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We prove that if a Sturmian word is the image by a morphism of a word which is a fixed point of another morphism, then this latter word is mostly a Sturmian word, and the involved morphisms are Sturmian. This gives a characterization of Sturmian words that are generated by HD0L systems.

We also characterize the non Sturmian words which can be sent on Sturmian words by morphism, and the involved morphisms. We prove that the same Sturmian images can be obtained by using the standard morphisms of which the above morphisms are the conjugates, and we show how to obtain these Sturmian morphisms from their standard representatives.

Introduction

Sturmian words are infinite binary words of minimal complexity and Sturmian morphisms are those binary morphisms which preserve Sturmian words. These words and morphisms have been widely studied (see [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF] for a general overview) and the Sturmian morphisms are very well known, especially those which generate Sturmian words (see, e.g., [START_REF] Séébold | On the conjugation of standard morphisms[END_REF]). However words generated by morphisms are only a particular case of words generated by D0L systems and, even more generally, by HD0L systems which are special subfamilies of Lindenmayer systems, a large class of mechanisms to produce infinite words which has been the object of hundreds of papers.

Surprisingly, it seems that Sturmian words and morphisms were not studied in the framework of Lindenmayer systems.

It is one of the aim of this paper to complete the knowledge of the links between Sturmian words and Sturmian morphisms when D0L systems are considered. First we shall characterize Sturmian words that are fixed points of morphisms (see Theorem 3.2 and Corollary 3.3). Except in the case of the identity morphism, these words are exactly the Sturmian words generated by morphisms (D0L systems where the starting word is a single letter). This complements Parvaix results [START_REF] Parvaix | Propriétés d'invariance des mots sturmiens[END_REF] about the action of morphisms on mechanical words.

The family of HD0L systems strictly contains that of D0L systems (roughly, an HD0L system needs two morphisms when a D0L system uses only one). One of the oldest examples is the Arshon word that Berstel [START_REF] Berstel | Mots sans carré et morphismes itérés[END_REF] proved to be generated by an HD0L system but not by a D0L system. However, as in the case § A preliminary version of this work was presented at "Journées annuelles SDA2" CNRS, Marseille, 2017 known examples use a very particular case of HD0L systems, namely the tag-systems introduced by Cobham [START_REF] Cobham | Uniform tag sequences[END_REF] (see also [START_REF] Allouche | Automatic Sequences[END_REF], Theorem 6.3.2).

Here, Theorem 4.3 and its Corollary 4.4 give an example of a wide family of words generated by HD0L systems which are not tag-systems (because a Sturmian morphism is never uniform), some of these words being not generated by D0L-systems (Proposition 4.5).

The other goal of this paper is to provide a sharp characterizion of the morphisms which transform non Sturmian words into Sturmian words. This is done with Theorems 5.2, 6.6 and 6.7.

After some definitions and basic results (Section 2) we study Sturmian fixed points of morphisms (Section 3). Then, in Section 4, we characterize the words whose images by a morphism are Sturmian (Section 4.1) and those which are an image by a morphism of a fixed point of another morphism (Section 4.2). Section 4 ends with an example of a Sturmian word generated by an HD0L system but not by a D0L system (Section 4.3). In Section 5 we detail the case of non Sturmian words whose images by morphisms are Sturmian words and we give a characterization of the morphisms which realize such a transformation. The last part of the paper (Section 6) is dedicated to evidence the link between these morphisms and the standard morphisms of which they are the conjugates, and to show how to directly obtain the former from the latter.

Preliminaries

We assume that the reader is familiar with basics of combinatorics on words (if necessary, see [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF]).

Let A = {a, b}. We will often consider a letter c ∈ A: the letter c is then defined by {c, c} = A. If u is a word over A and n a non-negative integer, u n is the power n of u, i.e., the word u • • • u made of n occurrences of u. We also use, as usual, the notation u * to denote the set {u n /n ∈ N} of all the powers of u.

