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Design and analysis of a finite volume scheme for
a concrete carbonation model

Claire Chainais-Hillairet, Benoı̂t Merlet and Antoine Zurek

Abstract In this paper we introduce a finite volume scheme for a concrete carbona-
tion model proposed by Aiki and Muntean in [1]. It consists in a Euler discretisation
in time and a Scharfetter-Gummel discretisation in space. We give here some hints
for the proof of the convergence of the scheme and show numerical experiments.
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1 Introduction

The carbonation phenomenon is a physico-chemical reaction which is the main
cause of concrete structure degradation. We can describe the carbonation process
as follows: CO2(g) from the atmosphere enters in the concrete and it is quickly
transformed in CO2(aq). The introduction of CO2(aq) in concrete drives the car-
bonation reaction. This reaction facilitates a drop of the pH inside the material and
allows the corrosion process to damage the metallic reinforcement bars. It deterio-
rates the concrete and reduces the durability of the structure.
In order to model this phenomenon Aiki and Muntean proposed in [1] a free-
boundary system where the varying space domain represents the carbonated zone.
The unknowns u and v represent the mass concentration of CO2 respectively in wa-
ter and air and s represents the penetration depth which measures the size of the
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carbonated zone. The unknowns u and v solve a weakly coupled system of reaction-
diffusion equations in the varying domain (0,s(t)) and s solves an ordinary dif-
ferential equation. The concentrations u and v are subjected to Dirichlet boundary
conditions at y = 0 and Robin/Neumann boundary conditions at y = s(t).
For this system Aiki and Muntean have shown in [1] the existence and the unique-
ness of a global solution. They also have shown that the penetration depth follows a√

T -law of propagation in [2, 3]. Our aim is to define a finite volume scheme for the
concrete carbonation model and to show the convergence of the numerical scheme.
In this short paper, we just give sketch of the convergence proof. Full details will be
provided in a forthcoming paper [8].

2 Presentation of the model

Let us define the carbonated domain Qs(T ) = {(y, t) : 0 < y < s(t), 0 < t < T <
+∞}. The system considered by Aiki and Muntean in [1] writes

∂tu−∂y(κu∂yu) = f (u,v) in Qs(T ), (1a)
∂tv−∂y(κv∂yv) =− f (u,v) in Qs(T ), (1b)

s′(t) = ψ(u(s(t), t)) for 0 < t < T, (1c)
s(0) = s0, (1d)

−κu∂yu(s(t), t)− s′(t)u(s(t), t) = ψ(u(s(t), t)) for 0 < t < T, (1e)
−κv∂yv(s(t), t)− s′(t)v(s(t), t) = 0 for 0 < t < T, (1f)

u(0, t) = g(t),v(0, t) = r(t) for 0 < t < T, (1g)
u(y,0) = u0(y),v(y,0) = v0(y) for 0 < y < s(0). (1h)

Here and hereafter we suppose the following assumptions:

(A1) ψ : R−→ R drives the carbonation reaction and is defined by ψ(x) = α x
with α > 0,
(A2) f : R2 −→ R measures the availability of CO2(aq) for the carbonation
reaction. It is defined by f (p,q) = β (γq− p) where β and γ are two real constants,
(A3) g and r belong to W 1,2(0,T ),
(A4) u0 and v0 belong to L∞([0,s0]),
(A5) the diffusive coefficients κu and κv are two positive constants,
(A6) s0 > 0,
(A7) there exist g∗ and r∗ two positive constants such that 0≤ g≤ g∗, 0≤ r ≤ r∗

on [0,+∞) and 0≤ u0 ≤ g∗, 0≤ v0 ≤ r∗ on [0,s0] with g∗ = γr∗.

