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ABSTRACT
Gravitational lensing by clusters of galaxies offers a powerful probe of their structure and mass
distribution. Several research groups have developed techniques independently to achieve this
goal. While these methods have all provided remarkably high-precision mass maps, particu-
larly with exquisite imaging data from the Hubble Space Telescope (HST), the reconstructions
themselves have never been directly compared. In this paper, we present for the first time a de-
tailed comparison of methodologies for fidelity, accuracy and precision. For this collaborative
exercise, the lens modelling community was provided simulated cluster images that mimic
the depth and resolution of the ongoing HST Frontier Fields. The results of the submitted
reconstructions with the un-blinded true mass profile of these two clusters are presented here.
Parametric, free-form and hybrid techniques have been deployed by the participating groups
and we detail the strengths and trade-offs in accuracy and systematics that arise for each
methodology. We note in conclusion that several properties of the lensing clusters are recov-
ered equally well by most of the lensing techniques compared in this study. For example, the
reconstruction of azimuthally averaged density and mass profiles by both parametric and free-
form methods matches the input models at the level of ∼10 per cent. Parametric techniques
are generally better at recovering the 2D maps of the convergence and of the magnification.
For the best-performing algorithms, the accuracy in the magnification estimate is ∼10 per cent
at μtrue = 3 and it degrades to ∼30 per cent at μtrue ∼ 10.

Key words: gravitational lensing: strong – gravitational lensing: weak – galaxies: clusters:
general – galaxies: high-redshift.

1 IN T RO D U C T I O N

Gravitational lensing has become an increasingly popular method
to constrain the matter distribution in clusters (see e.g. Soucail
et al. 1987; Fort et al. 1988; Lynds & Petrosian 1989; Kneib
et al. 1996; Broadhurst et al. 2005; Smith et al. 2005; Jullo
et al. 2007; Limousin et al. 2007, 2008, 2012, 2016; Jullo &
Kneib 2009; Richard et al. 2010a; Postman et al. 2012). Strong
lensing, as it turns out, is particularly suited to probing the dense
central regions of clusters. Constraining the structure of the cluster
cores and their density profiles is critical to our understanding of
structure formation; probing the nature of dark matter and fully

� E-mail: massimo.meneghetti@oabo.inaf.it
†Hubble Fellow.

comprehending the interplay between baryons and dark matter.
Lensing by massive clusters has proved to be an invaluable tool
to study their properties, in particular the detailed dark matter dis-
tribution within the cluster, as well as the faint, distant background
population of galaxies that they bring into view (see Kneib &
Natarajan 2011; Bartelmann et al. 2013; Meneghetti et al. 2013;
Natarajan et al. 2017, and references therein for recent reviews).
The magnification provided by lensing therefore affords the de-
termination of the luminosity function of these high-redshift
sources down to faint luminosities, thus helping inventory and
identify galaxies that might have re-ionized the Universe (Seitz
et al. 1998; Stark et al. 2007; Richard et al. 2008, 2011; Vanzella
et al. 2012, 2014, 2015, 2016; Bouwens et al. 2014, 2015; Robertson
et al. 2015; Huang et al. 2016).

Over the past two decades the Hubble Space Telescope (HST) has
revolutionized the study of cluster lenses; and, with the deployment
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of ever more sensitive cameras from the Wide Field Planetary Cam-
era2 to the Advanced Camera for Surveys (ACS), the data have
become exquisite in terms of resolution. By 2005, mass distributions
derived from lensing data were available for about 30 clusters. More
recently, galaxy clusters were the primary targets of two multicycle
treasury programs of the HST aiming at finding signatures of strong
gravitational lensing in their cores. These are the ‘Cluster Lens-
ing And Supernova survey with Hubble’ [CLASH; PI M. Postman
(GO 12065); see Postman et al. 2012] and the ongoing Frontier
Fields Initiative (FFI; PI: Lotz; see Lotz et al. 2017).

As part of the Frontier Fields programme, HST is currently
collecting data of unprecedented depth on fields that harbour six
massive clusters that act as powerful gravitational lenses. This pro-
gramme utilizes orbits under the Director’s Discretionary observing
time. The FFI is a revolutionary deep field observing program aimed
at peering deeper into the universe than ever before to not only help
understand better these dramatic lenses and their properties, but also
simultaneously bring into view faint, distant background galaxies
that would otherwise remain unseen without the magnification pro-
vided by the foreground lens. These high-redshift sources that can
be accessed due to gravitational lensing provide a first glimpse likely
of the earliest galaxies to have formed in the universe, and offer a
preview of coming attractions that await unveiling by the upcoming
James Webb Space Telescope. These Frontier Fields uniquely com-
bine the power of HST with that of nature’s gravitational telescopes
– the high magnifications produced by these massive clusters of
galaxies.

Utilizing both the Wide Field Camera 3 (WFC3) and ACS in
parallel in this current program, HST has been producing the deepest
observations of clusters and the background galaxies that they lens;
as well as observations of flanking blank fields that are located near
these selected clusters. These images have revealed the presence of
distant galaxy populations that are ∼10–100 times fainter than any
previously observed (Atek et al. 2015a,b; Livermore, Finkelstein
& Lotz 2017). The magnifying power of these clusters is proving
to be invaluable in helping improve our statistical understanding
of early galaxies that are likely responsible for the re-ionization of
the universe, and are providing unprecedented measurements of the
spatial distribution of dark matter within massive clusters. These six
clusters span the redshift range z = 0.3–0.55. The program devotes
140 orbits to each cluster/blank field pair, achieving a limiting AB
magnitude of MAB ≈ 28.7–29 mag in the optical (ACS) and near-
infrared (WFC3) bands.

The fundamental ingredient for exploiting the science outlined
above is the construction of robust and reliable lens models. The
ongoing FFI is an unprecedented test-bed for lens modelling tech-
niques. Given the depth of these HST observations, hundreds of
multiple images, covering a broad redshift range, have been newly
unveiled behind each of the observed clusters (Jauzac et al. 2014;
Diego et al. 2015b; Grillo et al. 2015; Jauzac et al. 2015; Wang
et al. 2015; Hoag et al. 2016; Kawamata et al. 2016). In a rather
unique case, even time delay measurements from a serendipitously
multiply imaged supernova ‘Refsdal’ observed by the Grism Lens-
Amplified Survey from Space (GLASS) team (Treu et al. 2015) in
the FFI cluster MACSJ1149.5+2223 became available for testing
and refining the lens models (Kelly et al. 2015; Jauzac et al. 2016;
Rodney et al. 2016; Treu et al. 2016). Most importantly, FFI data
were made publicly available immediately. Five teams were con-
tracted by STScI to produce gravitational lensing models for all
six Frontier Fields clusters to be made available to the astronomical
community at large to enable wide use of this incredible data set. All
teams share the latest observational constraints, including positions

and redshifts of multiple images1 before working independently to
produce lensing models which are also made publicly available.2

Several additional groups have also been working on the data and
producing mass models. In short, the whole community of strong
lensing modellers has been actively collaborating to maximally ex-
ploit the FFI data.

The process of converting the observed strong lensing constraints
into matter distributions is called lens inversion. Several groups
have developed algorithms that perform the lens inversion em-
ploying different methodologies and using various combinations
of input constraints. These include other tracers of the cluster grav-
itational potential, such as weak lensing, galaxy kinematics and
the X-ray emission from the intracluster medium (see e.g. Bradač
et al. 2005; Donnarumma et al. 2011; Medezinski et al. 2013;
Newman et al. 2013; Umetsu 2013; Umetsu et al. 2014; Merten
et al. 2015). Over the years, it has become clear that while all
methods are equally well motivated, they do not always converge
to consistent reconstructions, even when applied to the same lens
system (e.g. Smith et al. 2009; Zitrin & Broadhurst 2009). In several
cases strong-lensing masses for the same cluster lens were found
to be in tension (by a factor 2–3) with other independent measure-
ments, based e.g. on the modelling of the X-ray emission by the
intracluster gas (Ebeling et al. 2009; Richard et al. 2010b; Don-
ahue et al. 2014). The constraints from strong lensing need to be
combined and fit simultaneously with stellar kinematic data and
with weak lensing measurements (Newman et al. 2011) to improve
accuracy. Using constraints on the mass profile arising from probes
other than lensing also helps break the mass-sheet degeneracy (see
e.g. Treu & Koopmans 2002; Nordin et al. 2014; Zitrin, Redlich &
Broadhurst 2014; Rodney et al. 2015). Finally, in several clusters,
lensing data alone seems unable to discriminate between various
density profiles (Shu et al. 2008). Therefore, in some clusters the
data favours steep inner density profile slopes, while, in others it
favours extremely shallow density profiles. This is in contrast with
the predictions from the cold dark matter paradigm (Sand, Treu &
Ellis 2002; Sand et al. 2005; Newman et al. 2013; Newman, Ellis &
Treu 2015, but see also Bartelmann & Meneghetti 2004; Meneghetti
et al. 2007) where a universal density profile is expected with minor
modification due to the aggregation of baryons in the inner regions.

In this paper, we challenge these lens inversion methods to re-
construct synthetic lenses with known input mass distributions. The
goals of this exercise are twofold. First, we aim to provide concrete
feedback to the lens modellers on how they may improve the per-
formance of their codes. And secondly, we aim to provide potential
users of the FFI models and the astronomical community at large a
sharper, more quantitative view of how robustly specific properties
of lenses are recovered and the sources of error that plague each
method. Such a comparison with numerical simulations and con-
trasting of lens mapping methodologies has not been undertaken
before.

The outline of the paper is as follows. In Section 2, we outline
the lens modelling challenge. In Section 3, we briefly introduce
the various lens modelling techniques that were employed by par-
ticipants in this study. In Section 4, we discuss the results of the
reconstructions. Section 5 is dedicated to the detailed comparison

1 The redshifts are mainly obtained in the framework of the GLASS and
CLASH-VLT programs (Grillo et al. 2015; Treu et al. 2015) and with the
integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) on
the VLT (see e.g. Karman et al. 2015).
2 https://archive.stsci.edu/prepds/frontier/lensmodels/
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of the independent modelling techniques through suitably defined
metrics. Finally, in Section 7, we summarize the main results of this
study and present our conclusions.

2 TH E C H A L L E N G E

The challenge that we presented to various groups of lens modellers
comprised of analysing simulated observations of two mock galaxy
clusters and producing magnification and mass maps for them. In
generating these simulated (mock) clusters, we attempted to repro-
duce the depth, colour and spatial resolution of HST observations
of the FFI cluster images including the gravitational lensing effects.
While the comparison of lensing reconstructions of real clusters us-
ing the same input observational constraints strongly indicates that
currently developed lens inversion techniques are robust (see e.g.
Jullo et al. 2007; Grillo et al. 2015), the analysis of simulated data
involving a large degree of realism where the true underlying mass
distribution is known can help the lens reconstruction community
to greatly improve their understanding of the modelling systemat-
ics. This view of using mocks to calibrate methodologies is widely
supported by a number of extensive investigations carried out in the
last few years.

There are multiple advantages to such calibration exercises.
First of all, we are able to produce reasonably realistic clus-
ter mass distributions in simulations (although up to some limit)
that can be used as lensing clusters. Building on an extensive
analysis of N-body/hydrodynamical simulations to improve the
knowledge of strong lensing clusters, we have identified the im-
portant properties of the lenses which need to be taken into ac-
count during the construction of a lens model: cluster galaxies
(Meneghetti et al. 2000; Meneghetti, Bartelmann & Moscar-
dini 2003a), ellipticity and asymmetries (Meneghetti, Bartelmann
& Moscardini 2003b), substructures (Meneghetti et al. 2007), bary-
onic physics (Puchwein et al. 2005; Killedar et al. 2012) and the
dynamical state (Torri et al. 2004). In fact, we can simulate the
lensing effects of galaxy clusters accounting for all these important
properties, using both state-of-the-art hydrodynamical simulations
and semi-analytic models. Secondly, we have developed tools to
produce mock observations of these simulated lenses. Our image
simulator SKYLENS (Meneghetti et al. 2008, 2010a) can mimic obser-
vations taken virtually with any telescope, but here we have used it
primarily to produce simulations of HST images taken with both the
ACS and the WFC3. In a small-scale realization of the experiment
that we present here, we applied the lens inversion techniques to a
limited number of simulated observations of our mock lenses. By
doing so, we highlighted some key limits of the strong lensing meth-
ods. For example, we note that strong lensing alone is powerful at
constraining the cluster mass within the Einstein radius (∼100 kpc
for a massive cluster) but the addition of further constraints at larger
radii are required in order to appropriately measure the shape of the
density profiles out to the cluster outskirts (Meneghetti et al. 2010a;
Rasia et al. 2012). In what follows, we describe in detail how we
generate the mock data set for the challenge, and what kind of
high-level products were distributed to the participants.

2.1 Generation of mock cluster lenses

For the exercise reported here, we generated mass distributions
for two massive cluster lenses. These two lenses are generated
following substantially different approaches, as outlined below. In
order to easily distinguish them, we assigned them names – Ares
and Hera.

2.1.1 Ares

The mass distribution of the first simulated galaxy cluster, Ares, is
generated using the semi-analytic code MOKA3 (Giocoli et al. 2012a).
This software package builds up mock galaxy clusters by treating
them as being comprised of three components: (i) the main dark
matter halo – assumed to be smooth, triaxial and well fit with an
NFW profile, (ii) cluster members – subhaloes, distributed to follow
the main halo and to have a truncated singular isothermal sphere
profile (Hernquist 1990), and (iii) the brightest cluster galaxy (BCG)
modelled with a separate Hernquist (1990) profile. The axial ratios,
a/b and a/c, of the main halo ellipsoid are randomly drawn from
the Jing & Suto (2002) distributions requiring abc = 1. We note that
the observed FFI clusters typically consist of merging subclusters
that cause them to be particularly efficient and spectacular lenses.
As shown by Torri et al. (2004), the strong lensing cross-section is
boosted significantly during the merging processes.

In the attempt to generate a mass distribution that ade-
quately replicates the complexity of the Frontier Fields clus-
ters, Ares was produced by combining two large-scale mass
distributions at z = 0.5. The two clumps have virial masses
M1 = 1.32 × 1015 h−1 M� and M2 = 8.8 × 1014 h−1 M� and their
centres are separated by ∼400 h−1 kpc. In each of the two cases, we
start by assigning the same projected ellipticity to the smooth com-
ponent, to the stellar density and to the subhalo spatial distribution.
This is motivated by the hierarchical clustering scenario wherein the
BCG and the substructures are related to the cluster as a whole and
retain memory of the directions of the accretion of repeated merg-
ing events (Kazantzidis et al. 2004, 2008, 2009; Fasano et al. 2010).
In order to introduce some level of asymmetry, we then added in
a small twist to the surface density contours. The degree of twist-
ing adopted reproduces variations of the orientation of iso-surface
density contours measured in numerically simulated galaxy clusters
(see e.g. Meneghetti et al. 2007). The two large-scale haloes com-
bined to create Ares are nearly aligned. The difference between the
position angles of the two clumps is ∼21 deg. The central region of
Ares contains large baryonic concentrations to mimic the presence
of BCGs. We account for the possible adiabatic contraction of the
dark matter caused by the presence of BCGs for Ares (although
several empirical studies find no evidence of adiabatic contraction
on these scales, see e.g. Newman et al. 2013; Dutton & Treu 2014).
The adiabatic contraction as described by Keeton & Madau (2001)
for Hernquist (1990) was implemented. For further details of the
MOKA code, we refer to Giocoli et al. (2012a,b). MOKA also takes into
account the correlation between assembly history and various halo
properties that are expected in CDM: (i) less massive haloes typi-
cally tend to be more concentrated than the more massive ones, and
(ii) at fixed mass, earlier forming haloes are more concentrated and
contain fewer substructures. These recipes have been implemented
in consonance with recent results from numerical simulations. In
particular, we assume the Zhao et al. (2009) relation to link the
concentration to mass and the Giocoli et al. (2010) relation for the
subhalo abundance. When substructures are included we define the
smooth mass as Msmooth = Mvir − ∑

imsub, i and its concentration
cs are defined such that the total (smooth+clumps) mass density
profile has a concentration cvir, equal to that of the total virial mass
of the halo.