A word x over

A is balanced if, for all u, v factors of x such that |u| = |v|, ||u| a -|v| a | ≤ 1 (since A is a two-letter alphabet, this implies ||u| b -|v| b | ≤ 1).
An infinite word x over A is ultimately periodic if there exist words y ∈ A * and z ∈ A + such that x = yz ω . Otherwise x is aperiodic.

Sturmian words are infinite words over A that are aperiodic and balanced.

We recall here a property of Sturmian words which is useful in the sequel.

Property 2.1 ([8], Proposition 2.1.3). If an aperiodic infinite word over A is not Sturmian, then it contains as factors both awa and bwb for some w ∈ A * .

A (endo)morphism on A is an application f from A * onto A * such that f (uv) = f (u)f (v) for every words u, v over A. The identity morphism on A is written Id A and in the whole paper, since there is no ambiguity, the composition of morphisms f • g will be denoted f g.

A morphism f on A is prolongable on the word u ∈ A + if f (u) begins with u and |f p+1 (u)| > |f p (u)| for every p ∈ N. In this case, f ω (u) = lim n→∞ f n (u) is a well defined infinite word which is called the infinite word generated by f . Here we remark that if f is not prolongable on u then |f (u)| u ≤ 1.

L systems

Words generated by morphisms are a particular case of a more general notion: words generated by Lindenmayer systems (see, e.g., [START_REF] Rozenberg | The Mathematical Theory of L systems[END_REF]). In the present paper, we only deal with two sorts of such systems (we use the definitions given in [START_REF] Honkala | The equality problem for purely substitutive words[END_REF]).

• A D0L system is a triple G = (A, σ, u) where σ : A * → A * is a morphism and u ∈ A + is a word. If σ is prolongable on u then G generates the infinite word σ ω (u).

• An HD0L system is a 4-tuple H = (A, σ, τ, u) where (A, σ, u) is a D0L system and τ is a morphism over A. If σ is prolongable on u then H generates the infinite word τ (σ ω (u)).

Sturmian morphisms

A morphism f on A is Sturmian if f (x) is a Sturmian word whenever x is a Sturmian word. For details about Sturmian words and morphisms, see [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF], Chapter 2.

In particular, it is a well-known fact that each Sturmian morphism can be obtained by composition from the three morphisms

E : a → b ϕ : a → ab φ : a → ba b → a b → a b → a Thus f is a Sturmian morphism if and only if f ∈ St = {E, ϕ, φ} * .
Writing convention. Let f be a Sturmian morphism. To a given decomposition of

f = f 1 f 2 • • • f n , f i ∈ {E, ϕ, φ}, is associated the word f 1 f 2 • • • f n over the alphabet {E, ϕ
, φ} (here E, ϕ, φ are considered as letters). We also denote this word f (f ∈ {E, ϕ, φ} * ) and we will use such an f either as the morphism or as the associated word, without noticing it when there is no ambiguity. Since E 2 = Id A , Sturmian morphisms can be obtained by an infinite number of compositions of E, ϕ and φ and are thus associated with an infinite number of words over the alphabet {E, ϕ, φ}. We sometimes use the terminology writing of f to indicate one particular word associated with the morphism f . For example, the morphism φEϕ has two writings containing no occurrence of E 2 : the words φEϕ and ϕE φ (because, as a morphism, φEϕ = ϕE φ).

We call length of a Sturmian morphism f the length of (one of) the shortest word associated with f . In particular, two Sturmian morphisms can be compared by their lengths.

To end, in Sections 4 and 6, we will use the notation |f | ϕ, φ to indicate the sum of the number of occurrences of ϕ and φ in a writing of a given morphism f (we will see that this value is the same for all the writings of a given f ). For example, |ϕ φEϕE φ| ϕ, φ = 4.

A characterization of non-trivial elements of St is the following (see [START_REF] Mignosi | Morphismes sturmiens et règles de Rauzy[END_REF]):

St \ {Id A , E} = {ϕ, Eϕ, ϕE, EϕE, φ, E φ, φE, E φE} + . (1) 
It is aspecially clear with this decomposition that if f is a Sturmian morphism such that f (a) = a (resp.

f (b) = b) then f ∈ {ϕE, φE} * (resp. f ∈ {Eϕ, E φ} * ) (2) 
and we have the following property. We give here two useful properties of the morphisms E, ϕ, and φ (the first one is an observation, originally made by Berstel [START_REF] Berstel | Mots de Fibonacci[END_REF]).

