Claire Chainais-Hillairet 
  
Antoine Zurek 
email: antoine.zurek@inria.fr
  
Benoît Merlet 
email: benoit.merlet@math.univ-lille1.fr
  
Design and analysis of a finite

Keywords: Finite volume scheme, convergence analysis, free-boundary system MSC 65M08, 65N08, 35Q30

 

Introduction

The carbonation phenomenon is a physico-chemical reaction which is the main cause of concrete structure degradation. We can describe the carbonation process as follows: CO 2 (g) from the atmosphere enters in the concrete and it is quickly transformed in CO 2 (aq). The introduction of CO 2 (aq) in concrete drives the carbonation reaction. This reaction facilitates a drop of the pH inside the material and allows the corrosion process to damage the metallic reinforcement bars. It deteriorates the concrete and reduces the durability of the structure. In order to model this phenomenon Aiki and Muntean proposed in [START_REF] Aiki | Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structure[END_REF] a freeboundary system where the varying space domain represents the carbonated zone. The unknowns u and v represent the mass concentration of CO 2 respectively in water and air and s represents the penetration depth which measures the size of the carbonated zone. The unknowns u and v solve a weakly coupled system of reactiondiffusion equations in the varying domain (0, s(t)) and s solves an ordinary differential equation. The concentrations u and v are subjected to Dirichlet boundary conditions at y = 0 and Robin/Neumann boundary conditions at y = s(t). For this system Aiki and Muntean have shown in [START_REF] Aiki | Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structure[END_REF] the existence and the uniqueness of a global solution. They also have shown that the penetration depth follows a √ T -law of propagation in [START_REF] Aiki | Large time behavior of solutions to a moving-interface problem modeling concrete carbonation[END_REF][START_REF] Aiki | A free-boundary problem for concrete carbonation: rigorous justification of the √ T -law of propagation[END_REF]. Our aim is to define a finite volume scheme for the concrete carbonation model and to show the convergence of the numerical scheme. In this short paper, we just give sketch of the convergence proof. Full details will be provided in a forthcoming paper [START_REF] Chainais-Hillairet | Convergence of a finite volume scheme for a parabolic system with a free boundary modeling concrete carbonation[END_REF].

Presentation of the model

Let us define the carbonated domain Q s (T ) = {(y,t) : 0 < y < s(t), 0 < t < T < +∞ }. The system considered by Aiki and Muntean in [START_REF] Aiki | Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structure[END_REF] writes

∂ t u -∂ y (κ u ∂ y u) = f (u, v) in Q s (T ), (1a) 
∂ t v -∂ y (κ v ∂ y v) = -f (u, v) in Q s (T ), (1b) s (t) = ψ(u(s(t),t)) for 0 < t < T, (1c) s 
(0) = s 0 , (1d) -κ u ∂ y u(s(t),t) -s (t)u(s(t),t) = ψ(u(s(t),t)) for 0 < t < T, (1e) -κ v ∂ y v(s(t),t) -s (t)v(s(t),t) = 0 for 0 < t < T, (1f) u 
(0,t) = g(t), v(0,t) = r(t) for 0 < t < T, (1g) u(y, 0) = u 0 (y), v(y, 0) = v 0 (y) for 0 < y < s(0).

(1h)

Here and hereafter we suppose the following assumptions:

(A1) ψ : R -→ R drives the carbonation reaction and is defined by ψ(x) = α x with α > 0, (A2) f : R 2 -→ R measures the availability of CO 2 (aq) for the carbonation reaction. It is defined by f (p, q) = β (γqp) where β and γ are two real constants, (A3) g and r belong to W 1,2 (0, T ), (A4) u 0 and v 0 belong to L ∞ ([0, s 0 ]), (A5) the diffusive coefficients κ u and κ v are two positive constants, (A6) s 0 > 0, (A7) there exist g * and r * two positive constants such that 0

≤ g ≤ g * , 0 ≤ r ≤ r * on [0, +∞) and 0 ≤ u 0 ≤ g * , 0 ≤ v 0 ≤ r * on [0, s 0 ] with g * = γr * .
For numerical reasons, it is convenient to rewrite (1) on a fixed space domain. For this, we use the change of variables