3 http://cgiocoli.wordpress.com/research-interests/moka
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Figure 1. 2D and 3D convergence maps of Ares (left-hand panels) and Hera (right-hand panels). The maps are normalized to the source redshift zs = 9.

Throughout the paper, the quoted masses and concentrations are
evaluated at the virial radius, Mvir and cvir. For these definitions, we
adopt derivations from the spherical collapse model:

Mvir = 4π

3
R3

vir

�vir(z)

�m(z)
�0ρc , (1)

where ρc = 2.77 × 1011 h2 M� Mpc−1 represents the critical density
of the Universe, �0 = �m(0) is the matter density parameter at the
present time, �vir is the virial overdensity (Eke, Cole & Frenk 1996;
Bryan & Norman 1998) and Rvir symbolizes the virial radius of the
halo, i.e. the distance from the halo centre that encloses the desired
density contrast; and

cvir ≡ Rvir

rs

, (2)

with rs the radius at which the NFW profile approaches a logarithmic
slope of −2. The concentrations assigned to the two main mass
components of Ares are c1 = 5.39 and c2 = 5.46, respectively.

Ares is generated in a flat �CDM cosmological model with matter
density parameter �m, 0 = 0.272. The Hubble parameter at the
present epoch is H0 = 70.4 km s−1 Mpc−1.

In the left-hand panels of Fig. 1, we show the convergence maps of
Ares, calculated for a source redshift zs = 9. The cluster is elongated
in the SE–NW direction and contains several massive substructures.
Since Ares was generated using semi-analytical methods (SAMs),
the small-scale substructures of its mass distribution are very well
resolved, as shown in the bottom-left panel. The substructure mass

function is shown in the right-hand panel of Fig. 2. As expected,
this scales as N(M) ∝ M−0.8, consistent with results of numerical
simulations (Giocoli et al. 2010) of the CDM model. The conver-
gence profile, measured from the centre of the most massive clump,
is shown in the left-hand panel of Fig. 2.

In the image simulations described later, we also include the
light emission from cluster members. MOKA populates the dark mat-
ter subhaloes with galaxies using the Halo Occupation Distribu-
tion (HOD) technique. Stellar masses and B-band luminosities are
subsequently assigned to each galaxy accordingly to the mass of
the dark matter (sub)halo within which it formed, following Wang
et al. (2006). The morphological type and the Spectral Energy Dis-
tribution (SED) of each galaxy is then defined on the basis of the
stellar mass so as to reproduce the observed morphology–density
and morphology–radius relations in galaxy clusters (e.g. van der
Wel 2008; Ma et al. 2010).

2.1.2 Hera

The mass distribution of the second galaxy cluster, Hera, is in-
stead directly derived from a high-resolution N-body simulation of
a cluster-sized dark matter halo. More precisely, Hera is part of the
set of simulated clusters presented in Planelles et al. (2014). The
cluster halo was first identified in a low-resolution simulation box
with a periodic comoving size of 1 h−1 Gpc for a flat �CDM model
with present matter density parameter �m, 0 = 0.24 and baryon
density parameter �b, 0 = 0.04. The Hubble constant adopted was

MNRAS 472, 3177–3216 (2017)
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Figure 2. Key properties of Ares and Hera (blue and red colours, respectively). Left-hand panel: convergence profiles (for source redshift zs = 9). In both
cases, the centre has been chosen to coincide with the most massive dark matter clump in the simulation; Right-hand panel: subhalo mass function (built
considering all subhaloes within 1 h−1Mpc from the centre of the most massive clump.

H0 = 72 km s−1 Mpc−1 and the normalization of the matter power
spectrum σ 8 = 0.8. The primordial power spectrum of the density
fluctuations is P(k) ∝ kn with n = 0.96. The parent simulation fol-
lowed 10243 collisionless particles in the box. Hera was identified
at z = 0 using a standard Friends-of-Friends (FoF) algorithm, and
its Lagrangian region was re-simulated at higher resolution employ-
ing the Zoomed Initial Conditions code (ZIC; Tormen, Bouchet &
White 1997). The resolution is progressively degraded outside this
region to save computational time while still providing a correct
description of the large-scale tidal field. The Lagrangian region was
taken to be large enough to ensure that only high-resolution particles
are present within five virial radii of the cluster.

The re-simulation was then carried out using the TreePM-SPH
GADGET–3 code, a newer version of the original GADGET–2 code by
Springel (2005) that adopted a more efficient domain decomposi-
tion to improve the work load balance. Although, the parent Hera
halo exists in several flavours in various simulation runs (several
assumptions for the nature of dark matter particles), including sev-
eral baryonic processes, the simulation used in this paper uses only
the version that utilized collisionless dark matter particles. This has
allowed us to increase the mass resolution by about an order of
magnitude compared to the hydrodynamical versions of the simula-
tion. The particle mass is mDM = 108 h−1 M�. Therefore, the virial
region of Hera is resolved with ∼10 million particles, with a total
cluster mass of M = 9.4 × 1014 h−1 M�, comparable to that inferred
for observed cluster lenses. The redshift of this halo is zl = 0.507.
During the re-simulation, the Plummer-equivalent comoving soft-
ening length for gravitational force in the high-resolution region is
fixed to εPl = 2.3 h−1 kpc physical at z < 2 while being fixed to
εPl = 6.9 h−1 kpc comoving at higher redshift.

The properties of cluster galaxies used for creating the simulated
observations are derived from SAMs of galaxy formation (De Lucia
& Blaizot 2007). The process starts by using the algorithm SUBFIND

(Springel et al. 2001) to decompose each FOF group previously
found in the simulation into a set of disjoint substructures. These
are identified as locally overdense regions in the density field of the
background halo. Only substructures that retain at least 20 bound
particles after a gravitational unbinding procedure are considered
to be genuine substructures. Merging histories are constructed for
all self-bound structures, using the same post-processing algorithm

that has been employed for the Millennium Simulation (Springel,
Frenk & White 2006). The merger-tree is then used to construct a
mock catalogue of galaxies. The evolution of the galaxy popula-
tion is described by a modified version of the semi-analytic model
presented in De Lucia & Blaizot (2007), that included the imple-
mentation of the generation of intracluster light described in Contini
et al. (2014), given by the combination of Model Tidal Radius and
Merger channels presented in that paper.

Note that, even in the case of Hera, the galaxy positions trace rea-
sonably well the mass. Several reconstruction methods assume that
light traces the mass, a reasonable assumption that is thus satisfied
both in Ares and in Hera. To increase the level of uncertainty, the
galaxy shapes and orientations are chosen to be uncorrelated with
the underlying mass distribution.

The convergence map of Hera with its complex morphology and
the abundance of substructures is shown in the right-hand panels of
Fig. 1. The convergence profile and the substructure mass function
are displayed in Fig. 2. Compared to Ares, the small-scale structures
of Hera are smoother as they are less well resolved. Nevertheless,
the substructure mass function scales very similarly with halo mass.
As in the case of Ares, Hera has a bimodal mass distribution. A
massive substructure (M ∼ 5 × 1013 h−1 M�) is located ∼30 arcsec
(∼130 h−1kpc) from the cluster centre, producing a secondary peak
in the convergence map and elongating the iso-density contours in
the south-west–north-easterly direction.

2.2 Ray tracing

In order to generate lensing effects in the simulated images, it
is necessary to compute the deflections produced by the cluster.
This allows us to then use ray-tracing methods to map the surface-
brightness distribution of the sources on the camera of our virtual
telescope, which is HST in this case. In practice, we shoot a bun-
dle of light rays through a dense grid covering the field of view
(FOV), starting from the position of the observer. Then, we use the
computed deflection angles to trace the path of the light back to
the sources. When simulating HST observations, we compute the
deflection angles on a regular grid of 2048 × 2048 points, covering
a FOV of 250 arcsec × 250 arcsec centred on the cluster. The pixel
scale of this grid corresponds to 0.12 arcsec or ∼0.5 h−1 kpc.

MNRAS 472, 3177–3216 (2017)
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In the case of Ares, MOKA produces a map of the convergence,
κ(θ ). This can be converted into a map of the deflection angles,
α(θ ), by solving the equation

α(θ ) = 1

π

∫
d2θ ′ θ − θ ′

|θ − θ ′|κ(θ ′) . (3)

Since this is a convolution of the convergence, κ(θ ), with the kernel
function

K(θ ) = 1

π

θ

|θ | , (4)

this task can be achieved numerically by means of fast-Fourier-
transform (FFT) methods. To do so, we use the FFT routines im-
plemented in the gsl library.

In the case of Hera, the mass distribution of the cluster is de-
scribed by a collection of dark matter particles. Instead of mapping
them on a grid to construct the convergence map, we use our consol-
idated lensing simulation pipeline (see e.g. Meneghetti et al. 2010b,
and references therein) to compute the deflections. To briefly sum-
marize, the procedure involves the following steps:

(i) We project the particles belonging to the halo along the desired
line of sight on the lens plane. To select particles, we define a slice of
the simulated volume around the cluster, corresponding to a depth
of 10 h−1Mpc.

(ii) Starting from the position of the virtual observer, we trace
a bundle of light rays through a regular grid of 2048 × 2048 cov-
ering a region around the halo centre on the lens plane. In the
case of strong lensing simulations (e.g. for HST observations),
we restrict our analysis to a region of 1 × 1 h−2Mpc2. The pixel
scale of this grid is 0.11 arcsec, corresponding to ∼0.47 h−1 kpc.
In the case of simulations extending into the weak-lensing regime
(e.g. for Subaru-like observations), the grid of light rays covers a
much wider area (∼8 × 8 h−2 Mpc2). In this case, we use a grid of
4096 × 4096 rays, whose resolution is 0.44 arcsec pixel−1, corre-
sponding to ∼1.87 h−1 kpc pixel−1.

(iii) Using our code GLFAST (Meneghetti et al. 2010a), we compute
the total deflection α(x) at each light-ray position x, accounting
for the contributions from all particles on the lens plane. Even in
the case of strong-lensing simulations, where light rays are shot
through a narrower region of the lens plane, the deflections account
for all particles projected out to ∼4 h−1Mpc from the cluster centre.
The code is based on a Tree algorithm, where the contributions
to the deflection angle of a light ray by the nearby particles are
summed directly, while those from distant particles are calculated
using higher order Taylor expansions of the deflection potential
around the light-ray positions.

(iv) The resulting deflection field is used to derive several relevant
lensing quantities. In particular, we use the spatial derivatives of
α(θ ) to construct the shear maps, γ = (γ 1, γ 2), defined as

γ1(θ ) = 1

2

(
∂α1

∂θ1
− ∂α2

∂θ2

)
, (5)

γ2(θ ) = ∂α1

∂θ2
= ∂α2

∂θ1
. (6)

The convergence, κ(θ ), may also be reconstructed as

κ(θ ) = 1

2

(
∂α1

∂θ1
+ ∂α2

∂θ2

)
. (7)

The lensing critical lines yield formally infinite magnification for a
given source redshift. They are defined as the curves along which the

determinant of the lensing Jacobian is zero (e.g. Schneider, Ehlers
& Falco 1992):

det A = (1 − κ − |γ |)(1 − κ + |γ |) = 0 . (8)

In particular, the tangential critical line is defined by the condition
(1 − κ − |γ |) = 0, whereas the radial critical line corresponds to
the line along which (1 − κ + |γ |) = 0. In the following sections,
we will often use the term Einstein radius to refer to the size of
the tangential critical line. As discussed in Meneghetti et al. (2013),
there are several possible definitions for the Einstein radius. Here,
we adopt the effective Einstein radius definition (see also Redlich
et al. 2012) given by

θE ≡ 1

dL

√
S

π
, (9)

where S is the area enclosed by the tangential critical line and dL is
the angular diameter distance to the lens plane.

2.3 SKYLENS

We simulate observations of galaxy cluster fields using the code
SKYLENS, which is described in detail in Meneghetti et al. (2008) and
in Meneghetti et al. (2010a). The creation of the simulated images
involves the following steps:

(i) we generate a past light-cone populated with source galax-
ies resembling the luminosity and the redshift distribution of the
galaxies in the Hubble Ultra-Deep-Field (HUDF; Coe et al. 2006);

(ii) we model the morphologies of the sources using shapelet de-
compositions of the galaxies in the HUDF (Melchior, Meneghetti
& Bartelmann 2007). Their spectral energy distributions were ob-
tained as part of the photometric redshift measurements of these
galaxies described in Coe et al. (2006);

(iii) the deflection fields of the lensing clusters are used to trace
a bundle of rays from a virtual CCD, resembling the properties of
the ACS or of the WFC3, back to the sources;

(iv) by associating each pixel of the virtual CCD to the emit-
ting elements of the sources, we reconstruct their lensed surface
brightness distributions on the CCD;

(v) we model the shape and the surface brightness distribution of
the cluster galaxies using elliptical single or double Sérsic models
(Sérsic 1963). These are obtained by fitting real cluster galaxies in a
set of low to intermediate redshift clusters (Gonzalez, Zabludoff &
Zaritsky 2005). The match between the observed and the simulated
galaxies is done via the galaxy luminosity. The BCGs all include a
large-scale component used to model the intracluster light produced
by the BCG stellar haloes and by free-floating stars;

(vi) the SEDs of the cluster galaxies are modelled according to
prescriptions from semi-analytic models or from the HOD tech-
nique, as explained earlier;

(vii) we convert the surface brightness distributions into counts
per pixel assuming a telescope throughput curve, which accounts
for the optics, the camera and the filter used in carrying out the
simulated observations. In each band, we simulate the exposure
times (in units of HST orbits4) used to carry out the mock Frontier
Fields observations;

(viii) the images are then convolved with a point spread function
(PSF) model, obtained using the TINYTIM HST PSF modelling soft-
ware (Krist, Hook & Stoehr 2011). Finally, realistic noise is added

4 We assume an orbital visibility period of 2500 s.
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Table 1. Details of the simulated observations. First column:
filters employed; second column: exposure time in terms of
HST orbits; third column: level of the background (counts s−1

in circles with radius 0.2 arcsec)

Filter No. of orbits bkg level
(106 counts s−1)

F435W 18 0.615
F606W 10 1.821
F814W 42 2.227
F105W 24 1.136
F125W 12 1.122
F140W 10 1.371
F160W 24 0.959

mimicking the appropriate sky surface brightness in the simulated
bands. The noise is assumed to have a Poisson distribution, and it
is calculated according to the Meneghetti et al. (2008) equation 31,
assuming a stack of multiple exposures, with the number varying
from band to band.5

2.4 Images and catalogues

This is the first phase of a comparison project, and in the next phase
we intend to include additional simulations with an even greater
level of realism. For this first exercise, we proceed as follows.

(i) For both Ares and Hera, we generate simulated HST observa-
tions in all bands that are deployed for the FFI, mimicking the same
exposure times (or number of orbits) as the real observations. The
level of the background is set to values provided by the ACS and
WFC3 exposure time calculators in each band. The details of these
simulations are provided in Table 1. Each image covers a FOV of
204 × 204 arcsec2. All images are co-aligned and corotated. Effects
like gaps between chips, pixel defects, charge transfer inefficiency,
cosmic rays, etc. are not included. The resolution of the ACS and
WFC3 simulations are 0.05 and 0.13 arcsec pixel−1, respectively.
These images were made available to the modellers.

(ii) In addition to the images, we provided the list of all multiple
images obtained from the ray-tracing procedure (see Figs 3 and 4,
upper panels). Each multiple-image system is characterized by the
redshift of its source, which is also provided to the modellers. Thus,
in this exercise we assume that all images can be identified without
errors and that all their redshifts can be measured ‘spectroscopi-
cally’. This is certainly a very optimistic assumption that will never
be satisfied in the real world. In the next round of this compari-
son project, the assumption will be relaxed, but for the moment we
decided to release this information because our objective is to deter-
mine possible systematics of the various reconstruction algorithms.
Other issues related to the approaches used to search for multiple
images or the impact of redshift uncertainties on the results will be
studied in a future work. Some of these systematics have already
been investigated for some lens modelling methods, i.e. Johnson &
Sharon (2016).

