
iAB < 22.5 and the effect of the colour selection on the radial dis-
tribution of the mocks have been applied. The mock catalogues
thus obtained are similar to the parent photometric sample used
as target galaxy sample for spectroscopy in VIPERS. The slit-
positioning algorithm with the same setting as for the data has
further been applied to parent mock catalogues. This allows us
to reproduce the VIPERS footprint on the sky, the small-scale
angular pair incompleteness, and the variation of TSR across the
fields. Finally, random redshift errors has been added to mock
galaxy redshifts, similar to that present in the data. This proce-
dure allows us to produce realistic mock galaxy catalogues that
contain the detailed survey completeness function and observa-
tional biases of VIPERS.

3. Galaxy clustering estimation

We quantify galaxy clustering in redshift space by estimating the
anisotropic two-point correlation function ξ(s, µ), where s is the
redshift-space separation of galaxy pairs and µ is the cosine of
the angle between the separation vector and the line of sight. We
generate a catalogue of randomly distributed objects subject to
the same angular and radial selection as the true data, and use
the Landy & Szalay (1993) estimator:

ξ(s, µ) =
GG(s, µ) − 2GR(s, µ) + RR(s, µ)

RR(s, µ)
, (3)

where GG(s, µ), GR(s, µ), and RR(s, µ) are respectively the
normalized galaxy-galaxy, galaxy-random, and random-random
pair counts in bins of s (∆(log10 s) = 0.1) and µ (∆µ = 0.01).
This estimator has been shown to provide a nearly unbiased esti-
mate of the two-point correlation function, while minimising its
variance (Landy & Szalay 1993). We typically use random sam-
ples with 30 times more objects than in the true data, to reduce
their shot noise contribution to a negligible amount.

In this work we shall estimate the growth rate by fitting RSD
models not to the full shape of ξ(s, µ), but rather to its first two
even multipole moments, ξ(0)(s) and ξ(2)(s), defined as

ξ(`)(s) =
2` + 1

2

∫ +1

−1
ξ(s, µ)L`(µ)dµ, (4)

where L` is the `-th order Legendre polynomials. Such an ap-
proach is normally preferred in order to prevent the size of data
vectors and the resulting covariance matrix from becoming too
large for practical computation (but see Mohammad et al. 2016
for discussion of some drawbacks of this choice).

4. Systematic selection effects

The VIPERS angular selection function is the result of combin-
ing several different angular completeness functions. Two of
these are binary masks (i.e. describing areas that are fully used
or fully lost). The first mask is related to defects in the parent
photometric sample (mostly areas masked by bright stars) and
the other to the specific footprint of VIMOS and how the differ-
ent pointings are tailored together to mosaic the VIPERS area.
These masks are easily accounted for when defining the area and
the auxiliary random samples for clustering measurements.

A more complex selection is related to the incomplete target
sampling of VIPERS: on average 47% of the targets satisfying
the VIPERS selection criteria can be placed behind a slit and ob-
served, defining what we call the average Target Sampling Rate
(TSR). In principle, we should also account for the colour-colour
pre-selection of the target sample, which introduces a Colour
Sampling Rate (CSR: see Scodeggio et al. 2016). In practice,
since the CSR can be safely assumed to be constant over the sur-
vey area (thanks to the particularly careful homogenization of
the parent sample photometry – see Guzzo et al. 2014), its ef-
fect is absorbed into the fit or model describing the smoothed
redshift distribution, as in Eq. (2). In any case, the CSR is con-
sistent with being unity for z ≥ 0.6. Finally, we have also to take
into account how the probability of measuring the redshift of a
targeted galaxy depends on observational conditions or techni-
cal issues (which can be location-dependent), which we call the
Spectroscopic Success Rate (SSR). The relative relevance, mod-
elling and overall impact of all these effects is described in more
detail the following sections.
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Fig. 3. Cartoon of the slit lay-out of a typical VIMOS pointing of the
VIPERS survey (W1P082 in this case), superimposed on the actual DSS
finding chart. The open circles with the tiny horizontal slits mark the
target objects. The vertical rectangles define the area where the resulting
spectrum will fall, once the dispersing element (grism) is inserted.

4.1. Slit collisions

A multi-object spectrograph survey must inevitably face the lim-
itations imposed by the mechanics of how light from the targets
is collected on the focal plane. Either fibres or ‘slitlets’ (as in the
case of VIMOS) impose a minimum physical size below which
the spectrum of two adjacent galaxies on the sky cannot be col-
lected at the same time. This suppresses completely the small-
scale clustering amplitude, unless multiple telescope visits of the
same field are performed (which is not the case with VIPERS).
Furthermore, the same limit on close pairs causes high-density
regions on the sky to be more poorly sampled with respect to
low-density regions; this introduces a mismatch that, as we shall
show, affects the amplitude of clustering on all scales. In VI-
MOS, this effect is further enhanced by the slit-positioning op-
timisation software (SPOC: Bottini et al. 2005), which attempts
to maximise the number of slits observed in each quadrant and
as such tends to homogenize the angular distribution of targets.

Furthermore, in a multi-slit spectrograph such as VIMOS the
dispersed spectrum is imaged directly onto the detector. As is ev-
ident from Fig. 3, this creates another ‘forbidden zone’ perpen-
dicular to the slit, where no other target can be observed with-
out causing two spectra to overlap (unlike in fibre spectrographs,
where fibres are typically taken away from the telescope to a
standing spectrograph and the spectra conveniently aligned and
packed on the CCD). Since the projected length of the spectrum
on the detector is much larger than the corresponding size of the
slit, this introduces another typical scale below which the num-
ber of measured angular pairs will be reduced, again limiting the
sampling of overdensities on the sky. In VIPERS, the spectral
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cyan/magenta line. The two dashed vertical lines mark the typical angu-
lar size of the slits and the raw spectra. Bottom: completeness function,
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dispersion is always oriented along the North-South direction,
so the depletion of galaxy pairs will be anisotropic on the sky
and will be larger along the declination direction.