∪ 0≤t≤T [0, s(t)] × {t} → [0, 1] × [0, T ] = Q(T ),
(y,t) -→ x(y,t) = y s(t) ,t , and we associate u(y,t) = ū(x(y,t),t) and v(y,t) = v(x(y,t),t). Then if we drop the bars, we obtain, as in [START_REF] Chainais-Hillairet | Mathematical and numerical study of a corrosion model[END_REF] 

s(t)∂ t (s(t)u) + ∂ x J u = s 2 (t) f (u, v) in Q(T ), (2a) 
s(t)∂ t (s(t)v) + ∂ x J v = -s 2 (t) f (u, v) in Q(T ), (2b) s (t) = ψ(u(1,t)) for 0 < t < T, (2c) s(0) = s 0 , (2d) J u (1,t) = s(t)ψ(u(1,t)), J v (1,t) = 0 for 0 < t < T, (2e) u(0,t) = g(t), v(0,t) = r(t) for 0 < t < T, (2f) u(x, 0) = u 0 (s 0 x), v(x, 0) = v 0 (s 0 x) for 0 < x < 1, (2g) 
with J w = -κ w ∂ x ws(t)s (t)xw, for w = u or v. We now define the notion of weak solution for [START_REF] Aiki | Large time behavior of solutions to a moving-interface problem modeling concrete carbonation[END_REF]. For this, we introduce the functional space H = {z ∈ H 1 (0, 1) : z(0) = 0} endowed with the H 1 (0, 1) norm. Assuming (A1) -(A7), we say that (s, u, v) is a weak solution of (2) if the following conditions are satisfied

(S1) (u, v) ∈ (L 2 (0, T ; H 1 (0, 1)) ∩ L ∞ (Q(T ))) 2 , (S2) u -g, v -r ∈ L 2 (0, T ; H), (S3) s ∈ W 1,∞ (0, T ), s(0) = s 0 and s (t) = ψ(u(1,t)) for almost every t ∈ [0, T ], (S4) for all φ ∈ C ∞ c ([0, T ) × (0, 1]) - T 0 1 0 u(x,t)s(t) ∂ t (s(t)φ (x,t)) dx dt - 1 0 u 0 (s 0 x) s 2 0 φ (x, 0) dx + T 0 1 0 κ u ∂ x u(x,t) ∂ x φ (x,t) dx dt + T 0 1 0 s(t)s (t) x u(x,t)∂ x φ (x,t) dxdt + T 0 s(t)ψ(u(1,t)) φ (1,t) dt = T 0 1 0 s 2 (t) f (u(x,t), v(x,t)) φ (x,t) dx dt, (S5) for all φ ∈ C ∞ c ([0, T ) × (0, 1]) - T 0 1 0 v(x,t)s(t) ∂ t (s(t)φ (x,t)) dx dt - 1 0 v 0 (s 0 x) s 2 0 φ (x, 0) dx + T 0 1 0 κ v ∂ x v(x,t) ∂ x φ (x,t) dx dt + T 0 1 0 s(t)s (t) x v(x,t)∂ x φ (x,t) dxdt = - T 0 1 0 s 2 (t) f (u(x,t), v(x,t)) φ (x,t) dx dt.

Numerical scheme

Let us first introduce some notation related to the discretisation of [0, 1]. A mesh T , consists in a finite sequence of cells

(x i-1 2 , x i+ 1 2 ) for 1 ≤ i ≤ l, with 0 = x 1 2 < x 3 2 < ... < x l-1 2 < x l+ 1 2 = 1.
We define x i as the center of the cell

(x i-1 2 , x i+ 1 2
) and

x 0 = x 1 2 , x l+1 = x l+ 1 2
. We set h i the length of the cell

(x i-1 2 , x i+ 1 2 ), h i+ 1 2
the length of the interval [x i , x i+1 ] and we define h = max{h i , 1 ≤ i ≤ l} the size of the mesh. Finally, we define an integer N T and a time step ∆t such that N T ∆t = T and (t n ) 0≤n≤N T with t n = n∆t. In the sequel, when we use the notation w, it means that w = u or v. We discretize the initial and Dirichlet conditions. We set,

s 0 = s 0 , (3) 
w 0 i = 1 h i x i+ 1 2 x i-1 2 w 0 (s 0 x)dx, for 1 ≤ i ≤ l, and 
w 0 l+1 = w 0 (s 0 ), (4) 
v n 0 = 1 ∆t t n+1 t n r(t) dt, u n 0 = 1 ∆t t n+1 t n g(t) dt, for 0 ≤ n ≤ N T -1. (5) 
Then, for 1 ≤ i ≤ l and 0 ≤ n ≤ N T -1, the scheme writes