(iii) We also released a catalogue of cluster members (circled in
the bottom-right panels of Figs 3 and 4), containing positions and
photometry in all bands. Several reconstruction methods (in partic-
ular those employing the parametric approach) build the lens model
by combining smooth dark matter haloes with substructures asso-
ciated with the cluster members akin to our construction of Ares. In

5 Two exposures per orbit per filter.

this simplified test, modellers are provided with the list of all cluster
members with mAB, F814W < 24. Again, this is an oversimplification
that will be removed in the next round of simulations, and which
implicitly favours those methods that use this information. In real-
ity, such methods have to deal with the risks of misidentification of
cluster members.

(iv) For those groups that use weak lensing measurements to
complement the strong lensing constraints, we produced a sin-
gle Subaru-like R-band image of both Ares and Hera covering a
much larger FOV of 30 × 30 arcmin2. The provided image con-
tained only background galaxies (i.e. lensed by the clusters) and
stars, so that shape measurements could be made using any weak-
lensing pipeline without worrying about the separation of back-
ground sources from the cluster members or contamination by
foreground galaxies. We also use the publicly available pipeline
KSBf906 (Heymans et al. 2006) based on the Kaiser, Squires and
Broadhurst method (Kaiser, Squires & Broadhurst 1995) to derive
a catalogue containing galaxy positions and ellipticities. The result-
ing number density of galaxies useful for the weak lensing analysis
is ∼14 galaxies arcmin−2. This is significantly smaller than the
number density achievable with HST.

All these data for the mock cluster lenses were shared with lens
modellers participating in the project via a dedicated website.7 We
emphasize that the input mass distributions of the lenses and the
techniques used to generate them were initially kept blinded to all
groups. The strong lensing constraints amounted to 242 multiple
images produced by 85 sources in the case of Ares and 65 images
of 19 sources in the case of Hera.

3 L E N S MO D E L L I N G T E C H N I QU E S

3.1 Submission of the models

A large fraction of lens modellers currently working actively on
the analysis of the FFI data accepted the challenge and participated
in this project. The two cluster simulations were not released si-
multaneously. We initially released only the data for Ares, and we
received reconstructed models for this cluster from seven groups.
These groups performed a fully blind analysis of the data set. Two
additional models were submitted by A. Zitrin after the input mass
distributions were already revealed, under the assurance that the
reconstruction was actually performed blindly.

In a second stage of the comparison exercise, we released the
simulation of Hera, and received eight models from six participating
groups. Also for this cluster, we received additional reconstructions
after we revealed the input mass distribution of the lens. These
models were submitted by A. Zitrin and by D. Lam.

There are two general classes of inversion algorithms. They com-
prise parametric models wherein the mass distribution is recon-
structed by combining clumps of matter, often positioned where
the BCGs are located, each of which is characterized by an en-
semble of parameters including the density profile and shape. The
parameter spaces of these models are explored in an effort to best
reproduce the observed positions, shapes and magnitudes of the
multiple images and arcs. The second approach is called free form
(a.k.a. non-parametric): wherein now the cluster is subdivided into
a mesh on to which the lensing observables are mapped, and which

6 http://www.roe.ac.uk/˜heymans/KSBf90/Home.html
7 http://pico.bo.astro.it/˜massimo/Public/FF
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Figure 3. Colour composite image of Ares (upper panel). We overlay to the optical image the critical lines for zs = 1 (red) and zs = 9 (white). In addition, we
display the location of the multiple image systems (numbered yellow circles). In the bottom panels, we show the image of the cluster in the F814W band. On
the left, the galaxies identified as cluster members are indicated by red circles. On the right, we display the surface density iso-contours.
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Figure 4. As in Fig. 3, but for the cluster Hera.

is then transformed into a pixelized mass distribution following sev-
eral methods to link the observable to the underlying lens potential
or deflection field.

Both these approaches were amply represented in the challenge.
A summary of all submitted models, with the indication of whether

they are parametric or free form and built before or after the input
mass distribution of the lenses was revealed, is given in Table 2.
Each model is given a reference name used throughout the paper.
Each modelling technique is briefly described below. In Table 3, we
summarize the details of each reconstruction of Ares and Hera.
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Table 2. Models submitted by the groups participating in the project. The table lists the name of the submitting group/author of the
reconstruction, the reference name of the model, the type of algorithm (free-form, parametric or hybrid) and whether the model was
submitted blind, i.e. before the input mass distribution of the lens was revealed.

Group/Author Method Model Cluster Approach Blind

M. Bradac and A. Hoag SWUnited Bradac-Hoag Ares+Hera Free-form Yes
J. Diego WSLAP+ Diego-multires Hera Hybrid Yes
J. Diego WSLAP+ Diego-overfit Hera Hybrid Yes
J. Diego WSLAP+ Diego-reggrid Ares+Hera Hybrid Yes
D. Lam WSLAP+ Lam Hera Hybrid No
J. Liesenborgs, K. Sebesta & L. Williams GRALE GRALE Ares+Hera Free-form Yes
D. Coe LensPerfect Coe Ares Free-form Yes
CATS LENSTOOL CATS Ares+Hera Parametric Yes
T. Johnson and K. Sharon LENSTOOL Johnson-Sharon Ares+Hera Parametric Yes
T. Ishigaki, R. Kawamata and M. Oguri GLAFIC GLAFIC Ares+Hera Parametric Yes
A. Zitrin LTM Zitrin-LTM-gauss Ares+Hera Parametric No
A. Zitrin PIEMDeNFW Zitrin-NFW Ares+Hera Parametric No

3.2 SWUnited: The Bradac-Hoag model

The Bradac-Hoag model employs the method named SWUnited:
Strong and weak lensing mass reconstruction on a non-uniform
adapted grid. This combined strong and weak lensing analysis
method reconstructs the gravitational potential ψk = ψ(θ k) on a
set of points θ k, which can be randomly distributed over the entire
FOV. From the potential, any desired gravitational lensing quantity
(e.g. surface mass density, deflection angle, magnification, flexion,
etc.) can be readily calculated. Such an approach therefore does
not require an assumption of e.g. a particular model of the poten-
tial/mass distribution. The potential is reconstructed by maximizing
a log-likelihood log P (see equation 2 of Bradač et al. 2009), which
uses image positions of multiply imaged sources and source plane
minimization (corrected by magnification); weak lensing elliptici-
ties, and regularization as constraints. Current implementation also
includes flexion measurements, however, the data was not used in
this paper.

3.2.1 Description of the method

The implementation of the method follows the algorithm first pro-
posed by Bartelmann et al. (1996) and is described in detail in
Bradač et al. (2005) and Bradač et al. (2009). It starts with a uni-
form grid of points θ k at coarse resolution (25–30 pixels on a side)
and refine it by two to four times in progressively smaller regions
enclosing the BCGs and by eight times around multiple images,
making sure there are no sharp transitions in the density of grid
points anywhere. This generally results in a grid that is coarse in
the outskirts of the cluster and fine in the central regions where the
multiple images exist. These are the points where the potential is
evaluated. From the set of potential values all observables are deter-
mined using derivatives. For example, the convergence κ is related
to ψ via the Poisson equation, 2κ = ∇2ψ (where the physical sur-
face mass density is � = κ �crit and �crit depends upon the angular
diameter distances between the observer, the lens and the source).
The details on how the derivatives on a non-uniform grid are evalu-
ated can be found in Bradač et al. (2009). By using a reconstruction
grid whose pixel scale varies across the field, the method is able
to achieve increased resolution in the cluster centre (close to where
we see strongly lensed images), and hence the magnification map
in the regions of high magnification is more detailed. The posterior
peak values of the potential ψk are found by solving the non-linear
equation ∂ log P/∂ψk = 0. This set of equations is linearized and

a solution is reached in an iterative fashion (keeping the non-linear
terms fixed at each iteration step). This requires an initial guess
for the gravitational potential; the systematic effects arising from
various choices of this initial model were discussed in Bradač et al.
(2006). The choice of particular grid geometry, the regularization
parameter and the hyper-parameters that set the relative weighting
between the contributions to log P all become critical when weak
lensing data on large scales (� 1Mpc) are included, and a full-field
mass reconstruction is needed. This is not the case in this work, as
we are only interested in the magnification of the inner region.

The reconstruction is performed in a two-level iteration process,
outlined in Fig. 5. The inner-level iteration process described above
for solving the non-linear system of equations ∂ log P/∂ψk = 0 is
solved in iterative fashion and repeated until convergence of κ . The
outer-level iteration is performed for the purpose of regularization.
In order to penalize small-scale fluctuations in the surface mass
density, the reconstruction is started with a coarse grid (large cell
size). Then, for each n2 step the number of grid points is increased
in the field and the new reconstructed κ (n2) is compared with the
one from the previous iteration κ (n2−1) (or with the initial input
value κ (0) for n2 = 0), penalizing any large deviations. The second-
level iterations are performed until the final grid size is reached and
convergence is achieved.

Regularization is used. It is adjusted so that the model converges
and the final χ2 for weak lensing is ∼2Nweak (number of weak
lensing galaxies). If the regularization term is too small, the method
fits to the noise and does not converge to a single solution.

3.2.2 Strengths and weaknesses of the method

The main strength of the method as discussed above is that instead
of fitting a specific set of family of models to the data, the method is
free of such an assumption. Furthermore, the positions of the points
where the potential is reconstructed (θ k) can be chosen arbitrarily,
which allows us to increase the density of points in the regions
where signal to noise is the highest (i.e. where multiple images
are present). A coarser sampling can be employed in the areas
where this is not the case (e.g. at large radii from the centre). The
algorithm reconstructs the potential (rather than traditionally used
surface mass density), since it locally determines both the lensing
distortion (for weak lensing and flexion) as well as the deflection
(for strong lensing) and there is no need to assume the surface mass
density values beyond the observed field.
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Figure 5. The outline of the method used to build the Bradac-Hoag model
and the two-level iteration process.

The main weakness of the method on the other hand is the fact
that it maximizes a function with a large number of parameters.
Therefore, the method is inherently unstable. The inversion of the
matrix satisfying the equation ∂ log P/∂ψk = 0 is also very noisy.
The method is therefore very likely to diverge or land in a secondary
minimum. Regularization needs to be employed, which adds addi-
tional parameters (relative weighting of regularization term) to the
rest of log P and a choice of regularization method itself. The opti-
mal choices need to be determined using simulation data.

3.2.3 Improvements in progress

A recent improvement to the method is the addition of the measure-
ment of flexion to the input constraints. The code has been adapted
(see also Cain, Bradac & Levinson 2016) and tested on simulated
data. This improvement is currently being tested using HST data. In
the future, the code will be ported in PYTHON, to make the interface
user friendly, and released to the community.

3.3 WSLAP+: the Diego and the Lam models

All Diego models (Diego-multires, Diego-overfit and Diego-reggrid
models) and the Lam model are built using WSLAP+, a free-
form or non-parametric method that includes also a compact mass
component associated with the cluster members (thus, classified as
hybrid in this paper). The main part of the code is written in FORTRAN

and compiles with standard compilers (like gfortran) included in the
most common linux distributions. Plotting routines written in IDL

are available to display the intermediate results as the code runs. A
script interface allows the user to define the input and output files,
select the parts of the code to be run and control the plotting routines.
A detailed description of the code and of its features can be found in
the papers by Diego et al. (2005), Diego et al. (2007), Sendra et al.
(2014) and Diego et al. (2016). The code is not publicly available
yet but a companion code LENSEXPLORER is available. LENSEXPLORER

allows the user to easily explore the lens models derived for the
Frontier Fields clusters, search for new counter images, compute
magnifications or predict the location and shape of multiple images.
The WSLAP+ code is still under development. It already includes
certain features that were not used in the analysis presented in
this paper. They will be included in the future ‘unblinded’ version
of this work. Among these features, the code incorporates spatial

Figure 6. Diagram showing the work flow of WSLAP+.

information about knots in resolved systems greatly improving the
accuracy and robustness of the results (see Diego et al. 2016, for
practical demonstration). In this work, only long elongated arcs
were considered as resolved systems. Multiple knots identified in
these arcs are assumed to originate from a very compact region in
the source plane. For the shorter arcs, only the central knot was
used.

3.3.1 Description of the method

A diagram describing the steps involved in the analysis performed
by WSLAP+ is shown in Fig. 6. The algorithm divides the mass
distribution in the lens plane into two components. The first is a com-
pact one and is associated with the member galaxies. The member
galaxies are selected from the red sequence. The second component
is diffuse and is distributed as a superposition of Gaussians on a
regular (or adaptive) grid. For the compact component, the mass
associated with the galaxies is assumed to be proportional to their
luminosity. If all the galaxies are assumed to have the same mass-
to-light (M/L) ratio, the compact component (galaxies) contributes
with just one (Ng = 1) extra free parameter that corresponds to the
correction that needs to be applied to the fiducial M/L ratio. In some
particular cases, some galaxies (like the BCG or massive galaxies
very close to an arclet) are allowed to have their own M/L ratio
adding additional free parameters to the lens model but typically no
more than a few (Ng ∼ O(1)). For this component associated with the
galaxies, the total mass is assumed to follow either an NFW profile
(with fixed concentration and scale radius scaling with the fiducial
halo mass) or be proportional to the observed surface brightness.
The diffuse or ‘soft’ component is described by as many free param-
eters as grid (or cell) points. This number (Nc) varies but is typically
between a few hundred to one thousand (Nc ∼ O(100)–O(1000))
depending on the resolution and/or use of the adaptive grid. The size
of the adaptive grid, when used, is based on a solution obtained with
the regular grid. Areas with more mass result in smaller grid cells.
In addition to the free parameters describing the lens model, the
method includes as unknowns the original positions of the lensed
galaxies in the source plane. For the clusters included in the FFI
program the number of background sources, Ns, is typically a few
tens (Ns ∼ O(10)), each contributing with two unknowns (βx and
βy). All the unknowns are then combined into a single array X with
Nx elements (Nx ∼ O(1000)).
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The observables are both strong lensing and weak lensing (shear)
measurements. For strong lensing data, the inputs are the pixel
positions of the strongly lensed galaxies (not just the centroids).
In the case of long elongated arcs near the critical curves with
no features, the entire arc is mapped and included as a constraint.
If the arclets have individual features, these can be incorporated as
semi-independent constraints but with the added condition that they
need to form the same source in the source plane. Incorporating this
information acts as an anchor constraining the range of possible
solutions and reducing the risk of a bias due to the minimization
being carried in the source plane. For the weak lensing, we use
shear measurements (γ 1 and γ 2). The weak lensing constraints
normally complement the lack of strong lensing constraints beyond
the central region allowing for a mass reconstruction on a wider
scale. When weak lensing information is used, the code typically
uses an adaptive grid to extend the range up to the larger distances
covered by the weak lensing data (Diego et al. 2015a)

The solution, X, which is an array containing the unknowns in
the problem (the mass in each grid cell, the re-scaling factor of
the assumed light-to-mass ratio for the member galaxies and the
positions of the lensed galaxies in the source plane) is obtained
after solving the system of linear equations

� = �X, (10)

where the No observations (strong lensing, weak lensing, time de-
lays) are included in the array � and the matrix � is known and has
dimension Nox(Nc + Ng + 2Ns). This matrix contains the deflec-
tion field and shear components (if weak lensing data is available)
produced by each grid cell with a fiducial mass and the fiducial
distribution of member galaxies at each observed location of an arc.
In practice, X, is obtained by solving the set of linear equations
described in equation (10) via a fast bi-conjugate algorithm, or in-
verted with a singular value decomposition (after setting a threshold
for the eigenvalues) or solved with a more robust quadratic algo-
rithm (slower). The quadratic algorithm is the preferred method as
it imposes the physical constrain that the solution X must be posi-
tive. This eliminates un-physical solutions with negative masses and
reduces the space of possible solutions. Errors in the solution are
derived by minimizing the quadratic function multiple times, after
varying the initial conditions of the minimization process, and/or
modifying the grid, and/or changing the fiducial deflection field
associated with the member galaxies.