The impact of these effects on angular clustering is quanti-
fied in Fig. 4, where in the top panel we have plotted for both the
average of 153 mocks (solid lines) and the VIPERS data (filled
points) the angular correlation function of the parent and spec-
troscopic samples (wp(θ) and ws(θ), respectively). The bottom
panel shows instead the ratio of the corresponding numbers of
pairs (bottom panel), defined as

C(θ) =
1 + ws(θ)
1 + wp(θ)

. (5)

In this figure we find clear evidence of the two angular scales dis-
cussed earlier, which are related to the width and length of the
spectra; these and identified in the figure by the vertical dashed
lines. The origin of this effect can be better identified if we split
the separation angle θ into its components along the right as-
cension and declination directions, ∆RA and ∆DEC. The angu-
lar completeness map C(∆RA,∆DEC), corresponding to Eq. (5) is
shown in Fig. 5. Here the ‘shadow’ of the target spectra is recog-
nisable as the rectangular region with nearly zero counts at small
separations. The few residual counts in this area are produced by
the small variations in the slit length, together with the effect of
the few serendipitous targets observed by chance within the slit
of a primary target.

Translated to spatial scales, this angular selection function
results in a strong suppression of the clustering amplitude below
1 h−1Mpc, as shown by the dotted line in Fig. 6 . In de la Torre
et al. (2013), we corrected for this effect by up-weighting each
galaxy-galaxy pair at a given angular separation θi j by the inverse
of the corresponding value of C(θi j), i.e.

wA(θ) =
1

C(θi j)
. (6)

We shall discuss the effectiveness of this weight together with
the correction of the large-scale effect of the TSR, at the end of
the next section.

4.2. Larger-scale effects

Along with the drastic suppression at small separations, the
physical size of the slits is responsible for the inhomogeneous
sampling between high- and low-density regions across a single
VIMOS quadrant. This translates in an almost constant suppres-
sion of the clustering amplitude on scales above 1 h−1Mpc. The
correcting scheme we discuss here builds upon the original ap-
proach of de la Torre et al. (2013), in which galaxies are assigned
a further weight

wi =
1

TSRi
. (7)

In that paper, however, the TSR used for each galaxy was simply
the average value over the corresponding VIMOS quadrant; in
this way, all target galaxies in a quadrant were up-weighted by
the same factor. As shown by the dot-dashed curve in Fig. 6,
when considering the real-space correlation function ξ(r) this
procedure has limited effect (note however than when combined
with the wA(θ) = 1/C(θi j) small-scale boost, it provides a better
correction: see Fig. 8 of de la Torre et al. 2013).

The improved correction adopted here uses instead a local
estimate of the TSRi, defined as the ratio of the local surface
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Fig. 6. Optimising the correction for the Target Sampling Rate on
large-scales; the tests are based on the mean of 153 mock samples. Top:
systematic error on the real-space two-point correlation function intro-
duced by the TSR (dotted line), confronted to the results of different
strategies to estimate its local value and the corresponding weight (see
text for details). Circular apertures with varying radius (r = 90, 70 and
50 arcsec), and a rectangular aperture 60 × 100 arcsec2 are compared.
The dot-dashed line also shows the result of using a weight based only
on the quadrant-averaged TSR. Note that here the small-scale further
correction based on Eq. (6) has not been applied yet. Bottom: corre-
sponding scatter of the different corrections. To allow comparison with
the systematic error, this is also reported, for the rectangular aperture,
as the shaded area in the top panel.

densities of target and parent galaxies (i.e. before and after ap-
plying the target selection); these are estimated as detailed below
and then averaged within an aperture of a given shape and size.
If we call these quantities δp

i and δs
i , the TSRi is defined as

TSRi =
δs

i

δ
p
i

. (8)

The continuous δ fields are obtained, starting from the discrete
distributions of parent and target galaxies, using a Delaunay tes-
sellation (Delaunay 1934) to estimate the density at the position
of each galaxy, and then linearly interpolating. These two con-
tinuous fields are then used to compute the values of δp

i and δs
i

within an aperture of a given shape and size.
We identified the best-performing geometry for this aperture

through the tests shown in Fig. 6. The overall correction is
remarkable, since we are able to accurately recover the parent
ξ(r) at large separations, both with a circular and a rectangular
aperture. The rectangular aperture is the one providing the best
correction to real-space clustering, which can be understood in
terms of the anisotropy of the spectral ‘shadows’ discussed ear-
lier. The optimal size of the rectangular aperture is found to be
60 × 100 arcsec2. The resulting distribution of the TSRi values
over the survey regions is shown in Fig. 1.
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Fig. 7. Impact of the Target Sampling Rate and the Spectroscopic
Success Rate on the radial profile of the VIPERS galaxy samples. In
the bottom panel we plot the relative difference of the Vmax fits to the
redshift distribution after applying the correction, to the same obtained
from the observed histogram. Dashed, dotted and solid lines give the
results for W1, W4 and the combined measurement, respectively. The
smoothed radial profile is estimated using the Vmax method. While the
TSR does not affect the redshift distribution, the SSR enhances the num-
ber counts at z > 0.95.

4.3. Redshift dependence of angular corrections

Some of the corrections for angular selection biases do have an
effect also on the redshift distribution. Fig. 7 shows the effect of
correcting for the TSR and SSR on the observed redshift distri-
bution of the VIPERS data. While the TSR does not introduce
a significant redshift dependence, the application of the SSR
boosts the expected number of galaxies in the distant (z > 1) part
of the sample. This clearly reflects the increased inefficiency to
measure redshifts for more and more distant objects. To be fully
consistent with the data, then, the random samples used for the
clustering analyses will have to be weighted accordingly.

5. Two-point correlations from the VIPERS data

We thus proceed to estimate the redshift space correlation func-
tion and its moments for the VIPERS survey, adopting the
weighting scheme discussed in the previous sections, which we
recap for convenience:

– each galaxy is upweighted by the inverse of its TSR defined
by Eqs. (7) and (8), wTSR

i , as well as by the inverse of its
SSR, wSSR

i ,

– each galaxy-galaxy pair with angular separation θ is up-
weighted by the angular weight wA(θ) defined in Eqs. (5) and
(6).