For numerical reasons, it is convenient to rewrite (1) on a fixed space domain. For
this, we use the change of variables
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∪0≤t≤T [0,s(t)]×{t} → [0,1]× [0,T ] = Q(T ),

(y, t) 7−→
(

x(y, t) = y
s(t) , t

)
,

and we associate u(y, t) = ū(x(y, t), t) and v(y, t) = v̄(x(y, t), t). Then if we drop the
bars, we obtain, as in [6]

s(t)∂t(s(t)u)+∂xJu = s2(t) f (u,v) in Q(T ), (2a)

s(t)∂t(s(t)v)+∂xJv =−s2(t) f (u,v) in Q(T ), (2b)
s′(t) = ψ(u(1, t)) for 0 < t < T, (2c)

s(0) = s0, (2d)
Ju(1, t) = s(t)ψ(u(1, t)), Jv(1, t) = 0 for 0 < t < T, (2e)

u(0, t) = g(t), v(0, t) = r(t) for 0 < t < T, (2f)
u(x,0) = u0(s0x), v(x,0) = v0(s0x) for 0 < x < 1, (2g)

with Jw =−κw∂xw− s(t)s′(t)xw, for w = u or v. We now define the notion of weak
solution for (2). For this, we introduce the functional space H = {z ∈ H1(0,1) :
z(0) = 0} endowed with the H1(0,1) norm. Assuming (A1)− (A7), we say that
(s,u,v) is a weak solution of (2) if the following conditions are satisfied

(S1) (u,v) ∈ (L2(0,T ;H1(0,1))∩L∞(Q(T )))2,
(S2) u−g,v− r ∈ L2(0,T ;H),
(S3) s ∈W 1,∞(0,T ), s(0) = s0 and s′(t) = ψ(u(1, t)) for almost every t ∈ [0,T ],
(S4) for all φ ∈ C ∞

c ([0,T )× (0,1])

−
∫ T

0

∫ 1

0
u(x, t)s(t)∂t(s(t)φ(x, t))dxdt−

∫ 1

0
u0(s0x)s2

0 φ(x,0)dx

+
∫ T

0

∫ 1

0
κu∂xu(x, t)∂xφ(x, t)dxdt +

∫ T

0

∫ 1

0
s(t)s′(t)xu(x, t)∂xφ(x, t)dxdt

+
∫ T

0
s(t)ψ(u(1, t))φ(1, t)dt =

∫ T

0

∫ 1

0
s2(t) f (u(x, t),v(x, t))φ(x, t)dxdt,

(S5) for all φ ∈ C ∞
c ([0,T )× (0,1])

−
∫ T

0

∫ 1

0
v(x, t)s(t)∂t(s(t)φ(x, t))dxdt−

∫ 1

0
v0(s0x)s2

0 φ(x,0)dx

+
∫ T

0

∫ 1

0
κv∂xv(x, t)∂xφ(x, t)dxdt +

∫ T

0

∫ 1

0
s(t)s′(t)xv(x, t)∂xφ(x, t)dxdt

= −
∫ T

0

∫ 1

0
s2(t) f (u(x, t),v(x, t))φ(x, t)dxdt.
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3 Numerical scheme

Let us first introduce some notation related to the discretisation of [0,1]. A mesh T ,
consists in a finite sequence of cells (xi− 1

2
,xi+ 1

2
) for 1≤ i≤ l, with

0 = x 1
2
< x 3

2
< ... < xl− 1

2
< xl+ 1

2
= 1.

We define xi as the center of the cell (xi− 1
2
, xi+ 1

2
) and x0 = x 1

2
, xl+1 = xl+ 1

2
. We set

hi the length of the cell (xi− 1
2
, xi+ 1

2
), hi+ 1

2
the length of the interval [xi, xi+1] and we

define h = max{hi, 1≤ i≤ l} the size of the mesh. Finally, we define an integer NT
and a time step ∆ t such that NT ∆ t = T and (tn)0≤n≤NT with tn = n∆ t. In the sequel,
when we use the notation w, it means that w = u or v. We discretize the initial and
Dirichlet conditions. We set,

s0 = s0, (3)

w0
i =

1
hi

∫ x
i+ 1

2

x
i− 1

2

w0(s0x)dx, for 1≤ i≤ l, and w0
l+1 = w0(s0), (4)

vn
0 =

1
∆ t

∫ tn+1

tn
r(t)dt, un

0 =
1

∆ t

∫ tn+1

tn
g(t)dt, for 0≤ n≤ NT −1. (5)