3.3.2 Strengths and weaknesses of the method

The code implements a free-form modelling component. This im-
plies that no strong assumptions are necessary about the distribution
of dark matter. This is particularly useful if DM is not linked to the
galaxies or if the baryons are also dissociated from the galaxies. The
latter seems to be the case in the FFI clusters which are in a merging
phase. Evidence that the solution obtained by the algorithm may be
sensitive to the mass of the X-ray emitting plasma was presented in
Lam et al. (2014) and Diego et al. (2015b,c, 2016).

The algorithm is very fast. Several methods are implemented to
search for a solution. Using the bi-conjugate gradient algorithm a
solution can be obtained in seconds. Using the slower, but more reli-
able, quadratic optimization approaches a robust solution that can be
obtained in minutes. Other fast approaches have been implemented
as well like singular value decomposition.

An adaptive grid can be used that transforms the method into a
multiresolution code. Different adaptive grids can be implemented

that introduce a small degree of freedom but also allows us to explore
other possible solutions and hence constrain better the variability of
the solution.

The code is prepared to combine weak and strong lensing. The
relative weight of the two data sets is given by the intrinsic errors
in the data sets (typically small in the strong lensing regime and
larger in the weak lensing regime). Correlations between the lensing
data can be incorporated through a covariance matrix that naturally
weights the different data sets.

The minimization is made in the source plane which may result
in biases towards larger magnifications (e.g. Kochanek 1991). To
avoid this, the minimization algorithm needs to be stopped after
a given number of iterations. Even better, including information
about the size and shape of the sources in the source plane seems
to solve this problem and the solution remains stable and unbiased
even after a very large number of iterations. These prior information
on the size and shape of the source galaxies is only possible when
well-resolved lensed images are available and at least one of the
multiple images is not highly magnified.

The compact component is pixelized usually into a 512×512
image that covers the FOV. For the small member galaxies, this
pixelization results in a loss of resolution that have a small im-
pact on lensed images that happen to be located near this small
member galaxies. A possible solution to alleviate this problem is
to pre-compute the deflection field of these galaxies prior to the
minimization at higher resolution and later interpolate at the posi-
tion of the observed lensed galaxies. This approach has not been
implemented yet but it is expected to eliminate this problem.

In the Lam model of Hera, the cluster members are modelled
using analytical mass profiles (NFW). In this case, there is no need
to produce a pixelated map of the deflection angles. Instead, these
are computed analytically.

A weakness of this approach is that the code can also predict more
multiple images than observed. This is not being factored in at the
moment but will be the subject of the null space implementation
described in Section 3.3.3. One systematic bias is known to affect
the results at large distances from the centre. The reconstructed
solution systematically underpredicts the mass (and magnification)
in the regions where there is no lensing constraints. These regions
are normally located beyond the corresponding Einstein radius for a
high-redshift background source. Addition of weak lensing to then
constraints can reduce or eliminate this problem.

3.3.3 Improvements in progress

The addition of time delays is being implemented to the reconstruc-
tion of the solution. Time delays will be included in a similar footing
as the other observables (weak and strong lensing observables) with
a weight that is proportional to their associated observational error.

The addition of the null space was proven to be a useful and
powerful way of improving the robustness of the derived solution
(Diego et al. 2005). This direction has not been explored fully and
we plan to incorporate the null space as an additional constraint.
This will eliminate additional counter images that are predicted by
the model but not observed in the data.

3.3.4 Modelling of Ares and Hera

The Diego models use both a regular grid with 32 × 32 = 1024 grid
points (Diego-reggrid model) and a multiresolution grid with ap-
proximately half the number of grid points (Diego-multires model).
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A comparison between these grids is shown in Diego et al. (2016).
The compact component of the defection field is constructed based
on the brightest elliptical galaxies in the cluster. We include 50 such
bright ellipticals for each cluster. The mass profile for each galaxy
is taken either as an NFW with scale radius (and total mass) scal-
ing with the galaxy luminosity or directly as the observed surface
brightness. This choice plays a small role in the final solution.

Depending on the number of iterations, different solutions can
be obtained. Earlier work based on simple simulations (Sendra
et al. 2014) showed how in a typical situation (similar to the one
in Ares and Hera), after 10 000 iterations of the code, the solution
converges to a stable point. The code can be left iterating longer
reaching a point that we refer as ‘overfit’ where the observed con-
straints are reproduced with great accuracy but sometimes at the
expense of a model with fake structures. In the case of Hera, we
computed the solution also in the overfit regime (90 000 iterations)
for comparison purposes (Diego-overfit model). As explained in
Sendra et al. (2014), the compact component helps also in regular-
izing the solution since it acts as an ‘anchor’ for the entire solution.

The Lam model differs from the Diego models as follows. A
regular grid of Gaussian functions is used instead of a multires-
olution grid (as in Diego-multires). The code runs a minimization
algorithm. In each step, a new solution is obtained and updated in an
iterative way. The algorithm starts with an initial guess (a random
realization of the iterative solution) and the minimization converges
to a different solution each time. By varying the initial condition
100 times, 100 different lens models were obtained that are equally
consistent with the data. The submitted model is an average of these
100 individual models. With the exception of the 10 BCGs, the rel-
ative masses of all cluster galaxies are fixed, and are derived using a
stellar mass–dark matter mass relation found in the EAGLE cosmo-
logical hydrodynamical simulation (Schaller et al. 2015). The stellar
masses of cluster galaxies are derived from fitting synthesized spec-
tra to the measured photometry using FAST (Kriek et al. 2009). The
contribution from cluster galaxies are parametrized by NFW haloes
with scale radii derived from the dark matter mass using again a
relation found in the same simulation.

3.4 GRALE: the GRALE model

The GRALE models are based on the reconstruction code GRALE.8

GRALE is a flexible, free-form method, based on a genetic algorithm,
which uses an adaptive grid to iteratively refine the mass model.
As input it uses only the information about the lensed images, and
nothing about cluster’s visible mass (Liesenborgs, De Rijcke &
Dejonghe 2006). This last feature sets GRALE apart from many
other lens mass reconstruction techniques, and gives it the abil-
ity to test how well mass follows light on small and large scales
within clusters. GRALE has been used to reconstruct mass distri-
butions in a number of clusters (Liesenborgs et al. 2008, 2009;
Mohammed et al. 2014; Mohammed, Saha & Liesenborgs 2015),
quantify mass/light offsets in Abell 3827 (Mohammed et al. 2014;
Massey et al. 2015), derive projected mass power spectra and com-
pare to those of simulated clusters (Mohammed et al. 2016) and to
study the relation between mass and light in MACS0416 (Sebesta
et al. 2016). These papers used strong lensing constraints only, and
so the analysis was confined to the central regions of galaxy clusters.

8 GRALE’s description, software and installation instructions are available at
http://research.edm.uhasselt.be/∼jori/grale.

3.4.1 Description of the method

GRALE starts out with an initial coarse uniform grid in the lens plane
which is populated with a basis set, such as projected Plummer den-
sity spheres. A uniform mass sheet covering the whole modelling
region is also added to supplement the basis set. As the code runs,
the denser regions are resolved with a finer grid, with each cell given
a Plummer with a proportionate width. The initial trial solution, as
well as all later evolved solutions are evaluated for genetic fitness,
and the fit ones are cloned, combined and mutated. The final map
consists of a superposition of a mass sheet and many Plummers,
typically several hundred to a couple of thousand, each with its
own size and weight, determined by the genetic algorithm. Critical
curves, caustics and magnifications for any given source redshift
are automatically available.

Multiple fitness measures are used in GRALE. These are as follows:
(a) Image positions – a successful mass map would lens image-plane
images of the same source back to the same source location and
shape. A mass map has a better fitness measure if the images have
a greater fractional degree of overlap. Using fractional overlap of
extended images ensures against overfocusing or overmagnifying
images. (b) Null space – regions of image plane that definitely do
not contain any lensed features belong to the null space. (c) Critical
lines – in some cases, it is known on astrophysical grounds that a
critical line cannot go through certain image regions, but must pass
between them. GRALE can incorporate this type of constraint, but we
have not used this fitness measure in the Frontier Fields work so
far. (d) Time delay measurements – though not used in this work,
time delay measurements can also be incorporated into the fitness
(Liesenborgs et al. 2009; Mohammed et al. 2015).

Each GRALE run with the same set of images, but a different
random seed, will produce a somewhat different final map. The dis-
persion between these quantifies mass uncertainties that are due to
mass degeneracies present when all image information is held fixed.
The best known among these, the mass sheet degeneracy, is broken
in most clusters because of the multiple redshifts of background
sources. The other, more numerous and less known degeneracies –
documented (Saha 2000; Liesenborgs & De Rijcke 2012) and not
documented – are the ones that contribute to the uncertainties.

The clusters Ares and Hera were modelled with multiple images
as inputs, and using two fitness measures: (a) image positions and
(b) null space for each source (image set) separately. For image sets
where it was not entirely clear if or where the counter images might
be present, the nulls were allowed to have large holes corresponding
to the regions of possible additional images. GRALE can operate
in two modes: with lensed images represented by points, or by
extended images. The present reconstruction were done using the
extended image mode.

3.4.2 Strengths and weaknesses

The main advantage of GRALE is its flexibility, and hence ability to
explore a wide range of lensing mass degeneracies. Another impor-
tant feature, which can be viewed as strength, is that GRALE does
not use cluster galaxies, or any information about the distribution of
luminous matter to do the mass reconstruction. This is useful if one
wants to test how well mass follows light (Mohammed et al. 2014;
Sebesta et al. 2016).

GRALE’s main weakness is that it is not an optimal tool for identi-
fying lensed images. This is a direct consequence, or, one may say,
the flip side of GRALE’s flexibility. A technical feature of GRALE worth
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mentioning is that it requires significant computational resources:
GRALE runs on a supercomputer.

3.4.3 Improvements in progress

The GRALE team has carried out numerous tests of the code, to
optimize the set of genetic algorithm and other code parameters. In
the near future, GRALE will be extended to include fitness measure
constraints from weak shear and flexion.

3.5 LensPerfect: the Coe model

The Coe model for Ares uses LensPerfect9 (Coe et al. 2008, 2010).
LensPerfect makes no assumptions about light tracing mass. The
lens models perfectly reproduce the input observed positions of all
strongly lensed multiple images. Redshifts may be either fixed to
input spectroscopic redshifts or included in the model optimization
based on input photometric redshifts and uncertainties.

The image positions, redshifts and estimated source positions de-
fine the lensing deflection field sparsely at the multiple image posi-
tions. LensPerfect interpolates this vector field, obtaining a smooth
model that exactly reproduces the image deflections at the input
image positions. Based on this 2D deflection map, the mass distri-
bution, magnification and all other model quantities may be derived.

3.5.1 Description of the method

The curl-free vector interpolation scheme (Fuselier 2006; Fuse-
lier 2008) uses direct matrix inversion to obtain a model composed
of radial basis functions (RBFs) at the positions of the input vec-
tors (our multiple image locations). Each 2D RBF has two free
parameters – amplitude and rotation angle – which are determined
uniquely by the matrix inversion (Coe et al. 2008; see their fig. 3
and equations 17, 20 and 21).

After setting the width of the RBF, the free parameters are the
source positions and any uncertain redshifts. LensPerfect performs
an optimization routine searching for those parameters which yield
the most ‘physical’ mass model according to a set of criteria de-
scribed in Coe et al. (2008, 2010). Briefly, these require that the
mass should be positive everywhere and, less restrictively, prefer
relatively smooth variations decreasing outward from the centre on
average with rough azimuthal symmetry. Penalties for deviating
from these ideals are calculated based on the mass map evaluated
on an 81 × 81 pixel grid as detailed in Coe et al. (2008; their section
2.4 and appendix).

3.5.2 Strengths and weaknesses

In high-resolution HST ACS images, strongly lensed multiple image
locations are observed and measured with accuracies of ∼1 pixel,
or ∼0.05 arcsec. By fully utilizing this information, LensPerfect
is able to obtain relatively high-resolution maps of galaxy cluster
substructure without relying on any assumptions about light tracing
mass. Large numbers of multiple images may be input, and the
number of free parameters is always roughly equal to the number
of constraints. The mass model spatial resolution increases with the
density of multiple images on the sky.

9 http://www.stsci.edu/∼dcoe/LensPerfect/

Given current numbers of multiple images (up to ∼100 or so) for
a single cluster (e.g. Coe et al. 2010), LensPerfect can accurately
recover cluster mass profiles along with some larger subhaloes.
Magnifications, however, are influenced by local mass density gra-
dients, which are not accurately reproduced by LensPerfect given
current constraints. Furthermore, LensPerfect mass models are only
well constrained within the area enclosed by the multiple images
and should generally be disregarded outside this region.

3.5.3 Future improvements

LensPerfect is well suited to future data sets such as JWST imaging
revealing still greater numbers of multiple images. Initial tests with
hundreds to a thousand multiple images show great potential for
resolving many individual cluster galaxy haloes without assuming
light traces mass (LTM). The biggest hurdle (seen in tests with up to
10 000 multiple images) may be accounting for multiple lens plane
deflections due to mass along the line of sight.

One potential improvement would be to develop a hybrid method
combining LTM assumptions with LensPerfect adding deviations
to the mass distribution.

3.6 LENSTOOL : the CATS and Johnson-Sharon models

LENSTOOL as an inversion algorithm deploys both strong and weak
lensing data as input constraints. Below, we first briefly out-
line the available capabilities of the LENSTOOL software pack-
age and then describe the specific versions and assumptions that
were used to reconstruct Ares and Hera by two groups: CATS
(Cluster As Telescopes) and Johnson-Sharon. The CATS collabora-
tion developed the LENSTOOL algorithm collectively over two decade.
The code utilizes the positions, magnitudes, shapes, multiplicity
and spectroscopic redshifts for the multiply imaged background
galaxies to derive the detailed mass distribution of the cluster. The
overall mass distribution in cluster lenses is modelled in LENSTOOL

as a superposition of smoother large-scale potentials and small-
scale substructure that is associated with the locations of bright,
cluster member galaxies. Individual cluster galaxies are always de-
scribed by parametric mass models, whereas the smoother, large-
scale mass distribution can be flexibly modelled non-parametrically
or with specific profiles. This available multiscale approach is op-
timal, inasmuch as the input constraints required for this inversion
exercise are derived from a range of scales. Further details of the
methodology are outlined in Jullo & Kneib (2009). In its current
implementation in LENSTOOL, the optimization of the combined para-
metric and non-parametric model is computationally time intensive.
And some degeneracies persist, despite the large number of strin-
gent input constraints from the positions, shapes, brightnesses and
measured spectroscopic redshifts of several families of multiple
images. However, these degeneracies are well understood, in par-
ticular for specific parameters of models used to characterize the
mass distribution. In order to tackle this challenge, an iterative strat-
egy has been developed wherein initial models are derived with the
best-fitting values solely from the parametric model, which are then
optimized using the underlying multiscale grid. Both the multiscale
and the parametric models are adjusted in a Bayesian way, i.e. their
posterior probability density is probed with a Markov Chain Monte
Carlo (MCMC) sampler. This process allows an easy and reliable
estimate of the errors on derived quantities such as the amplification
maps and the mass maps.

The CATS and the Johnson-Sharon models are built using the
LENSTOOL public modelling software (see e.g. Jullo et al. 2007). The
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public version of LENSTOOL deployed by Johnson-Sharon adopts
the original modelling approach developed by Natarajan & Kneib
(1997) wherein a small-scale dark matter clump is associated with
each bright cluster galaxy and a large-scale dark matter clump with
prominent concentrations of cluster galaxies. This technique of as-
sociating mass and light has proven to be very reliable and results
in mass distributions that are in very good agreement with theoreti-
cal predictions from high-resolution cosmological N-body simula-
tions. The Johnson-Sharon models follow the methods described in
Sharon et al. (2012) and Johnson et al. (2014).