0

10

20

30

40

50

s2
ξ(

0)
(s

)

0.5<z<0.7

Parent
Unweighted
TSR
TSR+wA

0.7<z<1.2

1 10
s [h−1 Mpc]

30
25
20
15
10
5
0
5

10

ξ(
0)
/
ξ

(0
)

p
−

1
[%

]

1 10
s [h−1 Mpc]

40

30

20

10

0

10
s2
ξ(

2)
(s

)

0.5<z<0.7 0.7<z<1.2

1 10
s [h−1 Mpc]

80
60
40
20
0

20
40

ξ(
2
)
/ξ

(2
)

p
−

1
[%

]

1 10
s [h−1 Mpc]

Fig. 8. Impact of the target selection effects and their correction on the
amplitude of the monopole (left) and quadrupole (right) of the redshift-
space correlation function ξ(s, µ). Considering the mean over 153 mock
samples, in the bottom panel we plot the fractional deviation of the mul-
tipoles measured using the observed sample from those obtained using
the parent catalogue.

Pair counts in the two-point correlation function estimator of
Eq. 3 are then expressed as

GG(s, µ) =

NG∑
i=1

NG∑
j=i+1

wA(θi j)wTSR
i wTSR

j wSSR
i wSSR

j Θi j(s, µ), (9)

GR(s, µ) =

NG∑
i=1

NR∑
j=1

wTSR
i wSSR

i Θi j(s, µ), (10)

RR(s, µ) =

NR∑
i=1

NR∑
j=i+1

Θi j(s, µ) , (11)
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the two redshift ranges indicated by the labels. Solid contours corre-
spond to iso-correlation levels of 0.3, 0.5, 1, 2, 5.

where Θi j(s, µ) is equal to unity for log(si j) in [log(s) −
∆ log(s)/2, log(s) + ∆ log(s)/2] and µi j in [µ − ∆µ/2, µ + ∆µ/2],
and null otherwise.

The final performance of this weighting scheme on the re-
covered monopole and quadrupole of the redshift space corre-
lation function are shown in Fig. 8, for the two redshift ranges
considered in the analysis. The combined correction recovers
the amplitude of the monopole at the 2% level, down to the
Mpc scale, yielding a quasi-unbiased estimate of ξ(0)(s) on all
comoving scales that will be used for the RSD fitting. As for
the quadrupole, we are able to have a reliable measurement of
ξ(2)(s) (< 5% deviation from the fiducial value) down to a few
Mpc. This is an encouraging result: any uncorrected anisotropy
from selection effects would be in danger of inducing a spurious
contribution to the quadrupole, since this is our main measure of
anisotropy.

Fig. 9 shows the measurement of the anisotropic correlation
function ξ(rp, π) obtained from the full VIPERS data at 0.5 < z <

0.7 and 0.7 < z < 1.2. A bin size ∆s = 0.5 h−1 Mpc has been
used in both rp and π directions. We combine the results coming
from the two VIPERS fields W1 and W4 simply by summing up
the pair counts in each bin of separation and normalising for the
total number of objects.

6. Covariance matrix and error estimation

Given the intrinsic correlation among different bins of the two-
point correlation function (and consequently of its multipoles),
it is essential to obtain a reliable estimate of the covariance ma-
trix to be used during the fitting procedure. The fit is carried
out performing a maximum likelihood analysis of the data given
the RSD model, that can be more easily described as the search
throughout the parameter space of the position minimising the
likelihood function L defined as

−2 lnL =

Nb−1∑
i=0

Nb−1∑
j=0

(yd
i − ym

i )Ψi j(yd
j − ym

j ). (12)

Here the observable y = (ξ0, ξ2) is the monopole-quadrupole
combined vector; Ψ ≡ C−1 is the precision matrix (the inverse
of the covariance matrix); Nb is the total number of data points;
and indices d and m stand respectively for data and model.

The covariance matrix C is organised in four blocks cor-
responding to the monopole-monopole, quadrupole-quadrupole
and monopole-quadrupole cross covariance (two identical
blocks in the latter case). The full monopole-quadrupole covari-
ance matrix is estimated from the 153 mock realisations as

Ĉi j =
1

Ns − 1

Ns∑
k=1

(
yk

i − ȳi

) (
yk

j − ȳ j

)
, (13)

where Ns is the number of independent realisations used to es-
timate the covariance, y is the monopole-quadrupole vector, in-
dices i, j run over the data points and index k runs over different
realisations. The mean value ȳ is estimated by averaging the
measured values from different realisations, namely

ȳ =
1
Ns

Ns∑
k=1

yk. (14)

The corresponding correlation matrices obtained in this way for
the two redshift sub-samples are shown in Fig. 10.

Given the large number of mock samples, the estimate and
the inversion of the covariance matrices can be achieved with
good accuracy. However, the use of a finite number of mocks
has two implications. Firstly, the estimated precision matrix ob-
tained by taking the inverse of Ĉ is biased with respect to the
true one, Ψ, with the difference being well-represented by an in-
verse Wishart distribution. Furthermore, the precision matrix Ψ
contains statistical errors that propagate to the parameter space,
affecting the derived errors on the cosmological parameters. We
follow Percival et al. (2014) and correct for these effects by ap-
plying two correction factors. In the first case, we can remove
the systematic bias of the precision matrix by rescaling Ĉ−1 as

Ψ =

(
1 −

Nb + 1
Ns − 1

)
Ĉ−1. (15)

The latter correction factor involves the total number of data
points Nb and realisations Ns. It takes into account the typical
skewness characterising an inverse Wishart distribution and is
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capable of providing an unbiased estimate of the precision ma-
trix (Hartlap et al. 2007). In the second case, the propagation of
errors from the precision matrix to the derived parameters can be
corrected by defining

A =
2

(Ns − Nb − 1)(Ns − Nb − 4)
,

B =
(Ns − Nb − 2)

(Ns − Nb − 1)(Ns − Nb − 4)
, (16)

and applying the correction factor

m1 =
1 + B(Nb − Np)

1 + A + B(Np + 1)
(17)

to the estimated parameter covariance. In the previous equation,
Np is the total number of free parameters.