Then, for 1≤ i≤ l and 0≤ n≤ NT −1, the scheme writes

sn+1 = sn +∆ tψ(un
l+1), (6)

sn+1hi
sn+1vn+1

i − snvn
i

∆ t
+

(
Gn+1

v,i+ 1
2
−Gn+1

v,i− 1
2

)
=−(sn+1)2 hi β (γ vn+1

i −un
i ), (7)

sn+1hi
sn+1un+1

i − snun
i

∆ t
+

(
Gn+1

u,i+ 1
2
−Gn+1

u,i− 1
2

)
= (sn+1)2 hi β (γ vn+1

i −un+1
i ). (8)

It remains to define the numerical fluxes Gn
w, i+ 1

2
. We define Cn+1 = sn+1 (sn+1−

sn)/∆ t and we use the Scharfetter-Gummel fluxes (see [7, 11]), that is:

Gn+1
w,i+ 1

2
= κw

B
(

hi+ 1
2

Cn+1

κw
xi+ 1

2

)
wn+1

i −B
(
−hi+ 1

2

Cn+1

κw
xi+ 1

2

)
wn+1

i+1

hi+ 1
2

. (9)

Here B is the Bernoulli function defined by B(x)= x/(ex−1) for x 6= 0 and B(0)= 1.
We supplement the numerical scheme with Robin/Neumann boundary conditions at
x = 1,

Gn+1
v,l+ 1

2
= 0, Gn+1

u,l+ 1
2
= sn+1

ψ(un+1
l+1 ), for 0≤ n≤ NT −1. (10)
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We remark that the equations (6), (7) and (8) are decoupled. Thus, if we know
(sn,un,vn) we can compute sn+1 by (6) and then vn+1 and un+1 thanks to (7) and (8).

4 Main results

Theorem 1. The numerical scheme (3)-(10) admits a unique solution. Moreover, for
every n≥ 0 and i ∈ {0, · · · , l +1}, we have

0≤ vn
i ≤ r∗, 0≤ un

i ≤ g∗, 0≤ sn+1− sn

∆ t
≤ α g∗, (11)

and
0 < sn+1 ≤ s0 +T α g∗, for 0≤ n≤ NT . (12)

Sketch of the proof. We rewrite the scheme (7)-(10) as two independent linear sys-
tems. Furthermore, thanks to the boundary condition for v at x = 1 and the definition
of B, we can eliminate vn+1

l+1 as vn+1
l+1 = exp

(
−hi+ 1

2
Cn+1/κv

)
vn+1

l , for n≥ 0. Hence,

as (7)-(8) are decoupled, we obtain two independent linear systems Mn
v vn+1 = bn

v
and Mn

u un+1 = bn
u, with, for n≥ 0, Mn

v ∈Rl×l and Mn
u ∈R(l+1)×(l+1). Then, follow-

ing the ideas of [6], we prove that Mn
v and Mn

u are M-matrices. As a consequence,
we deduce the existence of solutions to (S) and the nonnegativity of un+1 and vn+1.
Finally, we show that Mn

v (v
n+1− r∗Il) ≤ 0 and Mn

u(u
n+1− g∗Il+1) ≤ 0 and we de-

duce the upper bounds of (11) and (12). ut

In order to use discrete functional analysis tools we introduce some functional sets.
Let T a mesh of [0,1] of size h and ∆ t a time step. We define the set of piecewise
constant functions in space as

XT = {wh : [0,1]−→ R : ∃(wi)0≤i≤l+1 ∈ Rl+2 and

wh(x) =
l

∑
i=1

wi1(x
i− 1

2
,x

i+ 1
2
)(x)+w01{x=0}(x)+wl+11{x=1}(x)}.

We define also the set of piecewise constant functions in space and time as

XT ,∆ t = {wh,∆ t : [0,1]× [0,T ]−→ R : ∃(wk+1
h )0≤k≤NT−1 ∈ (XT )NT

and wh,∆ t(x, t) =
NT−1

∑
k=0

wk+1
h (x)1[tk,tk+1)(t)}.

