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ABSTRACT

Context. Upcoming weak lensing surveys such as Euclid will provide an unprecedented opportunity to quantify the geometry and
topology of the cosmic web, in particular in the vicinity of lensing clusters.
Aims. Understanding the connectivity of the cosmic web with unbiased mass tracers, such as weak lensing, is of prime importance to
probe the underlying cosmology, seek dynamical signatures of dark matter, and quantify environmental effects on galaxy formation.
Methods. Mock catalogues of galaxy clusters are extracted from the N-body PLUS simulation. For each cluster, the aperture mul-
tipolar moments of the convergence are calculated in two annuli (inside and outside the virial radius). By stacking their modulus, a
statistical estimator is built to characterise the angular mass distribution around clusters. The moments are compared to predictions
from perturbation theory and spherical collapse.
Results. The main weakly chromatic excess of multipolar power on large scales is understood as arising from the contraction of the
primordial cosmic web driven by the growing potential well of the cluster. Besides this boost, the quadrupole prevails in the cluster
(ellipsoidal) core, while at the outskirts, harmonic distortions are spread on small angular modes, and trace the non-linear sharpening
of the filamentary structures. Predictions for the signal amplitude as a function of the cluster-centric distance, mass, and redshift are
presented. The prospects of measuring this signal are estimated for current and future lensing data sets.
Conclusions. The Euclid mission should provide all the necessary information for studying the cosmic evolution of the connectivity
of the cosmic web around lensing clusters using multipolar moments and probing unique signatures of, for example, baryons and
warm dark matter.

Key words. galaxies: clusters: general – large-scale structure of Universe – gravitational lensing: weak – methods: numerical –
methods: statistical

1. Introduction

The large-scale structures of the Universe (hereafter LSS) have
been observed for more than twenty years, first by the CfA cat-
alogue (de Lapparent et al. 1986), and later by large spectro-
scopic surveys (e.g. the 2dF and SDSS surveys: Colless et al.
2003; Gott et al. 2005). These surveys emphasised a distribution
of galaxies that is not homogeneous, but concentrated along fil-
aments, sheets, and presents large underdense regions (voids).
Structures grow highly anisotropically from primordial density
fluctuations of dark matter under the effect of gravity. Large
N-body simulations reproduce this picture, where dark matter
particles arrange themselves in a network of filaments. Mas-
sive haloes are located at the intersection of filaments, and
grow via successive merging as well as continuous accretion
of surrounding matter following some preferential directions
(Davis et al. 1985; Klypin & Shandarin 1993; Bond et al. 1996;
Bond & Myers 1996).

The detection and study of cosmic filaments through ob-
servations and numerical simulations is a fundamental step in
refining our understanding of structure formation history and
cluster evolution. Indeed, filaments have a significant impact on
the mass budget of the Universe, as they account for ∼40 per

cent of all mass at z = 0 (Aragón-Calvo et al. 2010). Their dy-
namical evolution probes the underlying cosmological model.
They also play an important environmental role on galaxy for-
mation and galaxy properties (Hahn et al. 2007; Sousbie et al.
2008; Pichon et al. 2011; Codis et al. 2012; Malavasi et al. 2017;
Laigle et al. 2017). However, given the low-density contrast of
filaments, identifying them in observations has remained a chal-
lenge and, in this context, several observables have been devised
to probe their mass distribution.

One of the main observables that has been used to detect
filaments is X-ray emission, induced by the warm hot inter-
galactic medium (WHIM, Cen & Ostriker 1999). Detection re-
mains difficult because X-rays could either come from the inter-
galactic medium, or past cluster mergers (e.g. Kull & Böhringer
1999; Durret et al. 2003), and often needs to be supported
by other observables (Eckert et al. 2015). Recently, the Planck
satellite has also claimed detection of the Sunyaev-Zeldovich
effect of the WHIM in between pairs of galaxy clusters
(Planck Collaboration Int. VIII 2013). Some studies reported
the detection of filaments in the distribution of galaxies
(Ebeling et al. 2004; Pimbblet et al. 2004). Yet this method is
limited to relatively low redshifts (z < 0.4) and does not
probe the physical properties of filaments, given that its main
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components are the WHIM and dark matter. Zhang et al. (2013)
proposed an algorithm to study the photometric properties of fil-
aments by stacking galaxies’ population in cluster pairs.

Gravitational lensing stands as a powerful complementary
tool to investigate the entire structure of filaments because it
probes dark and luminous matter, regardless of its dynami-
cal state. However, early filament detections by weak lens-
ing (WL) are still controversial. Some attempts have been
made to detect them in between galaxy clusters (Clowe et al.
1998; Kaiser et al. 1998; Gray et al. 2002; Gavazzi et al. 2004;
Dietrich et al. 2004; Heymans et al. 2008), but it is not clear
how robust these results are against residual systematic galaxy
alignments. Progress in mass reconstructions from WL (alone
or in combination with strong lensing) have recently led to de-
tections confirmed by other observables (Dietrich et al. 2012;
Jauzac et al. 2012; Higuchi et al. 2017). Yet, direct measure-
ments from individual (massive) filaments remain sparse due
to the weakness of the corresponding shear field. To compen-
sate, some studies also tried to characterise filaments by stack-
ing WL signal (see e.g. Dietrich et al. 2005; Mead et al. 2010;
Clampitt et al. 2016; Epps & Hudson 2017). Various WL algo-
rithms amplifying filament detection are described in the litera-
ture. Maturi & Merten (2013) developed a WL filter tailored to
their elongated extension. Simon et al. (2008) used higher-order
correlations, like the galaxy-galaxy-shear three-point statis-
tics. Likewise, aperture multipole moments were introduced by
Schneider & Bartelmann (1997) to quantify asymmetries in the
mass distribution directly from the shear signal carried by back-
ground galaxies. Dietrich et al. (2005) and Mead et al. (2010)
studied the quadratic aperture moment of WL signal induced by
cluster pairs.

Beyond the overall radial mass profile, the WL measurement
of the ellipticity of haloes (their quadrupole) has drawn some
attention in recent years. In particular, for galaxy haloes, it is
possible to study the relative alignment and flattening of the host
halo and its central galaxy (Parker et al. 2007; van Uitert et al.
2012; Schrabback et al. 2015; Clampitt & Jain 2016). Some at-
tempts have also been made to measure the projected elliptic-
ity of a few individual clusters of galaxies (Oguri et al. 2010) or
to measure the mean ellipticity of an ensemble of clusters and
groups of galaxies by stacking the signal (Evans & Bridle 2009;
van Uitert et al. 2017). This latter approach requires assumptions
to be made over the relative alignment and elongation between
dark and luminous matter.

A visual inspection of the time evolution of N-body sim-
ulations allows us to anticipate the following: as gravitational
clustering builds up, to first order, the cosmic nodes catastroph-
ically attract matter in their vicinity. This induces an amplifica-
tion of the contrast in the connected cosmic network, which is
locally evolving more rapidly due to the induced density boost
(when compared to typical filaments away from the nodes). At
the level of this spherically contracting description there should
be an excess harmonic power near the peaks. At second or-
der, the filaments themselves induce anisotropic tides which
boost up their own contrast by transversally collecting matter
and substructures. This effect is also reinforced near peaks, as
the radial and transverse tides add up and proto-haloes pass the
collapse threshold more easily. The local cosmic filaments at
the nodes are therefore amplified by non-linear gravity. This
is the cluster-centric counterpart of the process described by
Bond et al. (1996) for the field: the large-scale cosmic web is
de facto already in place in the initial conditions and gravita-
tional clustering amplifies it differentially. A relative harmonic
analysis of the vicinity of clusters should therefore allow us to

capture this gravitationally boosted primordial connectivity. The
purpose of this paper is to quantify this effect via upcoming
WL surveys.

This study will rely on aperture multipole moments at all or-
ders to quantify the azimuthal repartition of matter at different
scales, centred on galaxy clusters. We will use mock clusters ex-
tracted from a large N-body cosmological simulation to predict
the statistical properties of multipolar moments. A new statistical
estimator, the multipolar power spectrum will be implemented
while stacking the modulus of aperture multipole moments. This
method will allow us to quantify the angular distribution of mat-
ter around cosmic hubs, hence to detect the signature of filaments
in the vicinity of clusters. Stacking power spectra instead of mo-
ments alleviates assumptions about the relative distribution of
dark and luminous matter whose relation seems to depend on
mass and scale (van Uitert et al. 2017).

The structure of this paper is as follows. Section 2 describes
the aperture multipole moments following the formalism of
Schneider & Bartelmann (1997) and relates the statistics of these
moments with those of the underlying convergence fields. In this
section, we also build a model for the expected boost in the
harmonic power spectra. Section 3 then describes the computa-
tion of multipole moments using the dark halo clusters extracted
from the PLUS cosmological constrained dark matter N-body
simulation and explores how the power spectra depend on red-
shift, cluster mass and radius. Section 4 discusses the prospects
of measuring this signal with WL data accounting for sample
variance, shape noise (finite ellipticity of background sources),
and intervening LSS, and then weighs the mass content of fila-
ments near the nodes of the cosmic web. Finally, a summary is
presented in Sect. 5.