7. Modelling redshift-space distortions

Redshift-space distortions arise because the apparent position of
galaxies is modified by the Doppler effect of their peculiar ve-
locity v. In this way, the redshift-space position s of galaxies
located at r becomes

s = r +
v‖

aH(a)
ê‖, (18)

where a is the scale factor, H(a) is the expansion rate and
v‖ = v · ê‖ is the component of the galaxy peculiar velocity along
the line of sight. Invoking mass conservation, the redshift-space
density field δs(s) can be expressed as a function of its real-space
counterpart δ(r) as

δs(s) = [1 + δ(r)]
∣∣∣∣∣d3s
d3r

∣∣∣∣∣−1
− 1. (19)

The targeting of high-redshift galaxies in VIPERS means that
the largest pair separations are much smaller than the distance
from the observer, so we can use the small-angle plane-parallel
approximation; the Jacobian of the real-to-redshift space trans-
formation then reduces to∣∣∣∣∣d3s
d3r

∣∣∣∣∣ = 1 − f∂‖u‖, (20)

where the normalized velocity field is defined as u(r) =
−v(r)/[ f aH(a)]. Substituting this expression inside Equation
(19) it follows that

δs(s) =
δ(r) + f∂‖u‖

1 − f δ‖u‖
. (21)

Taking the Fourier transform of this equation and making ex-
plicit the dependence on µ = k̂ · r̂, we obtain

δs(k, µ) =

∫
d3s

(2π)3 e−ik·sδs(s)

=

∫
d3r

(2π)3 e−ik·reikµ f u‖ [δ(r) + f∂‖u‖
]
. (22)

The redshift-space power spectrum can thus be written as (Scoc-
cimarro et al. 1999)

Ps(k, µ) =

∫
d3r

(2π)3 e−ik·r
〈
e−ikµ f ∆u‖ ×

×
[
δ(x) + f∂‖u‖

] [
δ(x′) + f∂‖u‖

] 〉
, (23)
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Fig. 10. Correlation matrices for the combined monopole-quadrupole
data vector, in the low (top) and high (bottom) redshift bin. Correlation
matrices are computed as Ri j = Ci j/

√
CiiC j j, where C is the covariance

matrix estimated from a set of 153 independent mock samples. The
bottom left and top right squares correspond respectively to the auto-
covariance of the monopole s2ξ(0) and the quadrupole s2ξ(2), while the
remaining squares show the cross-covariance terms. The scales under
consideration range from smin = 5 h−1Mpc to smax = 50 h−1Mpc (from
left to right).

with ∆u‖ = u‖(x) − u‖(x′) and r = x − x′. This last equation
completely describes the anisotropies produced by peculiar ve-
locities on the clustering of matter particles at each separation.
Here, the only assumption is the plane-parallel approximation
limit.

It is possible to identify two main regimes within which dis-
tortions manifest themselves. At large separations, matter has
a coherent flow towards overdense regions. In this regime, the
velocity field is mainly irrotational (Bernardeau et al. 2002) and
can thus be described by its divergence θ(x) = ∇ · u(x). These
motions produce a systematic distortion of the large-scale distri-
bution along the line of sight. This ‘Kaiser effect’ (Kaiser 1987)
is basically produced by the terms inside the square brackets in
Eq. (23).
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In contrast, within the typical scale of haloes, galaxy orbits
cross each other: there is a random dispersion in velocities at a
given point, which convolves the redshift-space structure in the
radial direction. The clustering amplitude is thus suppressed on
small scales, and structures appear stretched along the line of
sight in the so called ‘Fingers of God’ (Jackson 1972). This ef-
fect is mainly generated by the exponential pre-factor involving
the moment generating function of the velocity field.

Eq. (23) is hard to use in its given form, because we lack an
analytic formula for the ensemble average term inside the inte-
gral, particularly in the strongly non-linear regime. But a num-
ber of simpler approximate forms have been suggested, which
aim to provide a satisfactory representation of the redshift-space
power spectrum measured from galaxy surveys:
– Kaiser model (Kaiser 1987): within the linear theory approx-
imation, the exponential pre-factor can be suppressed since its
impact on the largest scales is negligible and θ ∝ δ. If the galaxy-
matter bias relation is also assumed to be linear (δg = bδ), it
follows that

Ps(k, µ) =

(
1 +

f
b
µ2

)2

b2Pδδ(k), (24)

where Pδδ = P is the linear real-space matter power spectrum
and b is the linear galaxy bias.
– Dispersion model (Peacock & Dodds 1994): although the pre-
vious model can reproduce the apparent enhancement of clus-
tering at large separations, it fails in the description of the non-
linear regime. The latter can be treated in a phenomenological
way, by artificially suppressing the linear theory predictions to
account for the effect of the Fingers of God. Eq. (24) can thus be
written as

Ps(k, µ) = D
(
kµσ12

) (
1 +

f
b
µ2

)2

b2Pδδ(k), (25)

where D
(
kµσ12

)
is an analytical damping factor. This term de-

pends on a nuisance parameter σ12, which plays the role of a
pairwise velocity dispersion. The basic assumption of the dis-
persion model is that σ12 is not scale-dependent, but rather can
be fitted as a free parameter. An useful extension of this model
is to replace the linear Pδδ by a non-linear version (using an an-
alytic approximation such as HALOFIT). This then allows the
dispersion model to give the correct prediction for µ = 0: such
modes run transverse to the line of sight and undergo no RSD
effect. Note that some of the alternatives discussed here fail to
match the real-space power exactly at µ = 0: this is because they
are attempting the harder task of predicting the non-linearities,
rather than taking them from a fit to N-body simulation data.
– Scoccimarro model (Scoccimarro 2004): as soon as the mildly
non-linear regime is entered, the density and velocity divergence
fields must be treated separately to account for the non-linear
mode coupling between them. The ansatz proposed by Scocci-
marro is that the exponential pre-factor inside Eq. (23) can be
decoupled from the Kaiser term, so that its impact on the clus-
tering is limited only to the smallest scales. In this case, it can be
replaced with a damping factor similar to the one already used
in the dispersion model, leading to