3.6.1 Description of the method

Typically, cluster lenses are represented by a few cluster-scale or
group-scale haloes (representing the smooth component, with σ in
the range of hundreds to ∼1500 km s−1), with contribution from
galaxy-scale haloes (see below). Large-scale dark matter haloes
are parametrized as pseudo-isothermal elliptical mass distribution
(PIEMD),

ρ(r) = ρ0

(1 + r2/r2
core)(1 + r2/r2

cut)
, (11)

where ρ0 is a normalization, and rcore and rcut define a region rcore

� r � rcut in which the mass distribution is isothermal, i.e. ρ ∝
r−2. In LENSTOOL, PIEMD has seven free parameters: x, y are the
coordinates on which the halo is centred, e and θ are the ellipticity
and the position angle, respectively, rcore, rcut and effective velocity
dispersion σ 0 that determines the normalization (we note that the
σ 0 is not exactly the observed velocity dispersion, see Elı́asdóttir
et al. 2007). The parameters of cluster-scale haloes are kept free,
with the exception of rcut which is usually unconstrained by the
strong lensing data, and is thus fixed at an arbitrary value (typically
1500 kpc).

CATS also model galaxies as PIEMD, whereas Johnson-Sharon
model galaxies as circular isothermal distributions (see Sec-
tion 3.6.5). To keep the number of free parameters reasonably
small, the parameters of galaxy-scale haloes are determined from
their photometric properties through scaling relations assuming a
constant mass-to-light ratio for all galaxies,

σ0 = σ ∗
0

(
L

L∗

)1/4

˜˜and˜˜rcut = r∗
cut

(
L

L∗

)1/2

. (12)

The positional parameters, x, y, e and θ , are fixed to their observed
values as measured from the light distribution in the imaging data.

CATS used the simulated strong lensing catalogues and the
LENSTOOL software to perform a mass reconstruction of both sim-
ulated clusters, assuming a parametric model for the distribution
of dark matter. The model is optimized with the Bayesian Markov
chain Monte Carlo sampler, described in detail in Jullo et al. (2007).
The mass distribution is optimized in the image plane by minimiz-
ing the distance between the observed and predicted multiple image
positions. Weak lensing information is not taken into account. The
image-plane root-mean-squared (rmsi) distance of the images pre-
dicted by the model were used to compare with the observed posi-
tions as an accuracy estimator of the model (Limousin et al. 2007).

The CATS collaboration has modelled both clusters, Ares and
Hera have been modelled as bimodal clusters with two smooth
dark matter clumps and two BCGs lying in the centre of those
main clumps. Each smooth component is modelled using a PIEMD
profile. Cluster member galaxies are taken from the given simu-
lated catalogues up to a magnitude of mF160W < 22.0 for Ares and

mF814W < 24.0 for Hera. These are modelled with PIEMD pro-
files under the assumption that (i) their positions correspond to the
observed ones, (ii) they have circular shape and (iii) their mass
is proportional to the galaxy magnitudes in the F160W band. In
the provided models, it is assumed that they all have the same
M/L ratio, following the scaling relations in equation (12). Two
free parameters are used to describe the ensemble of cluster galax-
ies, namely σ ∗

0 and r∗
cut. At the end of the optimization, the best-

fitting values for these parameters are σ ∗
0 = 98 ± 1.2 km s−1 and

r∗
cut = 262 ± 0.66 kpc for Ares and σ ∗

0 = 96.7 ± 3.3 km s−1 and
r∗

cut = 33 ± 0.07 kpc for Hera. The reference luminosities are set
to m∗ = 18.5 and m∗ = 19.82 for Ares and Hera, respectively. All
multiple images provided were used in this model. In addition, a
few (massive) cluster galaxies in both clusters were more carefully
modelled in order to improve the rmsi of nearby multiple images.
The RMSi is defined as

rms =
√√√√ 1

N

n∑
i=1

|θobs
i − θ

pred
i |2, (13)

where θobs
i and θ

pred
i are the positions of the multiple images ob-

served and predicted by the model; N is the total number of images.
In addition to the two BCGs, four other central cluster galaxies

were modelled in this way in Hera (of which one is considered to
be a foreground) and three, also central, galaxies in Ares.

These reconstructions have a resulting rms in the image plane of
0.87 arcsec for Ares and 0.95 arcsec for Hera.

The Johnson-Sharon models for Ares and Hera were constructed
using techniques similar to those in Johnson et al. (2014), using the
catalogues of multiple images that were provided to the lens mod-
ellers as positional constraints. The redshifts of the background
sources were assumed to be known spectroscopically with no un-
certainty or outliers. Both clusters were modelled with two PIEMD
haloes, to represent the smooth dominant dark matter components,
each centred close to the two peaks in the light distribution in the
mock HST images with their exact positions set by the MCMC
minimization process.

Individual PIEMD haloes were assigned to each galaxy in the
provided catalogue, with positional parameters, x, y, e and θ , fixed
to their observed values as measured from the light distribution in
the mock imaging data. The parameters that describe the slope of
the projected mass density were scaled with the light in the F125W
band assuming a constant M/L ratio for all the galaxies, follow-
ing the scaling relations in equation (12). As both clusters are at
z = 0.5, the same scaling relations were used for the cluster mem-
ber galaxies: σ �

0 = 120 km s−1, rcore = 0.15 kpc and rcut = 30 kpc,
and m� = 20.00, 19.87 for Ares and Hera, respectively.

A few galaxies located near constraints were modelled inde-
pendent of the scaling relations and their core radius and velocity
dispersion were left as free parameters in the lens models. This
includes the two bright cluster galaxies lying at the centres of the
gravitational well of both clumps in the dark matter distribution in
both clusters.

We note that the PIEMD functional form of the cluster galaxies
used in LENSTOOL differs from the function that was used in the sim-
ulation of Ares in the treatment of the truncation radius. While the
PIEMD profile transitions smoothly from isothermal and asymp-
totes to zero at large radii, the simulated mass distribution truncates
the mass function sharply to zero at r = rcut. This discrepancy is
what causes the sharp circular residuals seen in Fig. 9. We thus do
not expect the model to accurately reconstruct the mass distribution
at radii larger than the truncation radius.
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In addition, the Johnson-Sharon model assumes that the ellip-
ticity and position angle of the light of each mock galaxy follows
the underlying mass distribution. In practice, all the galaxies in the
underlying simulated mass distribution had circular geometry (i.e.
no ellipticity) and the galaxies were painted on with arbitrary el-
lipticities and position angles. This feature of the blinded analysis
contributes to residuals on small scales in the mass reconstruction.
Finally, the Johnson-Sharon model does not use weak lensing in-
formation and does not include cluster-scale haloes outside of the
main FOV if such haloes are not required by the strong lensing
constraints alone.

3.6.2 Strength and weaknesses

LENSTOOL strengths and weaknesses are typical of parametric mod-
els. This approach is useful in the sense that it directly compares
physically motivated models to data, propagating errors in a fully
consistent and Bayesian manner. It allows direct comparison with
simulation outputs and the assessment of possible discrepancies.
On the other hand, parametric models can significantly differ from
reality and their lack of freedom introduces biases in the estimated
masses, matter densities or errors. Regarding practical aspects, er-
rors estimation implies running MCMC sampling, which can only
be performed on supercomputer. LENSTOOL calculations can last for
a couple of weeks on shared memory machines depending on the
model complexity and the amount of multiple images. In the case
of Hera and Ares, optimization lasts for about 10 h.

3.6.3 Improvements in progress

CATS is currently working actively on two improvements that
should significantly improve the accuracy of their mass reconstruc-
tions. First, LENSTOOL in its current revision does not permit radial
variation of the ellipticity for the mass distribution, and this re-
stricts the flexibility of models that can be generated. Current code
development aims to include this additional degree of freedom in
the modelling. Secondly, in order to maximally extract information
from the exquisite image resolution afforded by the HST FFI, flexion
measurements will be included as input constraints in the modelling.
Finally, a new MCMC engine with MPI support and a GPU-based
LENSTOOL are under development to decrease the computing time.

3.7 GLAFIC : the GLAFIC models

The publicly available GLAFIC code (Oguri 2010)10 is used for mass
modelling in the GLAFIC models.

3.7.1 Description of the method

GLAFIC adopts the so-called parametric lens modelling in which
the lens mass distribution is assumed to consist of multiple com-
ponents, each of which is characterized by a small number of pa-
rameters such as the centroid position, mass, ellipticity and position
angle. Mass distributions of cluster member galaxies are modelled
with PIEMD models. In order to reduce the number of parame-
ters, the velocity dispersion σ and truncation radius rcut of each
member galaxy are assumed to scale with the galaxy luminosity
L as σ ∝ L1/4 and rcut ∝ Lη, and the normalizations of the scal-

10 http://www.slac.stanford.edu/∼oguri/GLAFIC/

ing relations are treated as free parameters (see e.g. Oguri 2010).
Ellipticities and position angles of individual member galaxies are
fixed to values measured in the image. These parameters are opti-
mized to reproduce positions of observed multiple images, either
using the downhill simplex method or Markov Chain Monte Carlo.
Examples of detailed cluster mass modelling with GLAFIC are
found in Oguri (2010), Oguri et al. (2012), Oguri et al. (2013), Ishi-
gaki et al. (2015) and Kawamata et al. (2016). GLAFIC can also
simulate and fit lensed extended sources. This functionality has
been used to, e.g. fit a lensed quasar host galaxy (Oguri et al. 2013),
estimate a selection function of lensed high-redshift galaxies (Ishi-
gaki et al. 2015) and derive sizes of lensed high-redshift galaxies
(Kawamata et al. 2015).

3.7.2 Strengths and weakness

An advantage of GLAFIC is a wide range of lens potential im-
plemented in the code, which enables flexible modelling of cluster
mass distributions. For example, in addition to the standard exter-
nal shear, one can add higher order perturbations with arbitrary
multipole orders (see Oguri 2010). When necessary, in addition to
observed multiple image positions, GLAFIC can also include flex-
ible observational constraints such as time delays and flux ratios
between multiple images, and (reduced) shear and magnification
values at several sky positions measured by weak lensing and Type
Ia supernovae, respectively.

The source plane χ2 minimization is often adopted for efficient
model optimizations. In doing so, GLAFIC converts the distance
between observed and model positions in the source plane to the
corresponding distance in the image plane using the full magnifica-
tion tensor. In appendix 2 of Oguri (2010), it has been shown that
this source-plane χ2 is accurate in the sense that it is very close
to the image-plane χ2 and therefore is sufficient for reliable mass
modelling.

Of course GLAFIC supports the image plane χ2 minimization
as well. Adaptive-meshing with increased resolution near critical
curves is used for efficient computations of multiple images for
a given source position. Multiple images and critical curves are
computed for the best-fitting model from the source plane χ2 min-
imization to check the robustness of the result.

A known limitation of GLAFIC is that it can only handle single
lens planes. Lens systems for which multiple deflections at different
redshifts play a crucial role are difficult to be modelled by GLAFIC.

3.7.3 Modelling Ares and Hera

Each halo component is modelled by the elliptical NFW profile.
For Ares, five halo components are included, in addition to the
member galaxies modelled by PIEMDs (see above). In addition, the
η parameter (see above) is fixed to 0.5. For Hera, two NFW halo
components are placed around two brightest galaxies. These two
brightest galaxies are modelled by the Hernquist profile, separately
from the other member galaxies. The formula for this profile is
given by

ρ(r) = M

2π(r/rb)(1 + r/rb)3
, (14)

where the scale radius rb is related to the effective radius Re by
rb = 0.551Re. We introduce the ellipticity in the projected mass
density. Ellipticities and position angles of the brightest galaxies are
fixed to observed values. To achieve better fit, external shear and
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third-order multipole perturbation are added for Hera. In modelling
member galaxies, η in the scaling relation of truncation radii is fixed
to 0.5 for Ares and is treated as a free parameter for Hera. Simulated
F814W band images are used to measure luminosities, ellipticities
and position angles of member galaxies with SEXTRACTOR for both
Ares and Hera. Overall, a more elaborated lens model is adopted for
Hera compared to Ares, because in the initial exploration period of
mass modelling it was found that the lens potential of Hera appears
to be much more complex. In particular, both external shear and
high-order perturbations have been included in the model. The latter
are simulated using a potential of the form

φ = − εpert

m
rn cos m(θ − θpert − π/2) , (15)

where m = 3, n = 2 and εpert and θpert are left as free parameters in
the fit. The best-fitting values for the external shear amplitude and
orientation are γ ext = 0.072 and θ ext = 32.4 deg, respectively. For
the third-order multipole perturbation, we found εpert = 0.018 and
θpert = 25.9 deg.

The resulting best-fitting models reproduce image positions very
well, with rms of ∼0.27 arcsec for Ares and ∼0.43 arcsec for Hera.

3.8 LTM: the Zitrin-LTM models

The Zitrin LTM method (Broadhurst et al. 2005; Zitrin et al. 2009)
was designed primarily to be a very simple, straightforward mod-
elling method with a minimal number of free parameters, relying
only on the observable light distribution of cluster members (namely
their positions and relative fluxes) to supply a well-guessed and
highly predictive solution to the mass distribution of the lens and
the location of multiple image systems (e.g. Zitrin et al. 2012, 2013).
Previous to the design of this method, it had been shown that (a)
cluster galaxies must be included, typically with a mass in pro-
portion to their luminosity, in order the solution to have predictive
power to find multiple images and that (b) a dark matter component
should be added (see Kneib et al. 2004; Broadhurst et al. 2005).
This simple parametrization, as we detailed further below, has al-
lowed us to identify systems of multiple images in an unprecedented
number of clusters, where the images are physically matched also
by the initially guessed model (which is then refined), and are not
only matched by eye based on their colour information as is often
accustomed.

3.8.1 Description of the method

As mentioned above, this method was designed to include both a
galaxy component and a dark matter component, yet to success-
fully do so with a minimal number of free parameters. To form
the galaxy component, cluster galaxies (found following the red
sequence in a colour–magnitude diagram) are assigned each with
a power-law mass density distribution, where the normalization of
each galaxy’s weight is proportional to its (relative) flux, and the
exponent is the same for all galaxies and is the first free parameter
of this method. The superposition of all galaxy power-law mass
distribution then constitutes the lumpy, galaxy component of the
model. To describe the dark matter distribution, the galaxy com-
ponent is smoothed with either a Spline interpolation or usually a
Gaussian kernel whose degree or width is the second free parameter
of this method. The smoothing yields a diffuse, smooth dark matter
component that depends on the initial light distribution; therefore,
the method is dubbed LTM as both the galaxy and dark matter
components roughly follow simply the light distribution. Next, the

two components are added with a relative weight (typically around
few to a couple dozen percents for the galaxies), which is another
free parameter in the modelling. The fourth parameter is an overall
normalization of the lens model to a certain redshift or multiple-
image system. In addition to the four parameters, we often introduce
several other parameters that add some flexibility and help in refin-
ing the final solution given the set of input multiple images. These
include a core and two-parameter ellipticity for the BCG(s), two
parameter external shear (which mimics ellipticity for the critical
curves) and chosen galaxies whose weights (or fluxes) are left free
to be optimized in the modelling, meaning that they are allowed to
deviate from the adopted mass-to-light relation. The minimization
for the best-fitting solution and related errors, given a set of multiple
images (often found with the aid of the initially guessed map from
this method), is performed with a χ2 criterion comparing the posi-
tions of multiple images with the predicted ones, in the image plane,
via a few-dozen thousand MCMC steps with Metropolis-Hastings
algorithm. The conversion between mass distribution and deflection
angles is done in Fourier space, using FFT techniques.