2. Multipolar aperture moments

Let us first present the ingredients of cluster-centric weak gravi-
tational lensing and introduce the corresponding expected statis-
tical properties of the convergence field, which is related to the
underlying matter distribution. Specifically, multipolar moments
are introduced to measure the asphericity – which quantifies the
projected departures from circular symmetry – around the nodes
of the cosmic web. Since the focus is on how cluster environ-
ment deviates from random locations, the expected ratios will
be presented in increasing order of theoretical complexity, start-
ing from the assumption of constrained Gaussian random fields
(GRFs) for the convergence. This will guide our understanding
of the actual empirical numerical study discussed in the follow-
ing section.

2.1. Definition of convergence multipoles

The focus of this paper lies in the azimuthal mass distribution at
various scales around massive galaxy clusters. For a thin grav-
itational lens plane, the convergence κ at a given position r in
the sky corresponds to the projected excess surface density ex-
pressed in units of the so-called critical density Σcrit

κ(r) =
1

Σcrit

∫
dz (ρ(r, z) − ρ) , (1)

with the convention that the line-of-sight corresponds to the z-
axis and the plane of the sky r vector can be defined by polar
coordinates (r, ϕ). The critical density involves distance ratios
between a fiducial source at an angular diameter distance Ds, the
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distance to the lensing mass Dl and the distance between the lens
and the source Dls

Σcrit =
c2

4πG
Ds

DlDls
· (2)

The lensing potential ψ can also be defined as

ψ(r) =
2
c2

DlDls

Ds

∫
dz Φ(r, z), (3)

where Φ is the three dimensional gravitational potential. One can
then express the two components γ1 and γ2 of the complex spin-
2 shear γ = γ1 + ıγ2 and the scalar convergence κ as derivatives
of the lensing potential

2κ = ψ,11 + ψ,22, (4)
2γ1 = ψ,11 − ψ,22, (5)
γ2 = ψ,12. (6)

Since the interest lies in convergence and shear patterns around
a particular centre, let us introduce the tangential γt and curl γ×
shear components1 as

γt = −R(γ e−2ıϕ), γ× = −I(γ e−2ıϕ). (7)

Following the formalism of Schneider & Bartelmann (1997), let
us also define the aperture multipole moments Qm of this con-
vergence field as

Qm =

∫ ∞

0
dr r1+mwm(r)

∫ 2π

0
dϕ eımϕκ(r, ϕ). (8)

There is substantial margin in the choice of the radial weight
function. As one may want to have a different radial shape for
different multipole orders m and it is desirable to consider a com-
pact support so that wm(r) vanishes beyond some radius Rmax
and, possibly, below some inner radius Rmin ≡ νRmax. For later
use, the multipolar moments can be expressed as a function of
the shear field (Schneider & Bartelmann 1997) in a local

Qm =

∫ ∞

0
dr r1+m

∫ 2π

0
dϕ eımϕ

×
[
wm(r)γt(r, ϕ) + ı

(
wm(r) +

r
m
w′m(r)

)
γ×(r, ϕ)

]
, (9)

and a non-local

Qm =

∫ ∞

0
dr r1+m

∫ 2π

0
dϕ eımϕ

× [
(2Wm(r) − wm(r)) γt(r, ϕ) − ımWm(r)γ×(r, ϕ)

]
, (10)

way, with the long-range weight function defined by

Wm(r) =
1

rm+2

∫ r

0
dx x1+mwm(x), (11)

where the prime denotes d/dr derivation. Any combination of
these two estimators would yield the same answer but, in prac-
tice, a careful account of the various sources of noise and the
range over which data (i.e. ellipticities of background galax-
ies) are available will drive the choice of wm(r). By con-
sidering the main source of noise that is due to the intrin-
sic non-zero ellipticity distribution of background galaxies,

1 In some cases, γ× is referred to as a “radial” γr component which can
be misleading for a spin-2 field.

Schneider & Bartelmann (1997) found an optimal weight func-
tion for a mass density profile that can be approximated as a
nearly isothermal mass distribution with ρ(r) ∝ r−2 or (κ ∝ r−1)
and proposed the following form that we use, unless otherwise
stated:

R1+m
max wm(r) =

1
x1+m + ν1+m −

1
1 + ν1+m +

(1 + m)(x − 1)
(1 + ν1+m)2 , (12)

over the range x = r/Rmax ∈ [ν, 1] and zero elsewhere.
It is noteworthy that an elliptical mass distribution will

generate only even moments with a fast decline of modes.
Schneider & Weiss (1991) relate the harmonic expansion terms
of the convergence or surface mass density with the ellipticity ε.
In practice, for a power law mass distribution κ ∝ r−n, one can
easily show that Q2/Q0 = nε/2.

2.2. The statistics of Qm for a Gaussian random field

In this subsection, let us further assume that the convergence (or
some projected density) field is Gaussian and fully characterised
by its power spectrum Pκ(k) so that the two-point expectation
value for the Fourier modes κ̂(k) can be written as

〈κ̂(k)κ̂∗(k′)〉 = (2π)2δD(k + k′)Pκ(|k|). (13)

2.2.1. Random locations

The convergence κ having zero mean value, the covariance
between multipolar moments centred at random positions
can readily be expressed by following the same method as
Schneider et al. (1998) who explored the statistics of the Map
statistic, which is a particular case of the m = 0 multipolar mo-
ments. Let us write

〈QmQ∗n〉 =

∞"
0

rdr r′dr′
2π"

0

dϕdϕ′ rmwm(r)r′nwn(r′)

× eı(mϕ−nϕ′)〈κ(r, ϕ)κ(r′, ϕ′)〉, (14)

= 2π ım−n
∫

kdk Um(k)Un(k) Pκ(k), (15)

≡ ım−nAκ,mn, (16)

where the Hankel transform Un(`) of the radial weight function
is defined by

Um(`) =

∫
rdr rmwm(r)Jm(`r), (17)

and Jm(x) are the first-kind Bessel functions.
Let us now consider a realistic convergence power spec-

trum derived from the non-linearly evolved matter spectrum,
Pδ(k). The power spectrum of the density contrast is com-
puted at various redshifts, using the Boltzmann code CLASS
toolkit (Blas et al. 2011; Lesgourgues 2011) for the fiducial
Planck Cosmology. For a given source redshift, the conver-
gence power spectrum Pκ(`, zs) can be inferred from the three-
dimensional matter power spectrum, considering the following
integral (Blandford et al. 1991; Miralda-Escudé 1991; Kaiser
1992; Bartelmann & Schneider 2001; Simon 2007)

Pκ(`, zs) =
9
4

Ω2
m

(H0

c

)4 ∫ χs

0
dχ

(χs − χ)2

χ2
s

Pδ (`/χ, χ)
a2(χ)

· (18)

In addition, instead of using a single-source-plane redshift,
the latest COSMOS2015 photometric redshift distribution

A27, page 3 of 15



A&A 605, A27 (2017)

(Laigle et al. 2016) is used to approximate the redshift distribu-
tion of sources as a Gamma PDF of the form

p(zs) =
e−zs/z0

z0Γ(a)

(
zs

z0

)a−1

, (19)

with a ' 2.1 and z0 ' 0.51 for sources as faint as an AB magni-
tude i = 25, which is suitable for future experiments like Euclid
or current deep ground-based imaging data. The effective con-
vergence power spectrum is finally computed by weighting the
contributions of the different source planes

Pκ(`) =

∫
Pκ(`, zs) p(zs) dzs. (20)

For illustration purposes, Fig. 1 shows the convergence power
spectrum and the corresponding multipolar moments for a fidu-
cial choice of Rmax = 10′ and ν = 0.5, which should correspond
to the scale of a few virial radii for a massive cluster at redshift
z ∼ 0.3. In order to highlight the contrast between the linear and
non-linear regime on the convergence power spectrum and on
the associated multipolar moment spectrum, we illustrate these
two cases. As expected, by adopting a non-linear matter power
spectrum, the multipolar moment spectrum is significantly en-
hanced.

2.2.2. The statistics of Qm under peak constraint

Even for a Gaussian random field, the statistics of Qm should
change significantly when centred on a cluster rather than a ran-
dom location. The formalism must be updated to deal with a
particular flavour of three-point statistics that accounts for the
presence of a maximum with a specific height νp of the density
field at the origin of the coordinate system. In brief, the com-
panion paper (Codis et al. 2017) has shown that the effect of the
peak constraint is to

– significantly boost the monopole (we are near a peak);
– significantly remove power from the dipole (we are now well

centred on the peak);
– slightly suppress the power of the quadrupole;
– leave all other m ≥ 3 multipoles unchanged.

These results rely on the assumptions that galaxy clusters can
be mapped to peaks in the initial field smoothed at some scale
R, which themselves can be characterised by their height (large
excursion), gradient (forced to be null at the origin), and Hessian
(two negative eigenvalues).

Our current purpose is to go beyond the Gaussian and peak
approximation and describe the statistical properties of Qm at
late time by measuring them directly in simulations in Sect. 3. In
the following section, we simply describe changes in the statis-
tics of multipolar moments to be expected from simple argu-
ments about the non-linear evolution around galaxy clusters.