Ps(k, µ) = D
(
kµσ12

) (
b2Pδδ(k)+2 f bµ2Pδθ(k)+ f 2µ4Pθθ(k)

)
, (26)

where Pδθ and Pθθ are respectively the density-velocity di-
vergence cross-spectrum and the velocity divergence auto-
spectrum. When applying this (and the following) model to real
data, these quantities cannot be obtained from the data under

analysis. As such, applications of this (and the following) model
have used empirical fitting functions calibrated using numerical
simulations (Jennings et al. 2011). In a parallel paper (Bel et al.
2017), new, more general formulas are proposed:

Pδθ(k) =

(
Pδδ(k)Plin(k)e−k/k∗

) 1
2

, (27)

Pθθ(k) = Plin(k)e−k/k∗ , (28)

where Plin(k) is the linear matter power spectrum and k∗ is a
parameter representing the typical damping scale of the velocity
power spectra. This can be well described as

1
k∗

= p1σ
p2
8 , (29)

where p1, p2 are the only free parameters of the fit. These forms
for Pδθ and Pθθ have valuable, physically motivated properties:
they naturally converge to Pδδ(k) in the linear regime, including
a dependence on redshift through σ8(z).

Full details on the derivation and performances of these fit-
ting formulas are presented in Bel et al. (2017). Their use in
the analysis presented in the following sections is a significant
improvement over previous applications of the Scoccimarro and
TNS (Taruya et al. 2010) models, as it allows us to extend our
tests to smaller scales and apply the models to high redshifts as
sampled by VIPERS.
– Taruya (or TNS) model (Taruya et al. 2010): the non-linear
mode coupling between the density and velocity divergence
fields is responsible for a systematic bias between measurements
of the power spectrum and its prediction using the previous RSD
model. The origin of this deviation is the additional terms inside
Eq. (26), which are not accounted for within the previous ansatz.
The corrected model can be written as

Ps(k, µ) = D
(
kµσ12

) (
b2Pδδ(k) + 2 f bµ2Pδθ(k) + f 2µ4Pθθ(k)+

+ CA(k, µ, f , b) + CB(k u, f , b)
)
,

(30)

where CA and CB are terms derived using perturbation theory,
which aim to account for the density and velocity divergence
couplings with the exponential pre-factor in Eq. (23). See de la
Torre & Guzzo (2012) for the details of its application to biased
tracers.

All the tested RSD models feature a phenomenological
damping factor D(kµσ12). The function D(kµσ12) damps the
power spectra in the Kaiser term but also partially mimics the
effects of the pairwise velocity distribution in virialised sys-
tems. The expected analytic form of the damping factor on
large enough scales assuming the Scoccimarro ansatz is Gaus-
sian (Scoccimarro 2004); but analyses of simulated galaxy sam-
ples (de la Torre & Guzzo 2012) have shown that a Lorentzian
template provides a better practical fit.

Models in equations 25, 26 and 30 are all tested in the next
sections to understand their impact on the recovery of the growth
rate. In all cases, at each step of our Monte Carlo Markov chains
we generate the full anisotropic redshift-space power spectrum.
For this we make use of CAMB with the latest HALOFIT pre-
scription for the non-linear Pδδ (Takahashi et al. 2012), and
Eqs. 27 and 28 to generate the Pδθ and Pθθ power spectra. The
normalisation of the latter real-space power spectra, which can
be set by σ8, is degenerate with f and b. This is why one gener-
ally parametrises RSD models in terms fσ8 and bσ8 parameters.
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Fig. 11. Systematic errors on the measurement of the linear growth
rate from the mean of 153 mock samples, using the three models dis-
cussed in the text. Here we used the parent mocks, to focus on the intrin-
sic performances of the models. Relative systematic errors are plotted
as a function of the minimum fitting scale smin. smax is always fixed at
50 h−1Mpc. The filled symbols correspond to the use of a Lorentzian
form for the non-linear damping factor in the models, whereas dashed
lines to a Gaussian one.

In the case of the TNS model, however, this is not possible di-
rectly since the CA term involves sub-terms that are not multiples
of the fσ8 or bσ8 parameters (e.g. Taruya et al. 2010; de la Torre
& Guzzo 2012). Therefore for the TNS model, and for the others
for consistency, we decide to treat f , b, σ8, σ12 as free distinct
parameters in the fit, and provide derived constraints on fσ8 a
posteriori from the MCMC chains.

It is important to emphasize thatσ8(z) not only plays a role in
shaping the CA term, it also controls the level of non-linearity in
Pδδ, Pδθ, and Pθθ. In particular for Pδδ, the HALOFIT non-linear
correction to the linear matter power spectrum is computed at
each step of the MCMC according to the tested value of σ8(z).
This represents a significant improvement over what is usually
done in RSD analyses, where σ8(z) is fixed to its fiducial value
for the description of Pδδ.

In the end, we measure the Fourier-space multipole moments
as

P(`)(k) =
2` + 1

2

∫ +1

−1
Ps(k, µ)L`(µ)dµ, (31)

and convert them to their configuration space counterparts as

ξ(`)(s) = i`
∫

dk
2π2 k2P(`)(k) j`(ks), (32)

where j` denotes the spherical Bessel functions.