Lemma 2.3. For every u ∈ A * , a φ(u) = ϕ(u)a. For every infinite word x over A, a φ(x) = ϕ(x).

Lemma 2.4. Let x be an infinite word over A.

(i) If E(x) is Sturmian then x is Sturmian. (ii) If ϕ(x) is Sturmian then x is Sturmian. (iii) If φ(x)
is Sturmian and x starts with the letter a, then x is Sturmian.

(iv) If φ(x) is Sturmian and x starts with the letter b, then x = bx and x is Sturmian.

Proof. Item (i) is a direct consequence of the definition of Sturmian words, and items (ii) and (iii) are Proposition 2.3.2 of [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF].

We prove item (iv). Let x be an infinite word over A such that φ(x) is Sturmian. If x starts with the letter b, then x = bx and φ(x) = a φ(x ). Since a φ(x ) = ϕ(x ) (Lemma 2.3), x is Sturmian from (ii).

Sturmian fixed points of morphisms

We start our study by considering the case of a Sturmian word which is a fixed point of a morphism: we show that the morphism is Sturmian, and if it is different from Id A then the word is generated by this morphism.

The first step is given separately because it is interesting in itself. Proposition 3.1. Let x be an infinite word over A and f a morphism on

A. If f (x) is Sturmian then f ∈ St.
It is worth noticing that this proposition is an improvement of Theorem 2.3.7 of [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF]. Indeed Theorem 2.3.7 indicates that, to prove that a morphism is in St it is enough to verify that the image of one Sturmian word is a Sturmian word. The present proposition proves that the condition according to which the starting word has to be Sturmian is not even necessary: it is sufficient that the image is a Sturmian word.

Proof. Let x be an infinite word over A and f a morphism on A such that f (x) is Sturmian.

Before starting, we note that if f (x) is Sturmian then it is aperiodic and thus contains at least one occurrence of both f (ab) and f (ba), and

f (a) = ε, f (b) = ε.
From [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF], Theorem 2.3.7, if x is a Sturmian word then f ∈ St. Consequently, we suppose in the following that x is not a Sturmian word (but x is aperiodic, otherwise f (x) is ultimately periodic thus non Sturmian). From Property 2.1, there exists a word w ∈ A * such that both awa and bwb are factors of x.

If This means that there exist words r, r 1 , r 2 , t, t 1 , t 2 such that f (a) = ryt 1 = r 1 y t and f (b) = rzt 2 = r 2 z t for {y, z} = {y , z } = {a, b}.

|f (a)| = |f (b)| then we first observe that |f (a)| a = |f (b)| a . For if not, ||f (awa)| a -|f (bwb)| a | ≥ 2; a contradiction with f (x) Sturmian. • Now, if f (a) = f (b) then f (x) is periodic; a contradiction with f (x) Sturmian. • But, if f (a) = f (b) then
• If y = y then z = z ( = y). In this case f (awa) contains the factor y tf (w)ry and f (bwb) contains the factor z tf (w)rz; a contradiction with f (x) Sturmian because ||y try| a -|z trz| a | = 2.

• If y = z then z = y ( = y). In this case f (ab) = r 1 y trzt 2 and f (ba) = r 2 z tryt 1 ; again a contradiction with f (x) Sturmian because ||y trz| a -|z try| a | = 2. Thus, if x is not a Sturmian word but f (x) is Sturmian then f (a) (resp. f (b)) is a proper prefix or a proper suffix of f (b) (resp. f (a)). We prove that f ∈ St by induction on f . Since f (a) is a proper prefix of f (b) one has f ≥ 3. If f = 3, since f (b) cannot be equal to aa or bb because f (x) is Sturmian, f ∈ {ϕE, EϕE} ⊂ St.
Now, suppose that f > 3 and, by induction, if g is such that g < f and g(y) is Sturmian for some infinite word y on A then g ∈ St.