2.3. The non-linear statistics of Qm around clusters

Appendix A presents an approximate model based on the
Zeldovich approximation and the spherical collapse, which
shows that the small-scale density fluctuations in a shell at radius
r falling onto a spherically symmetric proto-cluster will experi-
ence a boost of amplitude α with respect to the field. It is due
to the contraction of fluctuations within the original Lagrangian

101 102 103 104 105

`

10−9

10−8

10−7

10−6

10−5

10−4

10−3

`2
P
κ
(`

)
/

4π
2

Pκ(`) in the linear regime averaged over the source distribution

Pκ(`, zs) in the linear regime for zs ∈ [0.5− 4.5] with ∆zs = 0.5

Pκ(`) in the non-linear regime averaged over the source distribution

Pκ(`, zs) in the non-linear regime for zs ∈ [0.5− 4.5] with ∆zs = 0.5

0 2 4 6 8 10 12 14

multipole m

10−2

10−1

100

101

102

〈|Q
m
|2 〉

(a
rc

se
c)

2

〈|Qm|2〉 from Pκ computed in the non-linear regime

〈|Qm|2〉 from Pκ computed in the linear regime

Fig. 1. Top panel: cosmological convergence power spectrum Pκ(`) de-
rived from the evolved matter power spectrum averaged over the source
redshift distribution of Eq. (19). The red and blue curves represent the
quantities induced by the linear and non-linear matter power spectrums,
respectively. Bottom panel: corresponding multipolar moment spectra
〈|Q2

m|〉 for the weight function in Eq. (12) and a choice of Rmax = 10′
and ν = 0.5.

shell induced by the tidal distortion field of the cluster overden-
sity. It implies for the 3D power spectrum

Pcluster(k) ≡ α Prandom(k), where α '
(

3M(<r)
4πρ̄r3

)2/3

, (21)

where ρ̄ is the mean background density. Once projected along
the line-of-sight, fluctuations around a cluster should also pro-
duce a non-linear achromatic (m-independent) boost of multipo-
lar moments spectra as compared to the field. This prediction is
compared to measurements in simulations in Sect. 3.3 and de-
spite a crude treatment of projection effects and the extension of
the model deeply inside the core of the cluster, is shown to give
a quantitative explanation for the boost.

This boost corresponds to the first order change on the multi-
polar moments expected for initial peaks evolving into clusters.
The next step involves understanding any spectral distortion of
|Qm|2cluster with respect to α|Qm|2random, as a second-order effect
due to the non-linear coupling of modes involving specifically
the filamentary structure around clusters. Finally, we recall that
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Fig. 2. Halo virial mass function in the PLUS simulation box
(600 cMpc/h on a side) at four different redshifts (0, 0.3, 0.6 and 0.9)
showing the content of the four mass intervals considered. Only haloes
with a FOF mass greater than 5 × 1013 h−1 M� are shown here.

the linear power spectrum P(k) should be updated when account-
ing for the peak condition at the origin of the coordinate system
and that, in two dimensions, the multipoles m ≤ 2 are impacted.
A more thorough treatment of the asphericity around the cluster
potential could possibly allow us to predict the actual shape of
the |Qm|2cluster spectrum at all m. This is left for future work, and
from now on, we rely on N-body cosmological simulations to
predict these spectra, both near the edge of clusters where our
formalism should hold, but also deep inside the virial radius of
those clusters.

3. Measuring multipolar moments in simulations

3.1. Dark matter haloes in the PLUS cosmological simulation

A cosmological simulation taken from the Paris Local Uni-
verse Simulation (PLUS)2 project was analysed. It corresponds
to a ΛCDM universe with the following set of cosmologi-
cal parameters, Ωm = 0.3175, ΩΛ = 0.6825, Ωb = 0.049,
H0 = 67.11 km s−1/Mpc, ns = 0.9624 and σ8 = 0.8344
(Planck Collaboration XVI 2014). The simulation was per-
formed with Gadget2 (Springel 2005) in a periodic box of side
600 h−1 Mpc and using 20483 dark matter particles (i.e., with a
mass resolution of ∼2.2 × 109 h−1M�). The adopted Plummer-
equivalent force softening was 14.6 h−1 kpc and was kept con-
stant in comoving units. The simulation started at z = 49 and
ended at the present time z = 0. The initial conditions have been
generated using the BORG algorithm (Bayesian Origin Recon-
struction from Galaxies Jasche & Wandelt 2013; Lavaux 2015)
aiming at modelling the local universe.

The dark matter halo catalogue was extracted at redshifts
z = 0, 0.3, 0.6, and 0.9 with a Friend-of-Friend algorithm (FOF)
using a linking length of 0.15 in units of the mean inter-particle
separation and came up, for the z = 0 output, with about
14 000 groups and clusters with mass MFOF > 5 × 1013 h−1M�.
Then all the particles in the direct vicinity of these haloes are
extracted and projected along a given direction. Hence, each
extracted halo contains a cluster and its outer environment
(Metzler et al. 2001). The additional effect of the uncorrelated
background and foreground matter distribution along the line of

2 http://www2.iap.fr/users/peirani/PLUS/plus.htm

sight to distant gravitationally lensed galaxies will be treated as
an additional Gaussian random field acting as a noise contribu-
tion (see e.g. Hoekstra 2001, 2003).

– MFOF is used as a first guess to define a virial radius MFOF =
4/3π∆virρcritR3

vir.
– The centre of mass of the linked particles was used to extract

all the particles within a comoving radius RH = 4Rvir about it.
This radius is sufficiently large to capture the most relevant
environment of clusters.

– We refine the definition of the centre by seeking the main
peak of the density field with a shrinking sphere method.
Starting from the previous value of Rvir, let us compute the
centre of mass therein. At each iteration, the sphere is shrunk
by 2.5% and we update the center of mass accordingly. The
process is stopped when the final mass is below 1% of the
starting MFOF value.

– By sorting particles in radius about this final centre, one can
easily build the cumulative mean density profile ρ(<r). The
final virial radius is the distance at which ρ(<Rvir) = ∆virρcrit.

The above calculations rely on the fitting functions of
Bryan & Norman (1998) to estimate the density contrast ∆vir
above the critical density ρcrit for our reference ΛCDM cos-
mology. Hence, the typical virial mass is on average 1.14 times
greater than MFOF, the mass directly linked by the FOF algo-
rithm. We investigate two different radial intervals, R/rvir ∈
[0.25, 0.5] and R/rvir ∈ [1, 4], in order to emphasise differences
between the innermost, presumably relaxed, areas and the ones
undergoing coherent infall motions, where filaments should be
more prominent.

To study the influence of mass in this analysis, the sample of
haloes is divided into four bins of virial mass M1 ∈ 1–2, M2 ∈ 2–
4, M3 ∈ 4–8, and M4 ≥ 8 × 1014 h−1M� as shown in Fig. 2.

We also study the evolution of multipolar moments with
redshift by considering simulation outputs at redshifts z =
0, 0.3, 0.6, 0.9. In order to follow the evolution of moments of
a given population of haloes, we also consider the 100 most
massive clusters. This selection in mass is a proxy for a popu-
lation of haloes with the same rareness, νp = δ/σ. Indeed, the
mass of non-linearity M? (i.e. the peak of the Press-Schechter
mass function) evolves with redshift. Picking the most massive
haloes at each redshift therefore allows us to focus on a popu-
lation of haloes which present a similar level of non-linearity3,
which should therefore be at the same stage of their evolution.
As redshift takes values z = 0, 0.3, 0.6, and 0.9, the mean virial
mass of the 100 most massive clusters successively takes values
Mvir ' 10, 7, 5, 3 × 1014 h−1M�.

3.2. Multipoles from simulated haloes

The projected surface density of a discrete distribution of parti-
cles of mass M j reads

Σ(r, ϕ) =
∑

j

M j δD(r − r j), (22)

where r and ϕ are the coordinates in the plane of the sky. Hence,
translating Eq. (8) to a discrete distribution, the multipolar

3 Which amounts to having a constant variance σ2(M, z) at redshift z
and scale M.
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Fig. 3. Multipolar moments spectra (top panel) and multipolar moments spectra normalized by random profiles (bottom panel) for the two annuli
�R1 and �R4 (left and right columns respectively) for the z = 0 simulation output. The depletion at m = 1 follows from the centering condition;
the m = 2 excess reflects the ellipticity of DHs, while the weak excess at m = 4 is consistent at larger R with the expected mean degree of 2D
vertices (Pichon et al. 2010).