Finally, we define a discrete derivative operator in space ∂x,T for all wh,∆ t ∈ XT ,∆ t
by

∂x,T wh,∆ t(x, t) = ∂
i
x,T wh,∆ t =

(wk+1
i+1 −wk

i )

hi+ 1
2

for (x, t) ∈ (xi,xi+1)× (tk, tk+1).
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Let (Tm,∆ tm) be a sequence of discretizations such that (hm,∆ tm)m → 0. If we
consider for each m the approximate solutions sm, um and vm, where wm = w∆ tm,hm

and for t ∈ [0,T ]

sm(t) = s∆ tm(t) =
NT−1

∑
k=0

(
sk+1 +(t− tk+1)

sk+1− sk

∆ t

)
1[tk,tk+1)(t).

Theorem 2. The sequence (sm,um,vm)m converges to (s,u,v) with

wm → w in L2(0,T ;L2(0,1)),
∂x,Tmwm ⇀ ∂xw in L2(0,T ;L2(0,1)),

sm → s in C ([0,T ]),

∂tsm
w∗
⇀ s′ in L∞(0,T ),

and (s,u,v) is the weak solution to (2).

Sketch of the proof. First, we establish L2(0,T ;H1(0,1)) and H1(0,T ;H∗) discrete
estimates for (um)m and (vm)m, where H∗ is the dual space to H. Then, thanks to a
discrete version of the Aubin-Simon lemma [9], we obtain some compactness results
for (um,vm)m and the convergence of a subsequence towards some limit (u,v). For
the sequence (sm)m, we use Theorem 1 and the Ascoli theorem to show that (sm)m
converges to some function s ∈W 1,∞(0,T ). We also prove the convergence of the
traces following [5]. Finally passing to the limit in the numerical scheme as in [4]
we obtain that (s,u,v) is the weak solution to (2). As the system (2) admits a unique
solution (see [1]), we deduce the convergence of the whole sequence (sm,um,vm).
ut

5 Numerical experiments

We consider the following test case:

κu κv g r s0 u0 v0 α γ β

1 0.1 15 2.25 0.5 1 1 1 6.5 7.5

Table 1: Definition of the test case.

Fig 1 shows the different profiles of v and u as a function of x ∈ [0,s(t)] for t ∈
{20,40,60,80,100}. We note that the profiles are similar to those given in [3, 10].
Fig 2 shows the behavior of s for T = 100 in linear scale and for T = 1000 in log-
arithmic scale. These numerical experiments support the

√
T -law of propagation

given in [3, 10].
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Fig. 1: Profiles of v (on the left) and u at different times. The solutions are plotted
on [0,s(t)].
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Fig. 2: Behavior of s in linear scale for T = 100 (on the left) and in logarithmic scale
for T = 1000.

The exact solutions u and v of (2) are not explicitly known. Thus, in order to inves-
tigate the question of the L∞ and L2-convergence rate in space of the scheme, we
compute two reference solutions on a uniform mesh composed of 2560 cells and
with ∆ t = (1/2560)2. Then, we compute the L∞ and L2-norm of the difference be-
tween the approximate solution and the average of the reference solution over 10,
20, 40, 80, 160, 320, 640 and 1280 cells. Eventually, in Table 2, we present the L∞

and L2-convergence rate in space of the scheme at final time T = 0.1. As we can
observe the scheme has an order around 2 in space, which is consistent with the
choice of the Scharfetter-Gummel fluxes.
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cells u v
error L2 order L2 error L∞ order L∞ error L2 order L2 error L∞ order L∞

10 3.5e-01 - 4.8e-01 - 1.1e-01 - 1.6e-01 -
20 6.9e-02 2.34 9.5e-02 2.34 2.1e-02 2.40 3.0e-02 2.43
40 1.6e-02 2.09 2.2e-02 2.08 4.9e-03 2.10 7.0e-03 2.10
80 4.0e-03 2.02 5.5e-03 2.02 1.2e-03 2.03 1.7e-03 2.03

160 9.9e-04 2.01 1.4e-03 2.01 3.0e-04 2.01 4.3e-04 2.01
320 2.5e-04 2.02 3.4e-04 2.02 7.4e-05 2.02 1.1e-04 2.02
640 5.8e-05 2.07 8.1e-05 2.07 1.8e-05 2.07 2.5e-05 2.07
1280 1.2e-05 2.32 1.6e-05 2.32 3.5e-06 2.32 5.0e-06 2.32

Table 2: L∞ and L2-norm of the error for u and v in space.
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