3.8.2 Strengths and weaknesses

The resulting lens model from this procedure, as its name suggests,
is strongly coupled to the input light distribution of the lens (cluster
members positions and luminosities). This entails various strengths
and weaknesses. The fact that the solution is coupled to the light
distribution is what grants this method with the unprecedented pre-
diction power to delineate the critical curves and locate multiple
images in advance, even if no multiple-image system is used as
constraint (see Zitrin et al. 2012). In fact, most of the free param-
eters in the initial solution are relatively well known, so that as a
first step (i.e. to find multiple images) we can reduced these to one
free parameter – namely the normalization of the lens, and obtain
a well-guessed solution, that we have shown is not much different
than the resulting solution for the same clusters when using many
multiple images as constraints (Zitrin et al. 2012). This means that
the method is capable to supply a well-guessed solution also in
cases where HST high-quality data is lacking.

The simplistic nature of this method also means that the solution is
often faster to converge and compute than other grid-based methods
or parametrizations, allowing the analysis of many dozens of cluster
lenses in a relatively short time.

Another advantage that this method encompasses is that the same
very simple procedure applies to all clusters – from relaxed, small
clusters and groups (such as the relatively smaller cluster lenses
A383, MS2137 or A611, see Zitrin et al. 2015, for recent modelling),
to the most complex merging clusters such as M0416, M1149 or
M0717 (Zitrin et al. 2015), that often require multihalo fits in other
parametric methods.

But the coupling to the light distribution also means that the
spatial flexibility of the model is small. While our parametrization
does allow for a flexible mass profile in the sense that it is not limited
to a certain analytic form, the solution is limited spatially by the
light distribution. This means that the multiple-image reproduction
accuracy is often smaller than in other more flexible parametric
methods that model the dark matter independently of the light (such
as other well-known methods listed in this work including our own
second method listed below). This is manifested usually in clusters
that have a large number of multiple images spread across the field;
for these, the LTM method often reaches a finite rms value of ∼1–2
arcsec on which it cannot improve further.
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A second disadvantage stemming from our parametrization –
since we do not model the dark matter independently of the light
and since the critical curve’s ellipticity in our modelling is for
the most part generated by the external shear – is that there is no
ellipticity assigned directly to the mass distribution. This creates
some discrepancy between the lens and mass models: the mass
distribution can be often significantly rounder than implied by the
critical curves, whose ellipticity comes from the external shear that
does not contribute ellipticity to the convergence map. In simple
words, this reveals a degeneracy regarding the true ellipticity of the
mass distribution – as the ellipticity of the lens can be attributed to
intrinsic ellipticity or to external shear.

To summarize, we thus consider this method very reliable and
robust, supplying especially well-guessed initial maps for any given
cluster regardless of its complexity, and with unprecedented predic-
tion power to find multiple images, but it can also be in some cases
less accurate and spatially flexible. Also, given this is a light-tracing
method, we do not expect this method to describe well numerical
simulations whose mass-to-light relations are not completely rep-
resentative.

3.8.3 Improvements in progress

The code is currently being optimized in order to speed up the
minimization procedure. We are also testing whether replacing the
galaxy component with the more well-behaved PIEMD (see below),
despite having a fixed isothermal slope, would be sufficient for our
purposes. We have also implemented an option of smoothing with an
elliptical Gaussian which then introduces ellipticity into the matter
distribution itself.

Note that our calculations are performed on an input grid match-
ing an actual image of the field, with its native pixel scale. To speed
the minimization procedure, we often reduce the resolution (espe-
cially in the case of HST that has high spatial resolution) by factors
4 to 10 on each axis. This contributes to the finite, non-negligible
rms obtained often in this method (e.g. due to pixel coordinates
round-ups etc.). We intend to investigate this further and try to im-
prove the resolution in the crucial places, such as near the critical
curves and when delensing to the source plane, where this lower
resolution might prevent a further improved solution.

3.8.4 Modelling of Ares and Hera

To model Ares and Hera, we use the following setting in our LTM
pipeline. We create a grid of 4080×4080 pixels covering the FOV,
with an angular resolution of 0.5 arcsec pixel−1. The calculation in
practice is performed in two stages – first, we run many individual
random MC chains with a grid resolution lower by factor 10 on
each axis. From this we find the global minimum area and extract
the covariance matrix. A proper, long MCMC is then run with a
grid of four times lower resolution than the original input image.
The final solution is then interpolated to match the original pixel-
scale map. Errors were derived using 50 random models form the
MC chain, with a positional uncertainty of 1.4 arcsec for the χ2

term. We use the input list of galaxies supplied by the simulators
scaled by their light. In Ares, we allow five galaxies to deviate
from the nominal mass-to-light ratio and be freely weighted by the
MC chain, and for two of them – especially important where radial
images are seen in the data – we allow for a free core radius as well.
In the case of Hera, only three galaxies were modelled in this way.
The ellipticity (and direction) of these bright galaxies are also left

as free parameters. As constraints, we use the full list of multiple
images. No weak lensing constraints were used. The final rms of
the model is 1.8 and 1.2 arcsec for Ares and Hera, respectively,
which, as we mention above, is in part limited by the finite lower
resolution of the grid we work on. The best-fitting external shear
amplitude and orientation are γ ext = 0.007, θ ext = 6.5 deg for Ares
and γ ext = 0.114, θ ext = 72.1 deg for Hera.

3.9 PIEMDeNFW: the Zitrin-NFW models

Zitrin et al. (2013) expanded their pipeline to also allow for a fully
parametric solution. This method in essence is similar to the other
parametric techniques mentioned here such as LENSTOOL and GLAFIC.
The main motivation for adding this parametric pipeline was to (a)
allow for further flexibility and improved fits by having a semi-
independent solution in which the dark matter is modelled inde-
pendently of the light, and (b) test for the magnitude of systematic
differences between these methods (Zitrin et al. 2015).

3.9.1 Description of the method

As is usually accustomed in parametric modelling, in order to de-
scribe well the multiple-image positions with enough prediction
power, this method also relies on a combination of galaxy and
dark matter. The red sequence cluster galaxies are modelled each
as PIEMDs based on the prescription and scaling relations used
in LENSTOOL, and typically with a fixed mass-to-light ratio. Usually
two or three parameters are left free to describe the galaxy compo-
nent: the velocity dispersion, core radius and truncation radius, of
an M* galaxy, which is used as reference for the scaling relations.
The dark matter component is modelled also with an analytic, fully
parametric recipe. We can choose either an elliptical Navarro et al.
(1996) profile (eNFW), or, also PIEMD for the cluster’s dark matter
halo. Therefore, in this method, the dark matter is modelled with
a symmetric analytic form, independent from the light distribution.
Similar to our LTM method, the same minimization engine is used
here: a long MCMC with a χ2 image-plane criteria. Also here we
can add other parameters to be optimized in the minimization, such
as the ellipticities of the BCGs, their mass can be allowed to deviate
from the adopted scaling relation, and so forth.

3.9.2 Strengths and weaknesses

Compared to our LTM technique, for example, we have found that
the fully parametric technique is more spatially flexible and can thus
often supply a more accurate solution with a (somewhat) smaller
image-plane rms. On the other hand the method is less efficient at
finding new sets of multiple images (especially before the model is
initially constrained).

In a similar sense, another main disadvantage of such
parametrizations is the need to add dark matter haloes to model
subhaloes for complex structures (such as merging clusters), with-
out knowing if these are fundamental parameters, e.g. accounting
truly for additional dark matter haloes, or just nuisance parame-
ters that help add flexibility and refine the fit. Additionally, each
such added halo adds several (usually four to six) free parame-
ters to the minimization procedure rendering it significantly more
cumbersome.

Note that since we developed this method with the same infras-
tructure used for our LTM method, and in part, for comparison with
it, the solutions given by the PIEMDeNFW method, despite being
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analytic in nature, are also calculated on a grid, the size of the in-
put *.fits image, similar to our LTM procedure. This results in a
somewhat slower procedure compared, for example, to our LTM
technique, and also here to achieve higher converging speed we
lower the grid resolution by factors of a few on each axis. Again
this leads to a finite rms due to e.g. numerical round-ups in high-
magnification regions.

3.9.3 Improvements in progress

The main improvement we wish to implement is to speed up the
procedure. This for start can be achieved if part of the calculation
is done completely analytically/numerically (say, only around the
positions of multiple images) rather than on a full-frame grid. We
intend to explore such possibilities. Also, recently we added the
possibility for an external shear to allow for further flexibility.

3.9.4 Modelling of Ares and Hera

To model Ares and Hera, we use the following setting in our PIEM-
DeNFW pipeline. As done with the LTM-gauss method, we create a
grid of 4080×4080 pixels covering the cluster. We start by running
many individual random MC chains with a grid resolution lower
by factor 20 on each axis. From this we find the global minimum
area and extract the covariance matrix. A proper, long MCMC is
then run with a grid of four times lower resolution than the orig-
inal input image. The final solution is then interpolated to match
the original pixel scale map. Errors were derived using 50 random
models to form the MC chain, with a positional uncertainty of 1.4
arcsec for the χ2 term. We use the input list of galaxies, scaled by
their light. The brightest galaxies are optimized individually as done
with the LTM-gauss pipeline. In this case, however, the ellipticity
(and direction) of the four brightest galaxies in both clusters are
also left as free parameters. In Ares, two cluster-scale DM haloes
in the form of elliptical NFW mass densities are introduced, with
fixed centring on the respective BCGs. In Hera, we used three such
large haloes. As constraints we use the full list of multiple images.
No weak lensing constraints were used. The final rms of the model
is 1.8 arcsec, which as we mentioned above is in part limited by the
finite lower resolution of the grid we work on.

4 R ESULTS

In this section, we describe how the different methods perform at
recovering several properties of the lenses.

4.1 Convergence maps

The reconstructed convergence maps of Ares and Hera are shown
for all models in Figs 7 and 8, respectively. The maps are all normal-
ized to zS = 9. In both figures, the maps derived from the free-form
algorithms are shown first (beginning from the upper-left panel).
The last panel in each figure shows the true convergence map, for
easy comparison. All maps cover the same FOV. This does not corre-
spond to the size of the simulated images that were made available to
the modellers. Indeed, for several technical reasons inherent to each
methodology employed, the submissions by the different groups
were different in size. To carry out a proper comparison between
the models, we restrict our analysis to the area around each of the
two lenses, which is covered by all the reconstructions. More pre-
cisely, we used as footprints for identifying the area of analysis the

submissions by the GLAFIC and by the GRALE teams for Ares and
Hera, respectively. In the first case, the FOV is ∼180 arcsec × 180
arcsec. In the second, the reconstructed area is ∼110 arcsec × 110
arcsec wide.

Since Ares was constructed parametrically with light-tracing
mass, it is particularly well suited for reconstruction by paramet-
ric techniques. The parametric CATS, GLAFIC, Johnson-Sharon,
and Zitrin models and the hybrid Diego model all include mass
substructure at the observed positions of cluster galaxies, recov-
ering the Ares mass distribution with high fidelity. The free-form
GRALE, Bradac-Hoag and Coe models do not assume LTM, recon-
structing the mass distribution solely based on the observed lensing.
They recover the main mass peaks, but smaller substructures are not
constrained by the lensing data. The GRALE model accurately re-
produces the cluster bimodality. The Bradac-Hoag and Coe models
are less smooth, including noisy smaller substructure, especially
outside the region constrained by strongly lensed multiple images.

The Hera cluster, obtained from an N-body simulation, is less
ideal for being reconstructed using parametric methods. Indeed, the
performance of the parametric algorithms appears more consistent
with that of the free-form ones. Hera is constructed assuming light
traces its massive substructure, as assumed by the parametric and
hybrid methods. The Bradac-Hoag and GRALE models do not make
that assumption and thus recover fewer small subhaloes.

The major differences between the models and the true conver-
gence maps are found near substructures, but also the shape of the
mass distributions, especially at large distances from the centre,
show inconsistencies. We will discuss them in more detail in the
next sections.

To better highlight the differences between the maps, we show
the relative differences (κ − κ true)/κ true between the reconstructed
and the true convergence maps for Ares and Hera in Figs 9 and 10,
respectively.

4.2 One-dimensional mass and convergence profiles

We begin discussing the results on the mass and convergence (or
surface density) profiles. Meneghetti et al. (2010a) already showed
using only one of the methods employed in this paper (LENSTOOL,
employed by both the CATS and the Johnson-Sharon teams) that
strong lensing can potentially measure the mass inside the Einstein
radius with an accuracy of the order of a few per cent. In the cases
of Ares and Hera, the sizes of the Einstein radii are significantly
different. In Fig. 11, we show how θE grows as a function of the
source redshift zs. The Einstein radius of Ares is ∼20 arcsec at zs = 1.
Its size at zs ∼ 2 is more than double and it grows asymptotically to
∼55 arcsec at higher redshift. The reason of the steep rise between
zs = 1 and zs = 2 is that Ares has a bimodal mass distribution. For
sources at low redshift (zs ∼ 1), each of the two mass clumps has its
own critical lines. These are shown by the red curves in the upper
panel of Fig. 3. To draw the plot in Fig. 11, we use the centre of
the most massive mass clump as reference, and only the critical line
enclosing this point is used to measure θE. By increasing the source
redshift, the critical lines around the two mass clumps merge into a
single, very extended critical line (see the white lines in the upper
panel of Fig. 3, which shows the critical lines for sources at zs = 9).

In the case of Hera, the Einstein radius grows from ∼12 arcsec
at zs = 1 to ∼30 arcsec at zs = 9. The critical lines for these two
source redshifts are shown in the upper panel of Fig. 4.

In Fig. 11, we also show the redshift distributions of the multiple
images identified in the background of the two clusters (red and
blue histograms). These multiple images are marked with numbered
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The FF lens modelling comparison project 3197

Figure 7. Convergence maps (zs = 9) of Ares. The first nine panels show the results of the reconstructions, beginning with the free-form methods (panels 1–4)
and concluding with the parametric models (panels 5–9). The lower left panel shows the true convergence map, for comparison.

circles in the upper panels of Figs 3 and 4. The labels of each image
are constructed as X.Y, where X is the ID of the source and Y is
the ID of the multiple images belonging to the same system. Being
such a powerful lens, Ares produces many more multiple images
than Hera, some of which originate from galaxies at redshift zs ∼ 6.

The most distant multiple image system in the field of Hera is only
at zs ∼ 3.5. In both cases, however, the redshift distribution of the
multiple images overlaps with the redshift range where the size
of the Einstein radii has the strongest growth. Indeed, the relative
variation of θE between zs = 3 and zs = 9 is only � 10 per cent. Thus,
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3198 M. Meneghetti et al.

Figure 8. Convergence maps (zs = 9) of Hera. The first 11 panels show the results of the reconstructions, beginning with the free-form methods (panels 1–6)
and concluding with the parametric models (panels 7–11). The lower right panel shows the true convergence map, for comparison.

we expect that the models constructed using these constraints can be
safely used to trace the growth of the cluster strong lensing region
up to very high redshifts. Analogously, we expect that the mass
profiles are recovered with higher precision in the radial ranges
20 � θ � 60 arcsec and 10 � θ � 30 arcsec for Ares and Hera,
respectively.

This is consistent with our findings. The upper panels of Figs 12
and 13 show the projected enclosed mass profiles of Ares and Hera,
respectively. The bottom panels show the projected mass density
profiles in units of convergence κ for zS = 9. The profiles are
computed with respect to the centre of the most massive subclump in
each cluster field. To facilitate the comparison between parametric
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The FF lens modelling comparison project 3199

Figure 9. Relative differences (κ − κ true)/κ true between the mass reconstructions and true Ares mass distribution.

and free-form methods, we show the results for these two classes
of models separately (left-hand and right-hand panels).

The mass distribution of Ares is generated in a very similar man-
ner as used by the parametric techniques (except Zitrin-LTM) to
model the lenses – as a combination of parametrized mass com-
ponents, including subhaloes at the positions of cluster galaxies.
Therefore, it is not surprising that these methods recover the true
mass profile of Ares with very good accuracy. For example, the
CATS, Johnson-Sharon and GLAFIC profiles differ from the true
mass profile by � ± 2 per cent. Larger differences are found for
the Zitrin-LTM-gauss and the Zitrin-NFW approaches (perhaps be-
cause these are calculated on a lower resolution grid, see discussion
in Sections 3.8 and 3.9), but even for these models, in the region
probed by strong lensing, the deviations from the true mass profiles
are within ∼±10 per cent.