Comparing small 0.25  R/Rvir < 0.5 and large 1.0 
R/Rvir < 4.0 scales, respectively on the left and right panels of
Fig. 3, we see a rather similar excess suggesting that the small
and large scale shape are correlated. A noticeable di↵erence re-
sides in the quadrupole that is enhanced on small scales, show-
ing the high level of symmetry in the core of virialised structures.
This latter can well be approximated by ellipsoids (with possibly
some amount of m = 4 boxiness). In fact, the quadrupole m = 2
presents a higher amplitude than in outskirts of clusters (right
panel). It is consistent with recent studies which used elliptical or
triaxial models to describe DM halos shape (Warren et al. 1992;
Jing & Suto 2002; Oguri et al. 2010). We also observe that low-
mass clusters are less elliptical, in line with Despali et al. (2014).
Indeed, this link between cluster masses and their internal shape
is consistent with the prediction of hierarchical structure forma-
tion scenario. Due to the fact that lower mass haloes are formed

at higher redshift than massive haloes, they have more time to
relax. Consequently, they lose the memory on their accretion
history, ergo the preferential directions induced by past events
as merging processes have also vanished. By contrast, massive
haloes are still in a formation phase, their shape is still a↵ected
by major mergers or accretion of surrounding matter through fil-
aments.

Let us see if the angular shape of galaxy clusters at small
and large scales are correlated. A cross-spectrum of multipoles
at di↵erent scales may tell us about how far into the halos the
filaments may plunge. In Fig. 4 we plot the reduced cross-
spectrum of multipolar moments at radii R 2 [0.25 � 0.5]Rvir
and R 2 [1 � 4]Rvir for the M1 mass bin. This reads

⇢1,4(m, n) =
h(Qm(R1)Q⇤n(R4)i � �m0�n0hQ0(R1)ihQ0(R4)i

�Qm(R1) �Qn(R4)
. (39)
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Fig. 3. Multipolar moments spectra around clusters (upper red curves) and around random location (lower blue curves) for the two annuli
0.25 ≤ R/Rvir < 0.5 and 1 ≤ R/Rvir < 4 (left and right-hand panels respectively) for the z = 0 simulation output. There is an excess of power
around clusters as compared to random localisations, since the density field is denser. At large m (substructures scales), their spectra differ by a
nearly constant multiplicative factor α̂, which is the first order signature of the dynamical evolution of the shape of clusters (see Sect. 3.3).

moments reads

Qm =

∫ ∞

0
drrm+1wm(r)

∫ 2π

0
dϕ eımϕ Σ(r, ϕ),

=
∑

j

M jrm
j wm(r j)eımϕ j . (23)

Because of the spherical extraction of particles performed
around each cluster, one needs to subtract off the contribution
of the cosmological mean density, which simply reads

Σ0(r) = 2ρmean

√
R2

H − r2. (24)

Since it does not depend on the azimuth ϕ, it only involves a
non-zero correction Qbg

0 to the monopole term m = 0 in Eq. (23).
As discussed, the practical measurement of these multipolar mo-
ments requires signal stacking and, by symmetry, the phases of
Qm will be lost in this process. Any departure from circular sym-
metry would thus be washed out. A simple workaround that does
not depend on the visible baryonic mass in clusters is to consider
the mean power of their multipolar moments in harmonic space.
The focus is therefore on the statistics of 〈|Q2

m|〉.
For each simulated cluster i, the projections along the

three canonical (x, y, z) directions are averaged for a given
annulus ∆R

3 |Qi
m|2 = |Qi,x

m |2 + |Qi,y
m |2 + |Qi,z

m |2. (25)

Finally, for a given mass bin ∆M, one averages the multipolar
moments of haloes within the same mass bin to compute the
spectrum of multipolar moments

〈|Qm|2〉(∆M,∆R) =
1

Nhaloes

Nhaloes∈∆M∑
i

|Qi
m|2(∆R). (26)

In order to explore how the background cosmology affects
〈|Qm|2〉, these multipoles are also computed for spheres drawn

randomly inside the simulation box. For each position, a virial
radius (and mass) is randomly assigned from the parent halo cat-
alogue and the multipolar moments of these random “haloes”
is measured. This allows us to contrast the growth of moments
near clusters to the overall cosmic growth of structures cast into
the particular filtering of the density field as given by Eq. (8). In
order to limit the noise in these reference moments, many more
random positions than haloes are drawn. Appendix B checks that
this approach yields results that are consistent with a formal in-
tegration of the power spectrum of the density contrast Pδ(k).

At this stage, these (centred or random) spectra are not cor-
rected from the shot noise contribution due to the finite number
of particles in the simulation that are sampling the density field.
This correction is only substantial at low mass, on small scales
(the smallest ∆R annulus), and for the largest multipole orders m.
Shot noise corresponds to a white convergence (or surface den-
sity, here) power spectrum that is independent of the wave vector
k as described in Sect. 2.2

P(k) ≡ P0 = 〈Σ0(r)〉Mpart, (27)

with 〈Σ0(r)〉 the mean projected density for r ∈ [Rmin,Rmax].
For multipoles centred on clusters, this latter equation is mul-
tiplied by 1 + 〈Qcluster

0 〉/〈Qbg
0 〉 to get the correct shot noise ampli-

tude. Here the average accounts for cluster-to-cluster variations
of Rmax (due to Mvir variations within that mass range).

Figure 3 presents the shape of the 〈|Qm|2〉 spectrum of multi-
polar moments at redshift z = 0 as a function of multipolar order
m, and for the four mass bins and two radial bins. In order to
highlight the effect that a galaxy cluster has on the statistics of
〈|Qm|2〉, we also display the same quantity for random locations.

3.3. Overall excess of power

There is an obvious excess of power in Fig. 3 at almost all mul-
tipoles and scales around clusters as compared to random loca-
tions of similar size since the density field is denser due to the
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Fig. 4. Evolution with redshift of the normalisation factor α̂ of multipo-
lar moments spectra for the 100 most massive haloes (red solid lines).
The theoretical prediction of α is overlaid in black. The model repro-
duces the variations with time, mass and scale remarkably well, despite
a crude treatment of projections and the limited validity of the spherical
collapse model.

presence of the central cluster. Clusters and random locations
differ by a nearly constant multiplicative factor, which is the first
order signature of the dynamical evolution of the shape of clus-
ters, as quantified in Sect. 2.3. This multiplicative factor α̂ (the
2D counterpart of the boost factor α of Sect. 2.3) is estimated
empirically by focussing on the m ∈ [15−30] multipole range,
since it is on the smallest angular scales that the assumptions
behind the Zeldovich boost are most sensible:

log α̂ =
1

16

30∑
m=15

(
log 〈|Qm|2〉cluster − log 〈|Qm|2〉random

)
. (28)

Figure 4 shows the evolution of α̂ with redshift and as a function
of scale for the 100 most massive clusters in the simulation box.
This boost, of order ∼100 on the small R ∈ [0.25, 0.5]Rvir scale,
and of order ∼10 in the larger R ∈ [1, 4]Rvir scale, is, of course,
of key importance for the detectability of |Qm|2.

A comparison with the prediction of α based on the spherical
contraction of a Lagrangian shell presented in Sect. 2.3 is over-
laid. It shows a remarkable agreement, given the limited validity
of the extension of this model deeply inside virialised haloes and
the lack of modelling of projection effects. Since we use aper-
tures that scale with the virial radius, α should not evolve much
with time or mass (up to a mild change with time and mass of
the halo concentration, see Appendix A). This is clearly seen and
reproduced in Fig. 4.

3.4. Harmonic distortions

In order to highlight spectral distortions that are in excess
of the overall boost, Fig. 5 shows the normalised spectra
〈|Qm|2〉clusters/(α 〈|Qm|2〉random) as a function of halo mass at red-
shift zero in the top panels, and as a function of redshift for the
100 most massive haloes in the bottom panels.

A residual excess of power is found on large angular scales
m . 8, possibly extending slightly further for the outermost ra-
dial bin and for more massive haloes. Systematically, odd orders
carry less power. This should be the signature of the peak con-
straint (that was only affecting m = 1 for a GRF). The center-
ing reduces the power excess at odd multipolar orders, mainly

at m = 1, 3. Mis-centering will thus reduce the contrast between
odd and even orders. We explored the amplitude of this effect
by applying random offsets of the order 0.1 Rvir, and only found
noticeable differences on small-scale moment spectra whereas
offsets as large as 0.5Rvir are required to substantially change
moments in the 1−4Rvir range. The main effect of mis-centering
on small-scale moments is to reduce the contrast between odd
and even orders, leaving the latter ones almost unchanged.

Comparing small (0.25 ≤ R/Rvir < 0.5) and large-scale
(1.0 ≤ R/Rvir < 4.0) annuli, respectively, on the left and right
panels of Fig. 5, a similar excess is found suggesting that the
small- and large-scale shape might be correlated (see Sect. 3.5
below). The faster damping with m inside haloes represents a
noticeable difference, tracing the higher level of symmetry in
the core of virialised structures. It can indeed be approximated
by an ellipsoid (with possibly some amount of m = 4 boxiness).
In fact, the inner quadrupole m = 2 presents a higher ampli-
tude relative to the monopole than in the outskirts of clusters
(right panel). This is consistent with recent studies which use el-
liptical or triaxial models to describe dark matter haloes shape
(Warren et al. 1992; Jing & Suto 2002; Despali et al. 2014).