8. Tests of RSD models

We test in this section the RSD models introduced previously
on our set of Ns = 153 mock catalogues. In practice, analysing
each mock and averaging the measurements would be compu-
tationally infeasible, considering the large number of configura-
tions to be tested. We thus chose to average the monopole and
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Fig. 12. Comparison between the best fit models for the monopole
and quadrupole on the averaged parent mocks using different combi-
nations of RSD models and damping factors. The fit uses down to
smin = 5 h−1Mpc. The use of a Gaussian damping in the models clearly
dramatically worsen the accuracy of the fit, in particular for the large-
scale quadrupole signal.

quadrupole measurements over the mocks, scale the covariance
matrix properly, and fit the models to these average measure-
ments. The aim is to reach a statistical uncertainty that is a factor
1/
√

Ns smaller than a single VIPERS survey, to be able to de-
tect potential systematics as small as 1%. This process is more
revealing and can show how well a given model performs in re-
covering the detailed shapes of the quadrupole and monopole
correlation function.

We perform likelihood analyses of the mock mean measure-
ments in different configurations, starting the ideal case and
moving on to that in fully realistic conditions. All likelihood
analyses are carried out using an MCMC code, whose output
has been cross-checked with the independent MCMC code used
in de la Torre et al. (2016). We select flat priors for the full
set of free parameters, using boundaries that allow a large set
of late-time evolution cosmological models to be considered as
possible alternatives to standard ΛCDM. The full list of priors
is shown in Table 1, while the best-fit values for the parame-
ters are listed in Table 2. We vary the minimum scale smin of
the fit to understand how to select the best fitting range for the
VIPERS data – we expect all RSD models to fail at sufficiently
small and non-linear scales. The maximum scale of the fit is
fixed at smax = 50 h−1Mpc, above which errors on the VIPERS
measured monopole and quadrupole become too large.

8.1. Ideal case

We first study the ideal case that neglects the complex VIPERS
angular selection by using the parent mocks. Here we con-
sider mock measurements from the full redshift range probed
by VIPERS, i.e. 0.5 < z < 1.2, to avoid tuning the procedure to-
wards small systematic deviations on the two redshift bins. The
relative difference of the recovered fσ8 with respect to the fidu-
cial one is shown in Fig. 11. Redshift errors are not consid-
ered here to understand how different RSD models behave in
the absence of any observational bias. Two types of small-scale
damping factor D(kµσ12) are tested: the Lorentzian (filled sym-
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Fig. 13. Effect of redshift errors on the recovered monopole and
quadrupole from the galaxy mocks, obtained by adding to the mock
redshifts a random Gaussian deviate with dispersion equal to the rms
redshift error of the VIPERS.

bols) and Gaussian (dashed lines) forms. The overall trend of
models using Lorentzian damping favours the TNS model: it
yields almost unbiased measurements of the growth rate down
to smin = 5 h−1Mpc. Some overestimation is however seen for
minimum scales close to smin = 8 h−1Mpc, which in fact corre-
sponds to the zero-crossing scale of the quadrupole ξ(2)(s).

In contrast, both dispersion and Scoccimarro models con-
sistently underestimate the growth rate with an error that fluc-
tuates between 5–10%. Evidently, in all the cases the choice
of a Lorentzian damping yields smaller systematic deviations
than with a Gaussian damping. This is reflected by the trend
of the dashed lines, which are close to the corresponding mark-
ers only when the minimum fitting separation smin is larger than
∼ 15 h−1Mpc, while rapidly deteriorating when smaller sepa-
rations are included in the fit. This is highlighted in Fig. 12,
where the different best-fitting models for the monopole and
quadrupole using smin = 5 h−1Mpc are directly compared to the
mock data. Using a Gaussian damping, the model is no longer
able to provide a good description of ξ(0) and ξ(2). Actually, the
fit is mostly dominated by the small scales, whose data points
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Fig. 14. Same as Fig. 11, but now including Gaussian redshift errors
with dispersion equal to the rms value measured for the VIPERS data,
added to the mock galaxy redshifts. Here the dashed lines correspond
to the use of a Lorentzian damping only, which in Fig. 11 was found
to perform at best. With redshift errors, this needs to be supplemented
by a further Gaussian damping factor with dispersion fixed to the above
rms error value, to yield the values described by the filled symbols.

have the smallest errors, and this explains why separations above
7 h−1Mpc are apparently the ones giving the strongest deviation
between model and data. This result is in close agreement with
previous work on the subject (e.g. Bianchi et al. 2012; de la Torre
& Guzzo 2012).

8.2. Case with redshift errors

So far no redshift error was assumed in the mock samples.
However, real VIPERS redshifts have a significant uncertainty,
which clearly impact observed redshift-space distortions. We
know from the multiple redshift measurements (Scodeggio et al.
2016) that the redshift error probability distribution for the
VIPERS sample of reliable redshifts used here, is well described
by a Gaussian with standard deviation σz = 0.00054(1 + z).
This corresponds to a dispersion in galaxy peculiar velocity of
163 km s−1.

By applying random errors to mock galaxy redshifts follow-
ing the VIPERS observed distribution, we can effectively see ad-
ditional distortions. These are shown in Fig. 13, where one can
see how the shapes of the monopole ξ(0)(s) and the quadrupole
ξ(2)(s) are affected. The imprint of redshift errors is similar to
that of a small-scale damping of the power spectrum. While
the monopole is damped below 4 h−1Mpc, the quadrupole is cor-
rupted over a range extending out to ∼ 20 h−1Mpc. Clearly, this
effect needs to be carefully handled or modelled, if one hopes to
recover an unbiased value for the growth rate. The consequences
of not correcting for this effect are shown by the dashed lines in
Fig. 14, where we are repeating the tests of Fig. 11, but now in-
cluding redshift errors. As feared, there is a significant deviation
from the values of fσ8 previously measured with the models in
the best configuration, i.e. with the Lorentzian damping.

Rather than correcting for redshift errors in the measure-
ments, as performed for the angular selection selection, it is bet-
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Fig. 15. The same as Fig. 14, but now using the fully realistic ‘ob-
served’ mocks, on which all observational effects (masks, SPOC se-
lection and redshift errors) have been included. As before, error bars
correspond to the error on the average of the 153 samples.

ter to include it in the modelling. It is intuitive to supplement
the models with a convolution by an extra Gaussian distribu-
tion with standard deviation fixed to the VIPERS rms value of
σz = 163 km s−1, which corresponds to

σπ =
cσz

H(z)
, (33)

in terms of line-of-sight comoving separation. The filled sym-
bols in Fig. 14 show how with this extra damping term we re-
cover a performance similar to the more idealised case of Fig. 11.