It is noteworthy that neither the CATS nor the Johnson-Sharon
teams used the NFW density profile to model the smooth DM haloes
of the two main mass components of Ares. On the contrary, they
used cored isothermal profiles, which can of course be tweaked
to match the lensing properties of NFW haloes. This is consis-

tent with the findings of Shu et al. (2008), who showed that, in
several cases, strong lensing clusters are equally well modelled
with cored-isothermal and NFW density profiles. The additional
constraints provided by complementary analysis, such as stellar-
kinematics in the BCG, could help break this degeneracy (Newman
et al. 2013). Moreover, the adoption of an isothermal profile with
core instead of the NFW profile does not prevent several models
from recovering the correct slope of the surface mass density (i.e.
convergence) profile over a relatively broad range of distances from
the cluster centre. The constraints available to carry out the re-
constructions include both radial and tangential features, with the
former particularly sensitive to the slope of the projected density
profile.

Among the free-form methods, the reconstructed profiles gener-
ally deviate by � 5–15 per cent from the true mass and convergence
profiles. Some models (e.g. GRALE) have a very similar perfor-
mance to parametric methods. The best agreement between the true
profile and the models is found between 20 and 60 arcsec from the
lens centre, which nicely corresponds to the size of the Einstein
radius, as shown in Fig. 11.
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Figure 10. Relative differences (κ − κ true)/κ true between the mass reconstructions and true Hera mass distribution.

Hera is a less idealized test case for most of the parametric
methods, but it still assumes that light traces the mass substructure.
So also for this lens, the parametric models reproduce the input
mass profiles more closely than the free-form methods, though
the differences between the two approaches are now reduced. We
find that the mass profiles obtained with the parametric meth-
ods differ from the input mass profile by less than 10 per cent

within ∼80 arcsec from the assumed centre. The same level of
accuracy is reached by the free-form methods within 10 � r �
30 arcsec. This radial range corresponds to the size of the region
probed by strong lensing. Both parametric and free-form meth-
ods clearly converge to the true mass profiles within this range of
distances, where the relative differences are of the order of few
per cent.
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The FF lens modelling comparison project 3201

Figure 11. Size of the Einstein radii of Ares and Hera as a function of the
source redshift (red and blue dashed lines, respectively). The histograms
show the redshift distribution of the multiple images for the two clusters.

4.3 Shape and orientation

Having quantified the performance of the methods to reconstruct
1D mass profiles, we discuss now their ability to recover the 2D
mass distributions of the lenses.

To be more quantitative about how well the methods employed
recover the true shape and orientation of the two clusters, we con-
sider the projected mass distributions of the lenses in terms of their
iso-surface-density (or convergence, κ) contours. We use the fol-
lowing procedure:

(i) From the convergence maps, we extract the contours corre-
sponding to κ-levels in the range 0.5–3.0. Since both Ares and Hera
have bimodal mass distributions, we use the centre of the largest
mass clump as the reference centre for this analysis and we consider
only the contours enclosing it.

(ii) We fit an ellipse to each contour and measure its ellipticity
and position angle. We also measure the size of each contour by
means of an equivalent radius rκ , defined as

rκ =
√

ab , (16)

where a and b are the semi-axes of the best-fitting ellipse.
(iii) Finally, we draw the radial profiles of both the ellipticity and

the position angle. The radius used to produce the profiles is the
equivalent radius of the iso-density contours.

The procedure outlined above is shown in Fig. 14 for the cluster
Ares.

The radial profiles of the ellipticity and of the position angle for
the two clusters are shown in Figs 15 and 16. As done in Figs 12
and 13, the results for parametric and free-form methods are dis-
played separately (left-hand and right-hand panels, respectively).

In each panel, the true profile is given by the black dashed line.
The two clusters investigated in this work exhibit quite different
ellipticity profiles. Indeed, due to the larger spatial separation be-
tween the two mass clumps, Ares has a less elongated inner core
(e = 1 − b/a ∼ 0.3) compared to Hera (e ∼ 0.7). Ares’s ellipticity
increases with radius, while Hera shows the opposite trend.

Despite the fact that we have introduced some modest radial
variation of the ellipticity of two main mass clumps in Ares,
the largest jumps in the ellipticity profile of this cluster are pro-
duced by massive substructures. These variations of ellipticity are
generally well reproduced in the parametric reconstructions, and,
to some extent, also in the free-form model of GRALE. Clearly,
the parametric techniques produce better measurements of the core

Figure 12. Mass profiles in the inner 100 arcsec of Ares: enclosed mass (upper panels) and mass surface density (lower panels). Results for parametric and
free-form methods are shown in the left-hand and in the right-hand panels, respectively. The insets on the bottom of each panel show the ratio between the
reconstructed and the true mass profiles. The horizontal dashed lines correspond to ±2 per cent and ±10 per cent differences between lens models and input
mass distribution.
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Figure 13. Mass profiles as in Fig. 12 but for Hera.

Figure 14. Ares mass iso-surface-density contours κ = 0.5, 1.0, 1.5, 2.0,
2.5, 3.0 for zs = 9 (jagged lines) and elliptical fits in red.

shapes, both in the cases of Ares and Hera. Indeed, due to resolu-
tion limits, the convergence maps produced by the free-form meth-
ods are noisier, resulting in more irregular iso-density contours.
Under these circumstances, the ellipticity measurements are more
uncertain.

Among the parametric reconstructions of Ares, the largest devia-
tions from the true ellipticity profile are found for the Zitrin-NFW
and for the Zitrin-LTM-gauss models within ∼40 and ∼20 arcsec,
respectively. Interestingly, these same algorithms provide some of

the most accurate measurements of the core shape in the case of
Hera. These algorithms generally find higher halo ellipticities com-
pared to the other parametric methods. Such behaviour is consistent
with the results of Zitrin et al. (2015), where the Zitrin-NFW and
Zitrin-LTM-gauss methods are both employed in the reconstruction
of the galaxy clusters in the CLASH sample. As shown in their
fig. 3, the first of these two methods leads to more elliptical mass
distributions. The most likely interpretation of this behaviour is
that external shear compensates the smaller ellipticity of the LTM
models.

All parametric methods except the Zitrin-LTM-gauss tend to
overestimate the ellipticity of the mass distribution at large radii
in the case of Hera. We shall recall that all these algorithms fit the
data by combining multiple mass components, each of which has a
fixed ellipticity. The results show that, within the region probed by
strong lensing (� 40 arcsec for Hera), the combination of multiple
mass clumps is effective in reproducing the overall ellipticity of
the cluster. At larger radii, though, the models are unconstrained
and the ellipticity is extrapolated from the inner region. Free-form
methods do not show the same trend; their ellipticity profiles are
more noisy.

Also the orientation angles of the iso-density contours in the para-
metric reconstructions deviate from Hera’s true orientations at large
radii. Being a numerically simulated cluster, Hera is characterized
by asymmetries and twists of the iso-density contours that result
to be much stronger than in Ares. For example, the position angle
of the iso-density contours changes by ∼20 deg between the very
inner region of the cluster and a distance of ∼50 arcsec.

As a result of the not perfectly reproduced shape and orientation
of the cluster at large radii, the CATS, Johnson-Sharon, GLAFIC
and Zitrin-NFW models have an excess of mass along the major
axis of the cluster with respect to the true mass distribution of Hera
(and consequently they lack mass in the perpendicular direction).
Such peculiarities can be seen in Fig. 10, where the ratios between
reconstructed and true convergence maps of Hera are shown.
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Figure 15. Ellipticity (upper panels) and position angle (lower panels) as a function of the equivalent radius of the convergence contours of Ares. In each
plot, we show the true profile as a dashed black line. The profiles obtained from the reconstructions are given by the solid coloured lines. The left-hand and
the right-hand panels refer to the parametric and to the free-form methods, respectively. The vertical dotted lines indicate the maximum radius covered by all
reconstructions.

Figure 16. Ellipticity (upper panels) and position angle (lower panels) profiles as in Fig. 15 but for Hera.

4.4 Substructure

Figs 9 and 10 show that significant differences exist between the
models near substructures. Measuring the mass of substructures is
an important task that several authors have performed via strong
lensing (see e.g. Natarajan, De Lucia & Springel 2007; Natarajan
et al. 2009; Grillo et al. 2015, and references therein). Therefore,

it is interesting to quantify the lens model precision near these
secondary mass clumps.

From the perspective of strong lensing, substructures are often
identified as massive haloes around cluster galaxies. This is partic-
ularly true for parametric methods: they use the luminous galaxies
as tracers of the underlying mass distribution. Instead, free-form
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Figure 17. Distributions of the ratios between measured and true substructure masses for Ares. The total number of substructures is 282. Each panel shows
the results for a mass model. In each panel, we indicate the median r and the 25th and 75th percentiles of the distribution.

methods can in principle detect any kind of mass substructure, even
if not traced by light. However, they cannot distinguish between
the projected mass belonging to the cluster halo and bound to the
substructures.

Indeed, as part of their submissions, the groups did not provide es-
timates of the masses in substructures, nor substructure catalogues.
Here, we perform the following analysis:

(i) We start from the assumption that galaxies trace the substruc-
tures. This is not a strong assumption given the method employed
to generate the galaxy populations of Ares and Hera. In both cases,
galaxies tend indeed to coincide with dark matter substructures.
In the case of Ares, there is a one-to-one correspondence between
luminous galaxies and dark matter subhaloes. In the case of Hera,
we have excluded from the image simulations those galaxies that
had their dark matter haloes stripped off in the course of the cluster
evolution.

(ii) We create apertures centred on the cluster galaxies with
mAB, F814W < 24, with radii equal to twice the effective radius of
the galaxies, and we measure the projected mass within each aper-
ture from both the reconstructed and the true convergence maps.

(iii) In the following, we will refer to these masses as substructure
masses, keeping in mind that these are, however, the sum of the
substructure mass and of the projected mass of the underlying cluster
dark matter halo.

In Figs 17 and 18, we show the distributions of the ratios between
measured and true substructure masses. The two figures refer to
Ares and Hera, respectively, and show the results for all the models.
We characterize the distributions of the ratios r by means of their
median r and of their 25th and 75th percentiles, p25 and p75. The
analysis is carried out on the same areas covered by the maps in
Figs 7 and 8. Therefore, the same number of substructures have
been used to build the histograms (282 and 278 for Ares and Hera,
respectively).

The results found for Ares show that several methods recover
nearly unbiased substructure masses with good accuracy. For

example, the interpercentile range found for the CATS model is
only 0.21 and the median is r = 1. Similar results are found for the
Zitrin-LTM-gauss model, although with a median slightly larger
than unity. Some parametric models, such as those of Johnson-
Sharon and Zitrin-NFW and marginally GLAFIC, have skewed
distributions with tails extending towards ratios larger than unity.
Interestingly, Johnson-Sharon’s model is based on the same mod-
elling software employed by the CATS group.

Among the free-form models, the distributions are generally
broader than for the parametric methods. The distribution for the
Bradac-Hoag model has median r = 1 and interpercentile range
0.32. Similar or slightly larger scatter is found for the GRALE and
Coe models. The ratio distribution obtained for the Diego-reggrid
model has a tail extending towards small values and its median is
r = 0.8.

The results found for Hera are quite in agreement with those
found for Ares. Parametric methods perform very similarly among
each other, providing mass measurements accurate at the level of
few per cent. The Zitrin-LTM-gauss model has a median r = 0.89.
The dispersions of the ratio distributions, as quantified by the in-
terpercentile ranges, are ∼0.2–0.25. This is quite remarkable given
the very different methods used to populate Ares and Hera with
substructures and the significant differences between the density
profiles of the substructures themselves in the two simulations, as
shown in Fig. 1. This seems to indicate that the methods are flexi-
ble enough to account for even large variations in the substructure
properties, provided they are traced by light. It is less surprising that
the flexible free-form methods also behave so similarly in Hera and
Ares.

4.5 Magnification maps

As one of the major goals of the Hubble Frontier Fields is to use the
lensing power of galaxy clusters to detect and characterize very high
redshift galaxies, we focus now on the magnification. Of course, the
results shown in this section are not independent of those discussed
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Figure 18. Distributions of the ratios between measured and true substructure masses for Hera. The total number of substructures is 282. Each panel shows
the results for a mass model. In each panel, we indicate the median r and the 25th and 75th percentiles of the distribution.

earlier, since the convergence is one of the two quantities entering
the definition of magnification. The other quantity is the shear,
which was not discussed so far.

In Figs 19 and 20, we show the magnification maps for zS = 9
obtained for Ares and Hera. As done previously, the results for each
model are displayed in different panels. The last panel on the bottom
shows the true magnification. The relative differences between each
reconstructed magnification map and the true magnification maps
are shown in Figs 21 and 22.

The largest discrepancies between reconstructed and true mag-
nifications appear around the lens critical lines. These are the loci
where the magnification formally diverges. Therefore, even a small
misalignment of the true and reconstructed critical lines will result
in potentially large magnification differences. Most of the models
recover the shape and the size of the critical lines well. Others,
as the Bradac-Hoag, the Coe and the Diego-multires models are
characterized by critical lines with very irregular shapes.

In Figs 23 and 24, the measured magnifications are plotted as
a function of the true magnifications. As anticipated, the scatter
around the median increases as a function of the true magnification
for all models. The scatters for parametrically reconstructed models
of Hera are factors of 2–3 larger than for the corresponding models
of Ares, the mock cluster that was generated parametrically. Besides,
we note that Hera was inherently less well constrained as the cluster
had fewer multiple images than Ares. So a slightly lower fidelity in
the reconstruction was anticipated and found as expected.

In the best scenario obtained for Hera (i.e. the GLAFIC model,
see also Fig. 25), we find very high accuracy (a few per cent bias
at most) and precision: ∼10 per cent uncertainty for μ = 3, grow-
ing to ∼30 per cent at μ = 10, and increasing further at higher
magnifications.

In other cases, median magnifications are biased low or high by
as much as ∼40–50 per cent. Some of these biases are due to the
models’ inability to reproduce the correct magnification patterns
interior to the tangential critical lines. In other cases, the gradient of
the magnification around the critical lines is significantly different
from that in the true magnification maps, reflecting the incorrect
shape and orientation of the projected mass distribution or the in-
correct slope of the convergence profile.

Regions around substructures sometimes are characterized by
large uncertainties on magnification estimates. For example, the
large substructure located south of the cluster Hera is not well
constrained by any of the models, which all systematically under-
estimate the magnification around it. As shown in the upper panel
of Fig. 4, there are no multiple images located near this substruc-
ture, which may explain why no model is able to constrain its mass
properly.

In Fig. 25, we plot the precision and the accuracy of the magni-
fication measurements attained by each model as a function of the
model magnification. The results are shown for Hera only, and they
do not account for the location of the lensing constraints. Fig. 26
shows that the precision achieved by the model at the location of
the constraints is higher than in other regions with similar magnifi-
cations. The distributions of the relative differences between model
and true magnifications at the location of the 65 multiple images
in the cluster Hera are shown using green boxplots for all the lens
models. The median true magnification at the location of the lensing
constraints is μ̂(zs = 9) ∼ 6. We sample each model magnification
maps at other 65 positions, making sure that the selected points have
magnification distributions identical to those of the multiple images.
The distributions of the relative differences between model and true
magnifications at these locations are shown by the blue boxplots.
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3206 M. Meneghetti et al.

Figure 19. Magnification maps for sources at zs = 9 lensed by each Ares reconstruction and, at bottom, the true simulated cluster.

As said above the precision of the models is usually better near
the lensing constraints, although the accuracy does not generally
improve.