More massive haloes are more sensitive to the anisotropic
environment they formed in. Interpreting this excess of power as
the non-linear sharpening of the filamentary structure of haloes
sitting at the nodes of the cosmic web, one may infer that these
haloes are connected to a larger number of filaments, as already
found by Pichon et al. (2010) and Aragón-Calvo et al. (2010).
Massive haloes are more likely to be in their early formation
phase, and their shape is typically distorted by major mergers or
accretion along the preferred direction set by their connecting
filaments. Conversely, lower-mass haloes are formed at higher
redshift and have had more time to relax. They typically lost the
memory on their accretion history, and therefore the preferential
directions induced by recent merging events.

Following the same haloes with time (bottom panels), that
is, at constant initial overdensity while compensating for pro-
genitor bias (e.g. Sheth & Tormen 2004), one can see that no
significant evolution of the multipole is observed. This suggests
that the shape of haloes is settled early in the cosmic history,
probably in the initial conditions, as anticipated in Sect. 3.1 (and
discussed in e.g. Bond et al. 1996). Though one might have ex-
pected to observe a disconnection of dark haloes through the
dark-energy-induced stretching of the cosmic web (Pichon et al.
2010), it turns out that the most massive clusters of the simu-
lation have not had time to disconnect from the cosmic web nor
fully relax. Their outskirts are still imprinted by their initial envi-
ronment, whose azimuthal geometry displays power on a fairly
wide range of multipoles triggered by the connected filaments
and walls. Both large- and small-scale moments are frozen in
shape from the initial conditions and only grow with time at the
cosmic rate captured by the boost. Their excess multipole seems
qualitatively consistent with the expected number of connected
filaments (peaking at 2–4) inferred from the initial conditions
(Pichon et al. 2010), keeping in mind that multipoles are mass
weighted.

3.5. Radial correlations

Let us investigate now whether the angular shape of galaxy clus-
ters at small and large scales are correlated. A cross-spectrum
of multipoles at varied scales would tell us how far the fila-
ments plunge into the haloes. Figure 6 shows the reduced cross-
spectrum of multipolar moments at radii R ∈ [0.25−0.5]Rvir and
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Fig. 3. Multipolar moments spectra (top panel) and multipolar moments spectra normalized by random profiles (bottom panel) for the two annuli
�R1 and �R4 (left and right columns respectively) for the z = 0 simulation output. The depletion at m = 1 follows from the centering condition;
the m = 2 excess reflects the ellipticity of DHs, while the weak excess at m = 4 is consistent at larger R with the expected mean degree of 2D
vertices (Pichon et al. 2010).

Comparing small 0.25  R/Rvir < 0.5 and large 1.0 
R/Rvir < 4.0 scales, respectively on the left and right panels of
Fig. 3, we see a rather similar excess suggesting that the small
and large scale shape are correlated. A noticeable di↵erence re-
sides in the quadrupole that is enhanced on small scales, show-
ing the high level of symmetry in the core of virialised structures.
This latter can well be approximated by ellipsoids (with possibly
some amount of m = 4 boxiness). In fact, the quadrupole m = 2
presents a higher amplitude than in outskirts of clusters (right
panel). It is consistent with recent studies which used elliptical or
triaxial models to describe DM halos shape (Warren et al. 1992;
Jing & Suto 2002; Oguri et al. 2010). We also observe that low-
mass clusters are less elliptical, in line with Despali et al. (2014).
Indeed, this link between cluster masses and their internal shape
is consistent with the prediction of hierarchical structure forma-
tion scenario. Due to the fact that lower mass haloes are formed

at higher redshift than massive haloes, they have more time to
relax. Consequently, they lose the memory on their accretion
history, ergo the preferential directions induced by past events
as merging processes have also vanished. By contrast, massive
haloes are still in a formation phase, their shape is still a↵ected
by major mergers or accretion of surrounding matter through fil-
aments.

Let us see if the angular shape of galaxy clusters at small
and large scales are correlated. A cross-spectrum of multipoles
at di↵erent scales may tell us about how far into the halos the
filaments may plunge. In Fig. 4 we plot the reduced cross-
spectrum of multipolar moments at radii R 2 [0.25 � 0.5]Rvir
and R 2 [1 � 4]Rvir for the M1 mass bin. This reads

⇢1,4(m, n) =
h(Qm(R1)Q⇤n(R4)i � �m0�n0hQ0(R1)ihQ0(R4)i

�Qm(R1) �Qn(R4)
. (39)
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Fig. 5. Top panels: multipolar moments spectra (normalised by random profiles) for the annulus 0.25 ≤ R/Rvir < 0.5 (left) and 1 ≤ R/Rvir < 4
(right) at redshift z = 0 as a function of halo mass. In the internal region, the quadrupole prevails, and reflects the ellipsoidal symmetry of the core.
In the external region, the residual power excess at 2 < m < 10, not predicted by GRF approximation, should represent the non-linear sharpening
of the filamentary structure. Bottom panels: multipolar moments spectra (normalised by random profiles) for the annulus 0.25 ≤ R/Rvir < 0.5 (left)
and 1 ≤ R/Rvir < 4 (right) for the 100 most massive haloes for the z = 0, z ∼ 0.3, z ∼ 0.6 and z ∼ 0.9 simulation outputs. Comparing a population
of haloes with the same level of non-linearity (or the same rareness), the shape of haloes appears to be settled early in the cosmic history.

R ∈ [1−4]Rvir for the M1 mass bin. This reads

ρ1,4(m, n) =
〈(Qm(R1)Q∗n(R4)〉 − δm0δn0〈Q0(R1)〉〈Q0(R4)〉

σQm(R1) σQn(R4)
· (29)

The disconnected part (product of the means) is subtracted to
highlight the relative fluctuations between annuli and multipolar
orders. In contrast to what was done for the auto-spectra 〈|Qm|2〉
for which the mean 〈Q0〉2 was not subtracted off because it con-
tributes to the overall signal amplitude and to its detectability
(Sect. 4). Without subtraction, 〈Q0(R1)〉〈Q0(R4)〉 would induce a
large correlation ρ1,4(0, 0) ≥ 0.5.

Except for the diagonal m = n = 1, 2, 4 terms, no signifi-
cant correlation is observed. A similar trend is found at higher
masses although the signal to noise is even lower. Apart from

the quadrupole, the shapes seem to decorrelate. Hence there is
no strong angular coherence between the structures found at
R ∈ [0.25−0.5]Rvir and R ∈ [1−4]Rvir beyond the quadrupole.
The non-zero cross-correlation at m = 1 is induced by the condi-
tion to be centred on a density peak. We also checked that mis-
centring has the effect of reducing the 〈Q1(R1)Q∗1(R4)〉 term. In
order to reach a factor 2 decline in correlation amplitude, one
needs to reach offsets of the order 0.2 Rvir.

4. Measuring multipolar moments from shear data

Let us now quantify our ability to estimate the power spectrum
of multipolar moments from real WL data. They involve a set
of background galaxies whose light is deflected by a foreground
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Fig. 6. Cross-correlation of multipolar moments between annuli R ∈
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n = 1, 2, 4 terms, no significant correlation is found.

Table 1. Critical lensing surface density used to convert Sect. 3 multi-
polar moments expressed in terms of mass into moments expressed in
terms of convergence.

Lens redshift 0 0.3 0.6 0.9
〈Σ−1

crit〉−1 [1015 M�Mpc−2] ∞ 3.330 4.413 7.585

galaxy cluster. Since very few detections of filaments, and little
evidence for a departure from circular symmetry have been re-
ported so far, there is a dire need to investigate how to measure
the mean excess power spectrum of multipolar moments from a
set of galaxy clusters. The aim is, in particular, to quantify the
expected signal to noise ratio as a function of redshift, scale, and
mass.

Three leading sources of noise must be considered here: the
shape noise coming from the unknown intrinsic ellipticity of
background sources, the lensing gravitational potential due to
the LSS along the line-of-sight, and the sample variance due to
the finite number of clusters one can average over to infer the
mean multipolar spectrum. One expects some internal variabil-
ity due to the relative dynamical age of these massive structures
undergoing merger, being fed by a variable number of filaments.
The derivation we use follows Schneider et al. (1998) who stud-
ied the statistical properties of the aperture mass Map estimators,
but neglects the effects of Poisson fluctuations in the number
of background sources. This is legitimate for large-scale cluster
lensing with deep wide-field imaging.

One first needs to rescale the multipolar moments previously
inferred from simulations in terms of mass per Mpc since the
convergence was replaced by the surface density in Eq. (23).
Therefore the moments will be multiplied by the mean inverse
critical density 〈Σ−1

crit(z)〉, averaged over the same redshift distri-
bution of background sources as that assumed in Sect. 2.2. The
corresponding values for the fiducial lens redshifts are listed in
Table 1.

4.1. Covariance of multipolar moment spectrum estimators

The convergence field around a cluster should be replaced by
three uncorrelated fields

κ → κ + κs + κL, (30)

where κ is the signal produced by the cluster, κs is the contribu-
tion from the intrinsic ellipticity of background sources and κL

is due to the uncorrelated LSS along the line-of-sight. The LSS
that is not physically correlated to the direct cluster environment
(beyond 10 Mpc, or so) will nevertheless give rise to a cosmo-
logical convergence field that will act as an additive source of
noise plaguing the multipolar moment (or more generally the
convergence field sourced by the clusters) to be measured. This
so-called cosmic shear signal has to be taken into account for the
detectability of multipolar moments as it is a substantial source
of noise for overall cluster-mass measurements (Hoekstra 2001,
2003). Section 2.2 already showed the two-point properties of
this component κL through the Eq. (14). In the remainder, the
statistical properties of κL are approximated as those of a GRF
(with null kurtosis) since the focus is on the statistics of κ.