Here we suppose that f (a) is a prefix of f (b) (the other cases are similar). Since f (a) is a proper prefix of f (b), there exists s ∈ A + such that f (b) = f (a)s. Let g be defined by g(a) = f (a) and g(b) = s. Since s = ε, g < f . Moreover f = gϕE thus g(y) is Sturmian for y = ϕE(x). Consequently g ∈ St by induction and, since St is closed under composition, f ∈ St.

From this we are able to show that if a Sturmian word is a fixed point of a morphism different from Id A then it is generated by this morphism which is Sturmian. Theorem 3.2. Let x be a Sturmian word over A. If x = g(x) for some morphism g on A then g ∈ St, and if g = Id A then there exists c ∈ A such that g is prolongable on c and x = g ω (c).

Remark. In [START_REF] Parvaix | Propriétés d'invariance des mots sturmiens[END_REF], B. Parvaix gives the value of g depending on x. His characterization is based on the notion of mechanical words which is out of the scope of the present paper.

Proof. Let x be a Sturmian word, c ∈ A the letter such that x begins with c, and g a morphism such that x = g(x).

Since x is Sturmian then, by Proposition 3.1, g ∈ St thus the first part of the result is proved. Now, suppose that g = Id A . Since x = g(x) and x begins with the letter c, g(c) starts with c thus either g(c) = c or g is prolongable on c. Indeed, if g(c) = c and g is not prolongable on c then |g(c

)| c ≤ 1 implies g(c) = cc k for some k ∈ N, k ≥ 1, and g(c) = ε; a contradiction with g ∈ St. • If g(c) = c then, since g = Id A , g(c) = c.
Let p = 0 such that x begins with c p c (such a p does exist because x is Sturmian thus x = c ω ). If g(c) begins with c then g(x) starts with c p+1 ; a contradiction. Consequently g(c) begins with c and, since g(c) = c, g is prolongable on c: g generates the Sturmian word

x such that x = c p x . Since g ∈ St and g(c) = c, g ∈ {ϕE, φE} + ∪ {Eϕ, E φ} + (cf (2), page 3).
But in this case, from Lemma 2.2, g does not generate any Sturmian infinite word; a contradiction.

• If g is prolongable on c then, for all n ∈ N, |g n+1 (c)| > |g n (c)| and, since x begins with c, the word g n (c) is a prefix of x. Consequently x = g ω (c).
This result admits three interesting corollaries.

Corollary 3.3. Let x be a Sturmian word over A. Are equivalent:

1. x is a fixed point of a morphism g = Id A 2.
x is generated by a D0L system G = (A, g, c) where g ∈ St is prolongable on the letter c ∈ A.

3.

x is generated by a D0L system G = (A, g, u) where g ∈ St is prolongable on the word u ∈ A + .

Proof. Equivalence between 1. and 2. is Theorem 3.2, and the implication 2. ⇒ 3. is straightforward. We prove 3. ⇒ 2.

Let us suppose that a Sturmian word x is generated by a D0L system (A, g, u) where g ∈ St is prolongable on the word u ∈ A + , |u| ≥ 2.

Let c be the first letter of u. Since f (u) begins with u, f (c) begins with c.

• If f (c) = c then, from Lemma 2.2, f does not generate a Sturmian word; a contradiction.

• Otherwise f is prolongable on c and x is generated by the D0L system (A, g, c), proving 2.

Corollary 3.4. If a Sturmian word x over A is a fixed point of a morphism g = Id A then g ∈ {ϕ, Eϕ, ϕE, EϕE, φ, E φ, φE, E φE} + \ ({ϕE, φE} + ∪ {Eϕ, E φ} + ) and there exists c ∈ A such that x = g ω (c).
Proof.

From Theorem 3.2 g ∈ St and, since g = Id A , one has g ∈ {ϕ, Eϕ, ϕE, EϕE, φ, E φ, φE, E φE} + (cf (1), page 3). Now, from Corollary 3.3, x is generated by g hence the result follows from Lemma 2.2.

Corollary 3.5. If a Sturmian word x over A is a fixed point of some morphism g = Id A then there exists a morphism h ∈ St such that g is a power of h (maybe g = h), and each morphism of which x is a fixed point is also a power of h. In other words, x is rigid.