5 R E C O N S T RU C T I O N M E T R I C S

In order to be more quantitative in estimating the ability of the
different methods employed in this work to measure several relevant

properties of Ares and Hera, we have defined metrics for the lens
properties discussed above. More precisely, we introduce metrics
for the 1D radial profiles of the following:

(i) the 2D projected mass enclosed within radius R,
(ii) the surface mass density, or convergence κ(R),
(iii) the ellipticity, as fit to iso-density contours,
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The FF lens modelling comparison project 3207

Figure 20. Magnification maps for sources at zs = 9 lensed by each Hera reconstruction and the true simulated cluster (bottom right).

(iv) and the orientation, as given by the position angle of the
convergence contours.

We also define metrics to quantify the goodness of the recon-
struction of the 2D convergence and magnification maps. Finally,
we define a metric for the projected subhalo masses in apertures
centred on the cluster galaxies.

Thus, we have seven metrics that can be used for a more quanti-
tative comparison between the lens models of both clusters. We can

also evaluate how the performance of each algorithm changes when
switching from a simulation based on a lens obtained from SAMs
(Ares) and one obtained from a fully numerical simulation (Hera).

The metrics are defined as follows. Given a set of measured values
v and a set of true values vtrue, we derive the distribution of v/vtrue.
Then, we compute the median, ζ and the 25th and 75th percentiles
of the distribution, p25 and p75. The metric is finally defined as

Qv = log10{[(p75 − p25)|ζ − 1|]−1} . (17)
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3208 M. Meneghetti et al.

Figure 21. Relative difference between model and true magnifications for Ares.

By adopting this definition, the metric penalizes those reconstruc-
tions that are biased and/or affected by a large scatter.

Of course, the metrics are not fully independent. For example,
a model that is able to reproduce the convergence profile of the
lens with a good accuracy will also provide a robust measurement
of the mass profile. Similarly, models whose reconstructed conver-
gence maps show little deviation from the true convergence maps
will also provide a good match with the simulation in terms of
converge profile or shape (ellipticity and position angle). Neverthe-
less, the ranking among the models with respect to correlated lens
properties is not always the same. For example, the Johnson-Sharon
reconstruction of Hera ranks second in terms of convergence pro-
files and fourth in terms of mass profiles. In addition, the different
lens properties that are discussed here are often used individually,
and it may be interesting for the reader to establish which modelling
technique is better suited to their scientific purposes.

In Fig. 27, we show radar plots that summarize the metric values
recorded by each reconstruction. The overall performance of each

model corresponds to the area of each polygon. When one model
is good at measuring some of the lens properties, but less effective
at capturing others, the polygon appears elongated towards one or
more of the chart vertexes.

The first eight charts correspond to free-form or hybrid methods.
The remaining five charts refer to parametric techniques. As we
have pointed out several times earlier, there is larger discrepancy
between the performances of parametric and non-parametric meth-
ods in the case of Ares than in the case of Hera. This leads us to the
conclusion that, despite our attempts to make the Ares mass distribu-
tion less ideal for parametric methods (e.g. by simulating adiabatic
contraction or by introducing some twist of the iso-density con-
tours, including some radial dependence), the simple fact that this
cluster is assembled by combining mass components traced by the
cluster galaxies, consistently with the basic assumptions of most
parametric techniques, gives a huge advantage to these methods.
The good news, in this case, is the following. First, these algorithms
work as they are supposed to. Secondly, they provide very accurate
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The FF lens modelling comparison project 3209

Figure 22. Relative difference between model and true magnifications for Hera.

reconstructions even if the parametrization chosen for the lens halo
density profile is not fully consistent with the true profile of the
lens. For example, none of the parametric techniques, except the
Zitrin-NFW method, used the NFW profile for fitting the smooth
dark matter halo components of Ares. Even so, models such as those
submitted by the CATS, Johnson-Sharon and GLAFIC teams pro-

duce an overall better fit to the input mass distribution compared to
the Zitrin-NFW reconstruction. This suggests that pseudo-elliptical,
cored halo models provide the right flexibility to account for most
of the effects we have introduced in the simulation, such as the adi-
abatic contraction, which steepens the density profile in the central
region of the cluster. Alternatively, these results may be interpreted
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3210 M. Meneghetti et al.

Figure 23. Model versus true magnifications (zs = 9) for Ares. The underlying 2D histograms show the distributions of the pixel values on the μ–μtrue plane
after sampling the magnification maps on a grid of 256 × 256 pixels. The black and the blue solid lines show the median and the 25th and 75th percentiles
of the measured magnifications in bins of μtrue. The dashed and the dotted lines parallel to the diagonal in each panel denote the limits of ±10 per cent and
±30 per cent deviations from the relation μ = μtrue.

as evidence for a lack of sensitivity of lensing alone to the pre-
cise share of the halo density profiles, being mostly sensitive to the
mass enclosed within the Einstein radius rather than the slope of
the density profile. Another possible cause may be that the Zitrin’s
models are calculated on a low-resolution grid and perhaps their
accuracy is limited by this resolution compared to higher resolution
or completely analytic parametrizations.

When switching to a fully numerical simulation, the differences
between parametric and free-form methods become weaker. At least
for some of the metrics, some free-form/hybrid reconstructions of
Hera (see e.g. the GRALE or Lam models) appear to be as good
as the best parametric reconstructions of this cluster. This indicates
that several parametric methods still cannot fully account for devi-
ations of the mass distributions from a symmetric shape, which are,

instead, more naturally captured by free-form methods. Asymme-
tries could be mimicked by suitable combinations of substructures
in parametric models. Indeed, a degeneracy exists between these
two properties of the mass distribution. However, the number of
constraints in these simulations is high enough that this degeneracy
is partially broken, as shown by how well the mass is constrained
around the cluster galaxies in at least some of the parametric recon-
structions.

The model provided by the CATS team for Hera has signifi-
cantly smaller values of all metrics (except for the cluster orienta-
tion), compared to the model submitted by the same team for Ares.
The metrics agree with those of other parametric reconstructions
of the same cluster (e.g. Johnson-Sharon). On the contrary, the re-
constructions provided by the GLAFIC team for the two clusters
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The FF lens modelling comparison project 3211

Figure 24. Model versus true magnifications (zs = 9) for Hera, as in Fig. 23.

have quite consistently high metric values. One feature of GLAFIC,
which was enabled in the reconstruction of Hera, is the inclusion of
external shear and third-order multipoles of the mass distribution.
Apparently, these additional ingredients have provided the GLAFIC
model extra degrees of freedom to properly account for the asym-
metric mass distribution of Hera.

The comparison between the metrics of parametric and free-
form methods also shows that the latter techniques are generally
less accurate in reconstructing the 2D maps of convergence and
magnification and in measuring the mass around substructures. In
fact, the spatial resolution that can be achieved with these methods is
generally lower. On the contrary, radial profiles of the convergence
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3212 M. Meneghetti et al.

Figure 25. Magnification accuracy (dashed line) and precision (solid line) as a function of the magnification from the strong lensing constraints for the
GLAFIC reconstruction of Hera. The precision is quantified by the difference between the 75th and 25th percentiles of the distribution of μ–μtrue, sampled on
a 256 × 256 pixel grid. The accuracy is given by the median of μ–μtrue.

Figure 26. Comparison between accuracy and precision of the magnifica-
tion measurements at the location of the multiple images used to build the
lens models (green) and at other locations with similar model magnifications
(blue).

and of the enclosed mass are measured by several of the free-form
methods employed in this experiment with accuracy comparable to
parametric techniques.

6 LI M I TATI O N S O F T H I S T E S T

We would like to remark that the tests outlined in this paper suffer
of some limitations. First of all, we make the assumption that the
simulations reproduce the properties of real clusters. While some
methods (e.g. the free-form ones) do not care about the correlation

between dark matter and baryons, other methods strongly rely on the
assumption that LTM. Both Ares and Hera implement this property,
which, at least in some cases, has been questioned by observations
(Hoag et al. 2015; Wang et al. 2015). In particular, the results we
report on substructures are sensitive to this assumption. In a recent
paper, Harvey, Kneib & Jauzac (2016) have explored how assuming
that LTM in strong gravitational models can lead to systematic errors
in the predicted positions of multiple images. They find that images
can be shifted by up to ∼1 arcsec, assuming physically motivated
offsets between dark matter and stars. They quote a ∼0.5 arcsec
rms error in the position of the multiple images due to breaking
the assumption that mass traces light. Note, however, that, to some
extent, we introduced some misalignment between matter and light
in both Ares and Hera, by assigning to the observed galaxies a shape
and an orientation that are not correlated with the underlying dark
matter distribution.

Other limitations regard some observable properties of the galax-
ies in the simulated observations (e.g. luminosities and sizes) and
their correlation with their halo masses. It is known that the SAMs
are not fully consistent with observations in this respect (see e.g.
González et al. 2009; Ascaso, Mei & Benı́tez 2015; Xie et al. 2015;
Hirschmann, De Lucia & Fontanot 2016), and thus the standard
scaling relations adopted by some parametric techniques to trans-
late the light into the mass or the size of the host halo might not
equally applicable to observations and simulations.

7 SU M M A RY A N D C O N C L U S I O N S

In this paper, we used simulated observations of two synthetic
galaxy clusters to evaluate the performance of several algorithms
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The FF lens modelling comparison project 3213

Figure 27. Radar plot showing the scores of each model for all metrics discussed in the paper. Larger polygons correspond to better overall performance.
Each chart corresponds to a different lens model (see labels on the top) and shows results for both Ares (blue) and Hera (red), or whichever is available. The
seven metrics are shown on the vertices of each chart. For each metric, the scores range from 0 (worst; plotted at the centre of the chart) to 1 (best; plotted at
the vertex), normalized to the maximum value recorded by all models. A filled polygon is obtained by connecting the plotted scores of all metrics for each
reconstruction.

for mass reconstruction with strong lensing. Such algorithms are
currently being used to deliver to the community the lens models
for the six galaxy clusters being observed in the Frontier Fields
programme of the HST.

The two clusters used in this study were obtained using very
different techniques. Ares was generated using the semi-analytical
code MOKA. Hera is instead the output of a cosmological N-body sim-
ulation at high resolution. The observable properties of the cluster
galaxies are modelled using HOD and SAM techniques in Ares and
Hera, respectively. In both cases, the clusters have complex mass
distributions, characterized by disturbed and bimodal morphology,
similar to those of the FFI clusters.

We used the code SKYLENS to simulate HST observations of the
two mock clusters with both the ACS and the WFC3-IR camera.
We produced images in all photometric bands used in the FFI,
calibrating the exposure times such to reach the depth of the FFI
observations. These HST simulated data were distributed to several
groups of lens modellers for a blind analysis, i.e. without unveiling
the true mass distribution of the lenses, neither the method used to
simulate them.

The simulated observations include lensing effects on a realistic
distribution of background galaxies. We identified many strongly
lensed galaxies and built a catalogue of multiple image systems,

which was delivered together with the simulated observations. The
catalogues also include the redshift of all the sources.

We complemented the HST simulations with a simulated obser-
vation in the Rc band with the Subaru telescope. The main purpose
of this additional simulation was to allow the inclusion of weak-
lensing constraints at larger distances from the cluster centre than
those probed by HST. Together with the image, we also distributed
a shear catalogue obtained by processing the Subaru simulation
through a public KSB pipeline.

We received 9 reconstructions of Ares and 11 reconstructions of
Hera, submitted by 10 different groups. Seven groups employed
their techniques to reconstruct both clusters. The remainder groups
reconstructed just one of the two clusters or submitted reconstruc-
tions based on different set-ups of their methods. This is the first
time that such a large number of algorithms have been tested
against known mass distributions. Similar to the spirit of our ex-
periment, in the recent collaborative effort presented in Treu et al.
(2016), several of the methods used to reconstruct the galaxy clus-
ter MACSJ1149.5+2223 and to estimate the time delays between
the multiple images of the SN ‘Refsdal were compared. The recent
reappearance of the SN, reported by Kelly et al. (2016), enabled
the blind test of various model predictions, which were found to
be in very accurate for several reconstructions. In addition, Rodney
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et al. (2015) compared the magnification predictions from 17 mass
models of Abell 2744 using a lensed Type Ia supernova.

The methods compared here include both parametric and free-
form algorithms. We have investigated how they perform at recov-
ering several properties of the lenses, namely: the radial profiles of
the convergence and of the enclosed mass, the mass in substruc-
tures, the maps of the convergence and of the magnification. For
each of these properties, we defined a metric aimed at quantifying
the performance of the method.

The key results of this phase of the comparison exercise of lens
mapping methodologies can be summarized as follows.

(i) Parametric methods are generally better at capturing 2D prop-
erties of the lens cores (shape, local values of the convergence and
of the magnification). The free-form methods are as competitive as
the parametric methods to measure convergence and mass profiles.
It is worth mentioning, however, that, in both Ares and the Hera, the
cluster galaxies were good tracers of the cluster mass distributions.

(ii) The accuracy and precision of strong lensing methods to
measure the mass within the Einstein radius (or more generally
within the region probed by the strong lensing constraints) is very
high. The measured profiles deviate from the true profiles by only a
few per cent at these scales. Of course, larger deviations are found at
radii larger and smaller than the Einstein radius. The determination
of the mass enclosed within the Einstein radius was extremely robust
for all methods.

(iii) The largest uncertainties in the lens models are found near
substructures and around the cluster critical lines. For some of the
parametric models, the total mass around substructures (identified
by cluster galaxies) is constrained with an accuracy of ∼10 per cent.
However, other methods have much larger scatter. Uncertainties on
the magnification grow as a function the magnification itself and
are therefore more pronounced near the cluster critical lines. For
the best-performing methods, the accuracy in the magnification
estimate is ∼10 per cent at μtrue = 3 and degrades to ∼30 per cent
at μtrue = 10.

(iv) Switching from Ares to Hera, i.e. from a purely parametric to
a more realistic lens mass distribution, the gap between parametric
and free-form methods becomes smaller. Algorithms such as that
used by the GLAFIC team, which include third-order multipoles
in the lens mass distribution, have extra degrees of freedom which
allow them to better reproduce asymmetries. These asymmetries,
and possible variations of the halo ellipticity as a function of radius,
seem to be the strongest limitations of parametric methods. The
adoption of an hybrid approach, where parametric and free-form
methods are combined also to describe the large-scale component
of the clusters, could lead to a significant improvement of the mass
reconstructions.

(v) Some of the participating groups used the same code but
adopted different set-ups to run them. For example, two groups
(CATS and Johnson-Sharon) use the public code LENSTOOL with
slight modifications. Similarly, Diego submitted several models of
Hera using WSLAP+, which is the same code used by Lam et al.
(2014). Despite using the same algorithms and using the same inputs
(i.e. families of multiple images and redshifts), the reconstructions
obtained by these groups are different, indicating that some choices
made by the modellers when ingesting the data and hence set up
priors influence the results. For example, the differences between the
reconstructions performed with LENSTOOL by the CATS and Johnson-
Sharon teams may be in part due to the priors on the normalization
of the scaling relations used to model the cluster galaxies.

This is the first of a series of papers in which we address the issue
of the accuracy of lens modelling. In a second paper, currently in
preparation, we will discuss the results of the unblinded modelling
of Ares and Hera. The feedback from the unblinding was used
by modellers to not only tweak their best fits to reach the best
possible match to the input mass distributions of the lenses but
to also incorporate and instigate improvements in their modelling
procedure. This will provide information on the accuracy limits
achievable by each method and will also give further hints on the
steps that need to be taken to optimize reconstructions.

Despite their complexity and the inclusion of several observa-
tional effects, the simulations used in this paper are still idealized
in many respects. For example, the lenses are isolated and no ad-
ditional lensing by matter along the line of sight is included. In
addition, we alleviated the work of the lens modellers by identi-
fying the strongly lensed sources and even providing redshifts for
all of them. In the case of Ares, the number of available multiple
images with known redshifts exceeds by a factor of ∼3–4 what is
available in any of the Frontier Fields (e.g. MACSJ0416). We will
include the uncertainties due to possible misidentification of multi-
ple images and photometric redshifts as well as the noise added in
by the intervening matter distribution along the line of sight in the
next phase of this project in future work.
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Bradač M., Schneider P., Lombardi M., Erben T., 2005, A&A, 437, 39
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