The convergence field is not directly observable; ellipticities
are used to measure shear. The observed complex ellipticity ε
of a galaxy with intrinsic source plane ellipticity εs and carrying
a complex shear signal γ is simply: ε = εs + γ. Since for an
ensemble of galaxies with random intrinsic orientation, the mean
εS is null, one can write:

〈εi〉 = γi, (31)
〈εiε j〉 = γiγ j + γL

i γ
L
j + σ2

εδi j, (32)

where the one-dimensional rms dispersion of intrinsic source
ellipticities σε ' 0.25 was introduced. In practice, measure-
ment errors that depend on the quality of images (correction for
smearing by the Point Spread Function, signal-to-noise...) would
also increase this dispersion to a value that we shall take to be
σε ≡ 0.3 in the remainder.

Following again Schneider & Bartelmann (1997), let us con-
sider the local estimator of Qm from measured shear as defined
by Eq. (9) and in which only background galaxies projected into
a given annulus of inner and outer radius νRmax and Rmax are
used to estimate the multipolar moments in that aperture. The
non-local estimator, involving shear measurements outside that
aperture, may increase the sensitivity but at the expense of intro-
ducing large correlations between annuli. The remainder of this
work only explores the merits of the local estimator Eq. (9) that
is rewritten in the same way as Schneider & Bartelmann (1997)

Qm =

∫
d2r

[
bt,m(r)

r
γt(r, ϕ) + ı

b×,m(r)
r

γ×(r, ϕ)
]

eımϕ, (33)

with

bt,m(r) = rm+1wm(r), (34)

b×,m(r) = rm+1
(
wm(r) +

r
m
w′m(r)

)
. (35)

For a finite number N of sources inside a given annulus
[νRmax,Rmax], the discrete version of Eq. (33) reads

Q̂m =
1
n

N∑
k

eimϕk

[
bt,m(rk)

rk
εt,k + ı

b×,m(rk)
rk

ε×,k

]
, (36)

where n is the mean number density of background sources, for
which a typical value n = 30 arcmin−2. Even though the sources
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Fig. 7. Multipolar moment spectra of clusters for the mass bin M3 and the noise contribution at two scales in the annuli ∆R1 (top panel) and ∆R4
(bottom panel) and for two redshift values z = 0.3 and 0.6, respectively, from left to right. The left-hand panels show the different sources of noise
as described in Sect. 4. On the right-hand panels, the total noise profile σmm is shown once divided by

√
Nclusters in order to mimic the shot noise

obtained by stacking the spectra of Nclusters clusters.

are randomly oriented, the ensemble average of the quadratic
estimator |Q̂m|2 of |Qm|2 will contain a shape noise and a LSS
noise contribution that must be subtracted off

〈|Q̂m|2〉 = |Qm|2 + |Qs
m|2 + |QL

m|2. (37)

As shown in Schneider & Bartelmann (1997), this shape noise
mean power spectrum is

|Qs
m|2 =

σ2
ε

n2

N∑
k

b2
t,m(rk) + b2

×,m(rk)

r2
k

, (38)

=
πσ2

ε

n

∫ R

νR
dr

b2
t,m(r) + b2

×,m(r)
r

· (39)

This mean noise spectrum gives us a sense of our ability to
measure multipolar moments. But one really needs to compute
the covariance of the estimator by following the calculations
made for cosmic shear correlation functions (Schneider et al.
1998, 2002) and consider the covariance matrix of the multipolar

moments

σ2
mn ≡ 〈|Q̂m|2|Q̂n|2〉 − 〈|Q̂m|2〉〈|Q̂n|2〉,

= δmn|Qs
m|2

[
|Qs

m|2 + 2|Qm|2 + 2|QL
m|2

]
+ δm0δn0|Q̃s

0|2
[
|Q̃s

0|2 + 2|Q0|2 + 2|QL
0 |2

]
+ 4Aκ,mnAκL,mn

+ 〈|Qm|2|Qn|2〉 − 〈|Qm|2〉〈|Qn|2〉
+ 〈|QL

m|2|QL
n |2〉 − 〈|QL

m|2〉〈|QL
n |2〉. (40)

The first two terms in Eq. (40), containing Qs
m, correspond to the

shape noise. They are diagonal and dominate for m = 0. Their
derivation along with the definition of the modified moments
|Q̃s

m|2 are detailed in Appendix C. The last three terms corre-
spond to the mixture of sampling variance and LSS noise con-
tributions. If both κ and κL were GRFs, these three terms would
simplify to 2(Aκ,mn + AκL,mn)2, with Amn defined in Eq. (14).
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4.2. Overall detectability

The left-hand panels of Fig. 7 compare the amplitude of |Qm|2,
|Qs

m|2 and |QL
m|2 along with the rms dispersion of |Qm|2 for a

single cluster of galaxies in the intermediate mass bin (M ∈
[4−8]×1014 h−1M�) at redshift z ∼ 0.3. The total combination of
diagonal terms σmm in Eq. (40) is also overlaid. It appears that
for the internal regions (top panel), the shape noise – coming
from the intrinsic ellipticities of the background galaxies – dom-
inates, whereas on large scales, the dominant source of noise
is the line-of-sight density fluctuations |QL

m|2. Hoekstra (2003)
also found a similar radial behaviour of the relative importance
of shape noise and LSS for measuring overall cluster masses.
Obviously, detectability is easier in the central region than at
the outskirts of clusters, since the density field is stronger. The
signal-to-noise declines also as redshift increases and mass de-
creases. The overall signal-to-noise is quite low for a single clus-
ter, with values of order 0.1 for the most favourable multiples
(m = 0, 2, 4). On small scales, using a non-local multipole es-
timator might slightly reduce shape noise contributions, but on
large scales, LSS will dominate anyway, suggesting that very
deep observations with a low shape noise level would not be of
much help. We must therefore consider stacking the lensing sig-
nal of many clusters.

On the right panels of Fig. 7, the amplitude of 〈|Qm|2〉 is com-
pared to the total noise contribution σmm for a single cluster in
the mass bin M3 at z ∼ 0.6 at small and large radii. Instead of
splitting the noise budget into its components, the total overall
noise level is scaled by a factor 0.1 or 0.01 as it should naturally
decrease if one considers 100 or 10 000 clusters instead of just
one. Besides, at higher redshift, the signal-to-noise decreases due
to the rise of the critical density with redshift (see Table 1).

The Euclid photometric galaxy cluster survey will contain
about 2 × 105 clusters between z = 0.2 and z = 2 (Sartoris et al.
2016). The authors provide an estimate of the number of galaxy
clusters to be detected for a given range of redshift and min-
imum mass by carefully accounting for the Euclid cluster se-
lection function. This allows us to predict the expected num-
ber of clusters in each mass bin and for three redshift intervals,
hence the expected signal-to-noise ratio on multipolar moments.
This is shown in Fig. 8 for both internal and external regions
of galaxy clusters. Higher signal-to-noise can be achieved for
lower mass clusters because of their larger abundance. More
specifically, multipolar moments measured at the outskirts of
clusters should accurately be detected by stacking clusters with
Mvir ≤ 8 × 1014 h−1M� and z ≤ 0.75. In the internal regions, we
estimate that the angular symmetries on cluster cores could be
probed for all cluster masses for z . 0.75.

In order to improve the signal-to-noise and permit detec-
tions on a shorter timescale, one can consider a broader an-
nulus R = [0.1−1.0] Rvir that probes the high-density regions,
the corresponding list of signal-to-noise ratios for 100 clus-
ters in Table 2. A detection of the multipoles from m = 0 to
m = 4 is possible in this annulus, stacking the signal over about
100 galaxy clusters, for all mass bins at z ∼ 0.3 and for the most
massive clusters. At z ∼ 0.6, the measurement is possible for
clusters of similar mass but only up to the quadrupole.

5. Summary and conclusions

The multipolar moments of the convergence were used to quan-
tify asymmetries in the projected density field around galaxy
clusters. The multipoles were computed within annuli centred
on mock clusters of galaxies, extracted from a large dark matter

Table 2. Signal-to-noise ratio on multipolar moment spectra for
Ncluster = 100 when the annulus R ∈ [0.1, 1.0] Rvir is considered.