We therefore adopt the TNS model with Lorentzian damping
and Gaussian error damping, as our reference model for the final
RSD analysis of the VIPERS data. However, we will also test
for consistency the behaviour of the other two models on the
actual data, to verify whether the trends seen in the mocks are
confirmed.
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Fig. 16. Monopole and quadrupole of ξ(rp, π) for the two redshift sub-
sample of the final VIPERS dataset (solid points), together with the final
best-fitting curves obtained using the TNS model, corresponding to the
values reported in Table 2. The likelihood computation has used data
down to smin = 5 h−1Mpc, as indicated by the tests. Error bars are 1 −σ
deviations, and correspond to the dispersion of the mock measurements.
Each of these is also shown as a faint background line.

8.3. Fully realistic case

We now turn to the case including fully realistic observing condi-
tions. This means considering the target selection (masks, TSR,
SSR, etc.) and limiting the samples to the same redshift ranges
covered by the data and including redshift errors. The results
that we obtain are shown in Fig. 15. The trends of the system-
atic error as a function of smin are less stable than in the previous
case, although the general behaviour and relative performances
of the models are the same. The variations gives us an idea of
the impact of the selection function on samples this size. Again,
we see some instability in the TNS model (at least in the bin
0.7 < z < 1.2) when the minimum scale of the fit is chosen
around smin ' 8 h−1Mpc. When we look into the MCMC results
in more detail, we see that in this case the Markov chain tends
to drift towards unrealistic values of σ8, which are outside of the
prior range defined in Table 2. This seems to be related to the dif-
ficulty of TNS model to reach a stable fit in the region where the
quadrupole crosses zero. As soon as we include smaller scales
(or we move away to larger ones), the regular trend is recovered.
Nevertheless, we confirm the TNS model as the best performing
one, with systematics . 5% down to the smallest probed mini-
mum scales.

Overall, the different tests performed on the mock catalogues
indicate that we can safely use the TNS model with the appro-
priate damping functions as well as a minimum fitting scale of
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Fig. 17. Left panels: the measured values of fσ8 from the VIPERS survey in the two redshift bins, using the TNS model in its optimal set-up that
we derived in section 8 (double damping factor: free lorentzian + fixed gaussian), as a function of the minimum fitting scale smin. The maximum
fitting scale smax is always fixed at 50 h−1Mpc. The shaded area gives the statistical error at each smin for the TNS model, as derived from the
mocks. Right panels: The same measurements performed on the average of the mocks, i.e. plotting the results of Fig. 15 but showing explicitly
the recovered values of fσ8, to ease comparison to the data results on the left.

Table 1. Adopted priors on the sampling parameters.

Parameters Uniform prior
f [0.2, 1.8]
σ12 [0, 8]
b [0.5, 5]
σ8 [0.2, 0.65]

smin = 5 h−1Mpc. This is the configuration that we adopt for the
analysis of the data.

9. VIPERS RSD results

We present in this section the results of the RSD analysis of the
VIPERS final dataset. We apply the methodology described in
the previous sections to the VIPERS galaxy sample. In the likeli-
hood analysis we impose rather broad uniform priors on the sam-
pling parameters. These are reported in Table 1. Since f and σ8
are treated as separate parameters in the modelling, despite their
intrinsic degeneracy, we need to impose sensible priors on them.
In fact the most sensitive prior is that on σ8, as it is the main
parameter entering the non-linear modelling of RSD. To define
a sensible and realistic prior, while allowing room for deviations
from GR, we base our choice on the Effective Field Theory of

Table 2. Values of the growth rate and related parameters in the two red-
shift sub-samples, obtained fitting the monopole and quadrupole corre-
lation functions over the range 5 h−1Mpc < s < 50 h−1Mpc, using the
TNS model. Central values and 68% marginalized errors on σ12, fσ8,
and bσ8 are reported.

Parameters 0.5 ≤ z ≤ 0.7 0.7 ≤ z ≤ 1.2
σ12 4.996 ± 0.855 3.542 ± 0.784
fσ8 0.55 ± 0.12 0.40 ± 0.11
bσ8 0.73 ± 0.03 0.74 ± 0.04

dark energy formalism (Gubitosi et al. 2013; Bloomfield et al.
2013; Gleyzes et al. 2013), which allows a description of var-
ious kinds of dark energy models and modifications of gravity
to be expressed in a self-consistent framework that includes the
growth rate of structure (Piazza et al. 2014; Perenon et al. 2015).
The latter work shows that the range spanned by σ8(z) for sta-
ble theories can vary significantly, suggesting a range [0.2, 0.65]
as appropriate to account for early- and late-time dark energy
models at the redshifts covered by VIPERS (for definitions, see
Perenon et al. 2016). This excludes some more extreme modified
gravity models, but avoids non-physical degeneracies that arise
in the likelihood for some particular values of σ8 outside of this
range. This choice is corroborated by our parallel complemen-
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tary analysis using the same data by de la Torre et al. (2016), in
which the combination of RSD with galaxy-galaxy lensing con-
strains directly σ8(z), allowing a broader prior at the outset.

The fσ8 measurements that we finally obtain using our stan-
dard configuraton and previously discussed parameter priors are
fσ8(z = 0.6) = 0.55±0.12 and fσ8(z = 0.86) = 0.40±0.11. We
consider these as our reference measurements in this work and
discuss their cosmological implications in the next section. The
measurements and best-fitting model monopole and quadrupole
correlation functions obtained in the two considered redshift bins
are shown in Fig. 16. The corresponding best-fit values for the
derived parameters are reported in Table 2.