s n+1 = s n + ∆tψ(u n l+1 ), (6) 
s n+1 h i s n+1 v n+1 i -s n v n i ∆t + G n+1 v,i+ 1 2 -G n+1 v,i-1 2 = -(s n+1 ) 2 h i β (γ v n+1 i -u n i ), (7) 
s n+1 h i s n+1 u n+1 i -s n u n i ∆t + G n+1 u,i+ 1 2 -G n+1 u,i-1 2 = (s n+1 ) 2 h i β (γ v n+1 i -u n+1 i ). ( 8 
)
It remains to define the numerical fluxes G n w, i+ 1 2 . We define C n+1 = s n+1 (s n+1s n )/∆t and we use the Scharfetter-Gummel fluxes (see [START_REF] Chainais-Hillairet | Finite volume schemes for non-coercive elliptic problems with neumann boundary conditions[END_REF][START_REF] Scharfetter | Large signal analysis of a silicon read diode oscillator[END_REF]), that is:

G n+1 w,i+ 1 2 = κ w B h i+ 1 2 C n+1 κ w x i+ 1 2 w n+1 i -B -h i+ 1 2 C n+1 κ w x i+ 1 2 w n+1 i+1 h i+ 1 2 . ( 9 
)
Here B is the Bernoulli function defined by B(x) = x/(e x -1) for x = 0 and B(0) = 1. We supplement the numerical scheme with Robin/Neumann boundary conditions at

x = 1, G n+1 v,l+ 1 2 = 0, G n+1 u,l+ 1 2 = s n+1 ψ(u n+1 l+1 ), for 0 ≤ n ≤ N T -1. ( 10 
)
We remark that the equations ( 6), ( 7) and ( 8) are decoupled. Thus, if we know (s n , u n , v n ) we can compute s n+1 by ( 6) and then v n+1 and u n+1 thanks to ( 7) and ( 8).

Main results

Theorem 1. The numerical scheme (3)-( 10) admits a unique solution. Moreover, for every n ≥ 0 and i ∈ {0, • • • , l + 1}, we have

0 ≤ v n i ≤ r * , 0 ≤ u n i ≤ g * , 0 ≤ s n+1 -s n ∆t ≤ α g * , (11) 
and 0 < s n+1 ≤ s 0 + T α g * , for 0 ≤ n ≤ N T . ( 12 
)
Sketch of the proof. We rewrite the scheme ( 7)-( 10) as two independent linear systems. Furthermore, thanks to the boundary condition for v at x = 1 and the definition of B, we can eliminate v n+1 l+1 as

v n+1 l+1 = exp -h i+ 1 2 C n+1 /κ v v n+1 l
, for n ≥ 0. Hence, as ( 7)-( 8) are decoupled, we obtain two independent linear systems l+1) . Then, following the ideas of [START_REF] Chainais-Hillairet | Mathematical and numerical study of a corrosion model[END_REF], we prove that M n v and M n u are M-matrices. As a consequence, we deduce the existence of solutions to (S) and the nonnegativity of u n+1 and v n+1 . Finally, we show that M n v (v n+1r * I l ) ≤ 0 and M n u (u n+1g * I l+1 ) ≤ 0 and we deduce the upper bounds of ( 11) and ( 12).

M n v v n+1 = b n v and M n u u n+1 = b n u , with, for n ≥ 0, M n v ∈ R l×l and M n u ∈ R (l+1)×(
In order to use discrete functional analysis tools we introduce some functional sets. Let T a mesh of [0, 1] of size h and ∆t a time step. We define the set of piecewise constant functions in space as

X T = {w h : [0, 1] -→ R : ∃(w i ) 0≤i≤l+1 ∈ R l+2 and w h (x) = l ∑ i=1 w i 1 (x i-1 2 ,x i+ 1 2 ) (x) + w 0 1 {x=0} (x) + w l+1 1 {x=1} (x)}.
We define also the set of piecewise constant functions in space and time as

X T ,∆t = {w h,∆t : [0, 1] × [0, T ] -→ R : ∃(w k+1 h ) 0≤k≤N T -1 ∈ (X T ) N T and w h,∆t (x,t) = N T -1 ∑ k=0 w k+1 h (x)1 [t k ,t k+1 ) (t)}.
Finally, we define a discrete derivative operator in space ∂ x,T for all w h,∆t ∈ X T ,∆t by