Redshift Mass bin Multipole m
0 1 2 3 4 5

0.3

M1 9 0.6 1.8 0.4 0.4 0.2
M2 12 1.2 3.4 1.0 1.0 0.5
M3 14 2.4 5.4 2.1 2.2 1.1
M4 11 3.2 7.1 3.6 3.7 2.1

0.6

M1 8 0.3 0.9 0.2 0.2 0.08
M2 10 0.6 2.0 0.5 0.5 0.2
M3 12 1.4 3.7 1.0 1.1 0.4
M4 17 3.1 4.9 2.0 2.4 0.8

0.9
M1 5 0.1 0.3 0.01 0.01 0.003
M2 8 0.2 0.9 0.2 0.2 0.06
M3 10 1.0 1.9 0.5 0.5 0.24

simulation. The power spectra of these moments, 〈|Qm|2〉, were
studied in detail, noticeably via their evolution with redshift,
cluster mass and radial aperture.

We quantified the degree of angular symmetries around clus-
ters that is in excess of the background density field. To this end,
we compared the multipolar moment spectra centred on clusters
to those of random locations. To first order, the non-linear evolu-
tion of mass shells sinking towards the centre of clusters induces
a boost of power at all angular scales due to the contraction of
the Lagrangian patch initially encompassing the mass fluctua-
tions. When the density field is nearly Gaussian, only m ≤ 2 mo-
ments are affected by the peak constraint, as demonstrated in
Codis et al. (2017), while in the quasi-linear regime this paper
also predicts, perturbatively, the achromatic boost. In the highly
non-linear regime, a simple model based on the spherical col-
lapse model was presented, and is found to be in good agreement
with measurements on massive haloes extracted from the PLUS
Dark Matter cosmological simulation.

Looking at the harmonic distortions occurring on top of
the overall boost, we found an angular power excess at orders
m . 10 in the outer shell, which traces the azimuthal shape of
the projected density. The excess chromatic power in the multi-
poles seems qualitatively consistent with the predicted number
of connected filaments in the outskirts of clusters (Pichon et al.
2010; Pogosyan et al., in prep.), keeping in mind that the har-
monic analysis is mass weighted. We also found a higher am-
plitude for the quadrupole in the central regions, which reflects
the ellipsoidal symmetry of the core of haloes (see also, e.g.
Despali et al. 2014). Given the similarity in the excess power in
internal and external regions, we examined the cross-correlation
of multipolar moments between these two annuli. Except for
the quadrupole, angular shapes at small and large scales seem
to be uncorrelated. This is probably because, typically, two
branches of filaments are connected to a node of the cosmic web
on small scales (Pogosyan et al. 2009). Further away from the
nodes, bifurcation points appear and therefore increase the num-
ber of filaments. We therefore expect the quadrupole to be cor-
related between small and large scales but correlations beyond
the quadrupole to be suppressed on small scales. Therefore, the
steeper profile of the small-scale multipoles compared to their
large-scale counterpart is fully consistent with this idea that the
cosmic connectivity is smaller on small scales.

We also studied the evolution of multipolar spectra at differ-
ent redshifts (from z = 0 to z ∼ 0.9) and found that following the
same population of haloes, that is, with the same initial rareness
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Fig. 8. Expected signal-to-noise ratio of multipolar moment spectra that one could obtain by stacking the total number of galaxy clusters
Ncluster(z,M), that will be uncovered in the future Euclid survey (Sartoris et al. 2016). Red and blue curves represent the signal-to-noise ratio
for the annuli R1 ∈ [0.25−0.5]Rvir and R4 ∈ [1−4]Rvir, respectively. Three different ranges of redshift are considered (∼0.3, ∼0.6 and ∼0.9 from
left to right), together with four fiducial cluster mass intervals (M4, · · ·M1, from top to bottom).

level, the multipolar moments measured in an annulus that fol-
lows the growth of the virial radius grow at a rate that is similar
to the cosmic rate (implying no change of the spectra normalised
by α). This suggests that the larger-scale shape in the vicinity of
the halo is fixed at early times in its formation history, and keeps
the memory of its initial conditions during collapse (Bond et al.
1996). Indeed, the dark-energy-induced disconnection from the
cosmic web (Pichon et al. 2010) has not yet occurred for this
most massive population of clusters. We note that, as expected,
for a less massive population of haloes, we observe a decrease
of the harmonic excess in both internal and external regions with
time. This decrease is due to a virialisation of the core and a
disconnection of the halo from the cosmic web, at the respec-
tive scales. Globally, these quantitative estimates are consistent
with dynamical expectation drawn from the visual inspection of
simulations.

Finally, we estimated the detectability of these harmonics
using WL data, taking into account different sources of noise
such as the shape noise (intrinsic ellipticity of the background
galaxies), the impact of the LSS along the line-of-sight, and the
sample variance. As expected, the amplitude of the signal-to-
noise ratio increases with halo mass and depends on the aperture
and the cluster redshift (see Fig. 7). On small scales (within the
virial radius), shape noise dominates whereas additional deflec-
tions due to matter along the line-of-sight dominate the noise
budget on larger scales (outside the virial radius). Due to the

weakness of the signal, one has to stack the multipolar moment
spectra over a larger number of clusters. Hence, one should con-
sider current detections of filaments with WL with caution.

With the upcoming Euclid mission (Laureijs et al. 2011),
multipolar moment spectra will be detected with a good de-
gree of precision up to m ∼ 10 in central and external re-
gions. On a shorter timescale, considering a broader annulus
(R = [0.1−1]Rvir), harmonic components should be measured
at orders m = 0, 2, 4, by stacking ∼100 massive clusters up to
z ∼ 0.6. Such measurements on ground-based observations will
be presented in a forthcoming companion paper (Gavazzi et al.,
in prep.). Upcoming investigations should extend this study to
varying cosmological models. Cosmology can have an impact
on multipolar moment spectra but the overall amplitude is gov-
erned by the cluster mass profile, which is better constrained by
a direct stacking of the tangential shear or a stacking of Q0 val-
ues. Cosmological effects related, for instance, to the growth rate
and dark energy, may have an effect on the relative amplitude of
moments. One could extend those measurements to cosmologi-
cal hydrodynamical simulations in which baryonic physics, such
as gas cooling and feedback from active galaxy nuclei, will sub-
stantially change the shape of the total mass distribution on small
scales (Teyssier et al. 2011; Suto et al. 2017). These scales may
be more efficiently probed by strong lensing observables (fol-
lowing, e.g. Peirani et al. 2008). Additionally, models involving
warm or self-interacting dark matter may leave an interesting
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footprint on the spectrum of multipolar moments, as departure
from vanilla CDM would tend to make haloes rounder. We thus
expect these spectra to be a valuable Dark Matter probe on small
scales. Finally, we expect that comparisons between multipolar
moments measured with lensing and similar moments measured
on different populations of galaxies of different types may shed
new light on the relative bias of these populations inside fila-
ments and as they sink into cluster haloes. The key role of envi-
ronment on the quenching of star formation in galaxies around
clusters may hence be probed.
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Appendix A: Towards the non-linear statistics
of Qm

Let us first consider the weakly non-linear regime for the statis-
tics of Qm around clusters before turning to its strong non-linear
counterpart.

A.1. The weakly non-linear regime

For simplicity, let us first focus on the statistics of density fluc-
tuations in a 3D shell of matter located at a radius r from the
centre of a cluster of galaxies. This shell is falling onto the
cluster at a rate that can be derived from the spherical col-
lapse model or the Zeldovich approximation. It was originally
located at a Lagrangian radius q. Specifying the initial potential
ψ(q) = ψl(q) +ψc(q) , where ψc is the potential generated by the
peak at the centre and ψl is due to matter fluctuations in the orig-
inal shell, the mapping between the Eulerian coordinate r and its
corresponding Lagrangian position q is

r = q − D′∇qψ(q), (A.1)

with D′ = D(a)/4πGρ̄a3, D(a) the linear growth rate, and ρ̄ the
mean comoving cosmic density. The evolved density contrast is
given by the Jacobian of this transformation

1 + δ =
∣∣∣δi j − D′ψc

,i j − D′ψl
,i j

∣∣∣−1
, (A.2)

with | | the determinant of its argument. Taylor expanding this
relation around small values of ψl and defining the distortion ten-
sor Γi j = δi j − D′ψc

,i j, allows us to rewrite Eq. (A.2) as

1 + δ =
∣∣∣Γi j

∣∣∣−1 (
1 + D′Tr(Γ−1

i j ψ
l
,i j)

)
, (A.3)

where Tr is the trace of its argument. Accounting now for the
spherical symmetry of ψc, the Γ matrix reads

Γ = Diag
(
1 − D′ψc

,qq, 1 − D′
1
q
ψc
,q, 1 − D′

1
q
ψc
,q

)
, (A.4)

in spherical coordinates. Let us now also neglect the anisotropy
of Γ by assuming that the radial compression of fluctuations oc-
curring as the shell shrinks does not significantly depart from the
angular compression, so that Γi j = (1 − D′ 1

qψ
c
,q) δi j. This is only

strictly valid for a uniform initial overdensity but any departure
from it would leave no imprint on angular fluctuations over the
surface of the shell. Then, taking into account that the poten-
tial perturbations are related to the local initial density contrast
through Poisson’s equation D′Tr(ψl

,i j) = D(a)δl,i, we can write

D′ Tr(Γ−1
i j ψ

l
,i j) ' D(a)δl,i

(
1 + D′

1
q
ψc
,q

)
. (A.5)