It is interesting to verify a posteriori whether the trends and
relative RSD model performances as a function of smin estab-
lished from the mock catalogues are similar to those seen in the
real data. It is of course clear that any trend will be less signif-
icant, as the data are statistically equivalent to considering just
one of the 153 mock catalogues. In the left panel of Fig. 17, we
show the result of this exercise, where the measured values of
fσ8 as a function of smin are shown for the different tested mod-
els. To ease comparison, we have reported in the right panel
and using the same scale, the corresponding results from the
mock test for the realistic case (i.e. those of Fig. 15). Apart
from the different statistical errors, it is surprising to note how
the three tested RSD models provide virtually identical results
in the real data, as opposed to the behaviour seen in the mock
catalogues. Moreover, it seems that in the data the variation of
the fσ8 measurements with minimum scale are not driven by
the adequacy of the model down to those scales, but rather by
statistical uncertainties in the measured galaxy correlation func-
tions. The similarity in the results obtained from the different
models is confirmed directly by the values of the reduced χ2,
which turn out to be very similar. By directly looking at the pos-
terior likelihood distributions of the parameters obtained with
the three models in Fig. 18 (for the high-redshift bin), we can
see that each model provides slightly different parameters degen-
eracies, although after marginalization, fσ8 posterior likelihood
distributions are almost identical for the three RSD models, with
only a slightly larger statistical uncertainty with the TNS model.
However, some trends seen in the mock results are recognised in
the data, as for example the preference of the TNS model in the
high-redshift sample to deliver larger values of fσ8 when smin is
close to the zero-crossing scale of the quadrupole.

Finally, it is important to emphasize the global non-linear
approach to RSD that has been used in this analysis. We have
used rather small non-linear scales in the fit, and by adopting a
consistent modelling for the non-linearities in the real-space den-
sity and velocity divergence power spectra, we can obtain further
cosmological insight. The level of non-linearity in our analysis
is controlled by one single parameter, σ8(z), and we find that by
letting this parameter vary, we can partly break the standard de-
generacy that dominates on linear scales between f , σ8, and b
parameters. If we marginalise the posterior likelihood function
over the σ12, σ8, b parameters, we obtain the following direct
growth rate and σ8 constraints: [ f (z = 0.6), σ8(z = 0.6)] =
[1.048± 0.199, 0.528± 0.076] and [ f (z = 0.86), σ8(z = 0.86)] =
[0.742 ± 0.179, 0.539 ± 0.068]. A similar approach has been
adopted in de la Torre et al. (2016), where this is strengthened
by additional constraints from galaxy-galaxy lensing. In partic-
ular, the latter allows improving σ8 constraints while keeping
similar uncertainties on f . A detailed discussion of these re-
sults is given in de la Torre et al. (2016). Overall, these findings
demonstrate the additional constraining power encapsulated in
quasi-linear scales, which can be used to break degeneracies and
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Fig. 18. The one- and two-dimensional posterior likelihood distribu-
tion of the derived parameters fσ8, bσ8 and σ12 for the 0.5 < z < 0.7
redshift bin. It corresponds to the result of the analysis of VIPERS
data using dispersion, Scoccimarro, and Taruya model and smin = 5 h−1

Mpc. The dark- and light-shaded areas correspond respectively to the
68% and 95% joint two-parameter confidence levels. The lower redshift
sample shows comparable contours and shapes.

further improve the precision of measurement of the growth rate
of structure.

10. Discussion and conclusions

The measurements of the growth rate of structure times σ8 that
we obtained are

fσ8(z = 0.6) = 0.55 ± 0.12 (34)
fσ8(z = 0.86) = 0.40 ± 0.11. (35)

These values are confronted in Fig. 19 with different measure-
ments, including results from other surveys, the VIPERS earlier
PDR-1 dataset, and parallel works analysing with complemen-
tary techniques analogous subsets of the VIPERS PDR-2 dataset.
It may look surprising that there is no appreciable improvement
in the error bars between the former measurement from the PDR-
1 (de la Torre et al. 2013, red circle) and the new PDR-2 estimate
in a comparable redshift bin, despite a ∼ 30% increase in the
sample size. As discussed in de la Torre & Guzzo (2012), this
is essentially a price to pay for the more sophisticated treatment
of nonlinear effects through the TNS model, which increases the
degrees of freedom.

The parallel PDR-2 results include measurements obtained
from the combination of RSD with galaxy-galaxy lensing (de
la Torre et al. 2016) or using the void-galaxy cross-correlation
(Hawken et al. 2016). In forthcoming papers, we shall addi-
tionally present further pieces of this combined approach, using
specific colour-selected subsamples (Mohammad et al. 2017) or
the linearised density field in Fourier space (Wilson et al. 2017),
to minimise the need for non-linear corrections. All these papers
represent complementary approaches towards understanding the
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current limitations we face in our ability to extract in practice the
value of these parameters from the modelling of RSD.

The values measured by these different techniques on the
same VIPERS data as well as from other surveys at similar red-
shifts are virtually all compatible within 1-σ and agree with the
predictions of a ΛCDM model governed by Einstein gravity. But
on a larger sample, with much smaller statistical errors, greater
care would be needed to test for possible systematic biases that
might still be hidden in one or more of the analyses. The ap-
plication of such a variety of approaches to VIPERS has been
made possible by the specific properties of the survey, in partic-
ular its dense sampling and rich content of information. With
a sparse sampled survey, which is the approach of most of the
cosmologically-oriented surveys, it would have been impossible
to characterise accurately the density field and apply the clipping
linearisation technique of Wilson et al. (2017), or reliably detect
cosmic voids such as those used in Hawken et al. (2016). At the
same time, a survey with limited imaging information would not
permit investigation of the selection of optimal sub-populations
(or the combination of different ones), as we are pursuing in Mo-
hammad et al. (2017), or exploit the combination of RSD with
lensing, as we have done in de la Torre et al. (2016) and which
should be exploited to the fullest by Euclid mission (Laureijs
et al. 2011) in the next decade. We therefore believe that the
detailed investigation of the properties of RSD within VIPERS
should serve as a valuable foundation for next-generation studies
of greater statistical power.
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