∂ x,T w h,∆t (x,t) = ∂ i x,T w h,∆t = (w k+1 i+1 -w k i ) h i+ 1 2 for (x,t) ∈ (x i , x i+1 ) × (t k ,t k+1 ).
Let (T m , ∆t m ) be a sequence of discretizations such that (h m , ∆t m ) m → 0. If we consider for each m the approximate solutions s m , u m and v m , where w m = w ∆t m ,h m and for t ∈ [0, T ] and(s, u, v) is the weak solution to (2). Sketch of the proof. First, we establish L 2 (0, T ; H 1 (0, 1)) and H 1 (0, T ; H * ) discrete estimates for (u m ) m and (v m ) m , where H * is the dual space to H. Then, thanks to a discrete version of the Aubin-Simon lemma [START_REF] Gallouët | Compactness of discrete approximate solutions to parabolic PDEsapplication to a turbulence model[END_REF], we obtain some compactness results for (u m , v m ) m and the convergence of a subsequence towards some limit (u, v). For the sequence (s m ) m , we use Theorem 1 and the Ascoli theorem to show that (s m ) m converges to some function s ∈ W 1,∞ (0, T ). We also prove the convergence of the traces following [START_REF] Brenner | Finite volume approximation for an immiscible twophase flow in porous media with discontinuous capillary pressure[END_REF]. Finally passing to the limit in the numerical scheme as in [START_REF] Bessemoulin-Chatard | A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Schafetter-Gummel scheme[END_REF] we obtain that (s, u, v) is the weak solution to (2). As the system (2) admits a unique solution (see [START_REF] Aiki | Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structure[END_REF]), we deduce the convergence of the whole sequence (s m , u m , v m ).

s m (t) = s ∆t m (t) = N T -1 ∑ k=0 s k+1 + (t -t k+1 ) s k+1 -s k ∆t 1 [t k ,t k+1 ) (t). Theorem 2. The sequence (s m , u m , v m ) m converges to (s, u, v) with w m → w in L 2 (0, T ; L 2 (0, 1)), ∂ x,T m w m ∂ x w in L 2 (0, T ; L 2 (0, 1)), s m → s in C ([0, T ]), ∂ t s m w * s in L ∞ (0, T ),

Numerical experiments

We consider the following test case: κ u κ v g r s 0 u 0 v 0 α γ β 1 0.1 15 2.25 0.5 1 1 1 6.5 7.5 The exact solutions u and v of (2) are not explicitly known. Thus, in order to investigate the question of the L ∞ and L 2 -convergence rate in space of the scheme, we compute two reference solutions on a uniform mesh composed of 2560 cells and with ∆t = (1/2560) 2 . Then, we compute the L ∞ and L 2 -norm of the difference between the approximate solution and the average of the reference solution over 10, 20, 40, 80, 160, 320, 640 and 1280 cells. Eventually, in Table 2, we present the L ∞ and L 2 -convergence rate in space of the scheme at final time T = 0.1. As we can observe the scheme has an order around 2 in space, which is consistent with the choice of the Scharfetter-Gummel fluxes. 

Fig 1

 1 Fig 1 shows the different profiles of v and u as a function of x ∈ [0, s(t)] for t ∈ {20, 40, 60, 80, 100}. We note that the profiles are similar to those given in [3, 10]. Fig 2 shows the behavior of s for T = 100 in linear scale and for T = 1000 in logarithmic scale. These numerical experiments support the √ T -law of propagation given in [3, 10].

Fig. 1 :

 1 Fig. 1: Profiles of v (on the left) and u at different times. The solutions are plotted on [0, s(t)].

Fig. 2 :

 2 Fig. 2: Behavior of s in linear scale for T = 100 (on the left) and in logarithmic scale for T = 1000.

Table 1 :

 1 Definition of the test case.

Table 2 :

 2 cells u v error L 2 order L 2 error L ∞ order L ∞ error L 2 order L 2 error L ∞ order L ∞ L ∞and L 2 of the error for u and v in space.

	10	3.5e-01	-	4.8e-01	-	1.1e-01	-	1.6e-01	-
	20	6.9e-02 2.34 9.5e-02	2.34	2.1e-02 2.40	3.0e-02	2.43
	40	1.6e-02 2.09 2.2e-02	2.08	4.9e-03 2.10	7.0e-03	2.10
	80	4.0e-03 2.02 5.5e-03	2.02	1.2e-03 2.03	1.7e-03	2.03
	160 9.9e-04 2.01 1.4e-03	2.01	3.0e-04 2.01	4.3e-04	2.01
	320 2.5e-04 2.02 3.4e-04	2.02	7.4e-05 2.02	1.1e-04	2.02
	640 5.8e-05 2.07 8.1e-05	2.07	1.8e-05 2.07	2.5e-05	2.07
	1280 1.2e-05 2.32 1.6e-05	2.32	3.5e-06 2.32	5.0e-06	2.32
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