In Eqs. (A.2), (A.3), 1 + δ refers to the contrast with respect
to the background mean density. However, we are interested in
the contrast of fluctuations in the shell that are in excess of the
smooth cluster contribution 1 + δc. We can therefore multiply
Eq. (A.3) by |Γ|. We also simplify terms involving the derivatives
of the potential by considering the small initial cluster density
contrast δc,i (at radius q) and the mean initial density contrast δ̄c,i

(averaged inside the sphere of radius q)

D′
ψc
,q

q
=

D(a) δ̄c,i

3
≡ D(a)

q3

∫ q

0
δc,i p2dp. (A.6)

When expressed relative to the smooth cluster density, Eq. (A.3)
becomes

1 + δ

1 + δc = |Γ| (1 + δ) ' 1 + D(a)δl,i
[
1 + D(a)

δ̄c,i

3

]
, (A.7)

noticing that without the cluster one would recover the classical
linear theory result δ = D(a)δl,i. Local fluctuations experience a
multiplicative boost factor corresponding to the term in brackets
in Eq. (A.7), and thus the power spectrum of local fluctuations
in the cluster vicinity can be written as

Pcluster(k) = Prandom(k)
[
1 +

D(a) δ̄c,i

3

]2

≡ α Prandom(k). (A.8)

In this equation, Prandom = D(a)2P0, as expected from linear the-
ory. We nevertheless assume below that the relation still holds
for the non-linearly evolved Prandom.

Equation (A.8) simply quantifies the boost imposed by the
peak condition in the initial conditions δ̄c,i. This is consis-
tent with the perturbative approach of Codis et al. (2017) who
showed that gravitational evolution induces a non-linear bias at
all multipoles proportional to the peak height ν, the amplitude
of fluctuations σ0 ∝ D(a) and the rescaled three-point function
ξ(3). The agreement between both approaches follows from the
D(a)δ̄c,i ↔ σ0ν correspondence. From Eq. (A.8) and Codis et al.
(2017), it appears that the excess amplitude of harmonics scales
like D(a) at first order. However, these predictions are only valid
in the weakly non-linear regime.

A.2. The highly non-linear regime

The above formalism can be extended to a fully non-linear
regime, where gravitational clustering boosts all multipoles
in proportion, through the convergence of the flow towards
the central peak. In practice, one needs to relate Pcluster(k)
and Prandom(k) to the cluster environment at late time. In the
Zeldovich approximation (or in the spherical collapse model
before shell crossing), the Lagrangian radius q is related to its
evolved Eulerian counterpart r via

r = q ρ(< r)−1/3, (A.9)

if the mass enclosed by this falling shell is constant M(<q) =
M(<r). Writing q = λr, where λ = ρ(<r)1/3 is related to the
mean density within the sphere of radius r, the solution for λ is

λ = 1 +
D(a) δ̄c,i

3
, at early time, (A.10)

=

(
3M(<r)
4πρ̄r3

)1/3

, at late time. (A.11)

The boost of power α previously defined in Eq. (A.8) was found
to be α = λ2 at early time and we assume here it should remain
α = λ2 at late time. At late time, it is also convenient to assume
a NFW density profile (Navarro et al. 1997) for the equilibrium
state of the clusters, which is characterised by is virial mass Mvir
and concentration c. These two parameters are correlated and
slowly change with time. This allows us to express the density
enclosed in the sphere of radius r as

ρ(<r) = ρvir
fNFW(cr/Rvir)

fNFW(c)
, (A.12)

with ρvir the mean density inside the virial radius Rcir and
fNFW(x) = [log(1 + x) − x/(1 + x)]/x3, which relates the mean

A27, page 14 of 15



C. Gouin et al.: Weighing filaments from multipolar moments of the convergence

0 2 4 6 8 10 12 14

multipole m

1021

1022

1023

1024

1025

1026

1027

1028

1029

<
|Q

m
|2
>

(M
�/

M
p

c)
2

∆R4

∆R1

M1 and z = 0.0

M4 and z = 0.0

M1 and z ∼ 0.9

M3 and z ∼ 0.3

theoretical prediction

Fig. B.1. Comparison between the analytical (solid lines) and the mea-
sured (dotted lines with tiny error bars) spectrum of multipolar moments
for annuli taken at random positions in the simulation box. The bottom
(resp. top) curves correspond to small R ∈ [0.25−0.5] Rvir (resp. large
R ∈ [1−4] Rvir) annuli. Four mass and redshift values are overlaid for
each radius.

density contrast at radius r to the contrast at the virial radius. We
finally get

α =

[
ρvir

ρ̄

fNFW(cr/Rvir)
fNFW(c)

]2/3

· (A.13)

where ρ̄ is the mean background density. Equation (A.13) only
depends on time via the (weak) time and mass dependence vari-
ation of the concentration parameter (Klypin et al. 2016). This
can be see in Fig. 4.

Appendix B: Spectrum of multipolar moments
at random location

The spectrum of multipolar moments calculated at random loca-
tions can be inferred from the power spectrum of density fluc-
tuations and compared to the spectrum measured in simulations.
In Sect. 2.2.1, we related the spectrum of multipolar moments
with the power spectrum of the underlying two-dimensional den-
sity (or, there, convergence) field. We thus need to compute the
power spectrum of the projected density Σ(R) from the power
spectrum of the three-dimensional density fluctuations Pδ(k).
Since we excise spheres of size RH = 4Rvir, the statistical prop-
erties of the projected density from this sphere are not stationary
because the radial extent a over which the density is integrated

is a function of the projected radius R, a = a(R) =

√
R2

H − R2.
Therefore, the two-dimensional spectrum reads

PΣ(k⊥,R) =
2a2 ρ2

π

∫ ∞

−∞
dk‖ Pδ

(√
k2
⊥ + k2

‖

)
sinc

(
k‖a

)2. (B.1)

Figure B.1 compares this analytical prediction with the mea-
surements made in the simulation for different masses, annuli
and redshifts. For this calculation, we again use the Boltzmann
code CLASS toolkit (Blas et al. 2011; Lesgourgues 2011) for the
fiducial Planck Cosmology. To simplify the expression of the

theoretical prediction, we approximate a(R) =

√
R2

H − R̄2 with

R̄ =
√

Rmin Rmax, the geometrical mean radius of the annulus.
The agreement is quite satisfactory. The small mismatch is due
to the simplifying assumptions used to conduct the analytical
integration (approximation on a(R)), and to the theoretical un-
certainties on the non-linear power spectrum Pδ on the smallest
scales.

Appendix C: Covariance of multipolar moments

Let us present here the details of the derivation of the four-point
statistical properties of the shape noise contribution to the local
multipolar moments in Eq. (40), by following the same nota-
tions as Schneider et al. (1998). Let us neglect terms that are due
to the finite number of sources carrying shear. No coherent shear
is carried by galaxies either. Hence, uncorrelated galaxy elliptic-
ities satisfy

〈εiα〉 = 0, 〈εiαε jβ〉 = σ2
εδi jδαβ, (C.1)

with Latin indices i ∈ 1 . . .N labelling different galaxies in
an annulus [νRmax,Rmax] and Greek indices labelling elliptic-
ity components α ∈ {t,×}, hence following the notations of
Schneider et al. (2002) with the distinction that σε is, here,
the one-dimensional dispersion of source ellipticities. The four-
point expectation value of ellipticities is

〈εiαε jβεkµεlν〉 = σ4
ε

(
δi jδαβδklδµν + δikδαµδ jlδβν + δilδανδ jkδβµ

)
.

This will be useful for averaging over source ellipticities the
multipolar moment power spectrum

|Qm|2 =
1

n2

∑
jk

eım(ϕ j−ϕk)
[ (
βm

jtβ
m
ktε jtεkt + βm

j×β
m
k×ε j×εk×

)
+ı

(
βm

j×β
m
ktε j×εkt − βm

jtβ
m
k×ε jtεk×

) ]
, (C.2)

adopting the convention βm
jα = bα,m(r j)/r j. In the absence of

shear, the expectation value of Eq. (C.2) is simply

〈|Qm|2〉 ≡ |Qs
m|2 =

σ2
ε

n2

N∑
k=1

(
βm,2

kt + βm,2
k×

)
. (C.3)

Accounting for symmetries and arranging terms, the four-point
moments reads

〈|Qm|2 |Qn|2〉 = 〈|Qm|2〉 〈|Qn|2〉 + |K+
mn|2 + |K−mn|2, (C.4)

where

K±mn ≡
σ2
ε

n2

∑
k

eı(m∓n)ϕk
(
βm

ktβ
n
kt ± βm

k×β
n
k×

)
. (C.5)

We highlight that the averaging over source positions within the
annulus yields

〈K+
mn〉 = δmn|Qs

m|2, 〈K−mn〉 = δm0δn0Q̃s2
0 , (C.6)

with the modified moments defined by

|Qs
m|2 =

πσ2
ε

n

∫ R

νR
dr

b2
t,m(r) + b2

×,m(r)
r

, (C.7)

|Q̃s
m|2 =

πσ2
ε

n

∫ R

νR
dr

b2
t,m(r) − b2

×,m(r)
r

· (C.8)
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