Proof. Since x is generated by g, this is a direct consequence of [START_REF] Séébold | On the conjugation of standard morphisms[END_REF], Theorem 7 which states that all the Sturmian words generated by morphisms are rigid (see also [START_REF] Richomme | Completing a combinatorial proof of the rigidity of Sturmian words generated by morphisms[END_REF] for a complete proof of this theorem).

Sturmian images by morphisms

In this second part, we consider Sturmian words which are image by a morphism of an infinite fixed point of another morphism. Initially, this study needs to know the infinite words which can be transformed into Sturmian words by a morphism. After providing the main result in a second part, we end by proving that some words given here do not fulfill the conditions of Theorem 3.2.

Sturmian images by morphisms of infinite words

We start by giving a characterization of infinite words whose images under morphisms are Sturmian. It was originally proved by Parvaix [START_REF] Parvaix | Contribution à l'étude des mots sturmiens[END_REF]. The proof, given here in order to be self-contained, is based on the following important lemma.

Let c ∈ A and N S = {x infinite word over

A /x = c k cx with c ∈ A, k ≥ 1, cx non Sturmian}. Lemma 4.1. Let x ∈ N S and f ∈ St. Then f (x) ∈ N S.
Proof. Since every Sturmian morphism is a composition of E, ϕ and φ it is enough to prove the result for f = E, ϕ or φ. The case f = E is straightforward.

If c = a then ϕ(x) = (ab) k aϕ(x ) and φ(x) = (ba) k a φ(x ) = b(ab) k-1 aϕ(x ) (Lemma 2.3). Moreover, since bx is not Sturmian then aϕ(x ) = ϕ(bx ) is not Sturmian from Lemma 2.4(ii). Thus (ba) k ϕ(x ) and (ab) k-1 aϕ(x ) are not Sturmian If c = b then ϕ(x) = a k abϕ(x ) and φ(x) = a k ba φ(x ) = a k bϕ(x ) (Lemma 2.3).
But, since ax is not Sturmian, from Property 2.1, there exists a word v such that ava and bvb are factors of ax . This implies that bϕ(x ), which contains as factors both bϕ(v)ab and aϕ(v)aa, is not Sturmian.

In all the cases the words ϕ(x) and φ(x) are in N S. If x is ultimately periodic then f (x) is ultimately periodic (maybe empty) for any morphism f and consequently f (x) cannot be Sturmian. So x is aperiodic and there exists an infinite word x and an integer n ≥ 1 such that x = c n cx for some c ∈ A.

If cx is not Sturmian then x ∈ N S and, from Lemma 4.1, f (x) ∈ N S thus is not Sturmian; a contradiction. Consequently cx is Sturmian and the first implication is proved.

To prove the converse it is enough to observe that, from Lemma 2.3, for every infinite word x over A, ( φE

) n φ(b n+1 x) = a n+1 ( φE) n φ(x) = (ϕE) n ϕ(x) for every n ∈ N.
Thus, since from Lemma 2.4(i) and

(ii) (ϕE) n ϕ(x) is Sturmian whenever x is Sturmian, if x = b n+1 x , n ∈ N, with x Sturmian then ( φE) n φ(b n+1 x ) is also Sturmian. And so is ( φE) n φE(a n+1 E(x )).
Here it is worth noticing that, in the above proposition, n can be as large as needed because if x is any Sturmian word containing a 2 as a factor, the word b n x is not Sturmian for every n ≥ 2 but ( φE) n φ(b n+1 x) is Sturmian because (ϕE) n ϕ ∈ St. This also indicates that the two propositions 3.1 and 4.2 are not empty (i.e., apply for words that are not Sturmian) since there exist words x which are not Sturmian but for which f (x) is Sturmian for a morphism f on A. An example of such a word is given in [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF], page 84.

Sturmian images by morphisms of fixed points of morphisms

Now, we synthesize the results of Sections 3 and 4.1 by studying the case of a Sturmian word which is the image of a fixed point of some morphism different from Id A . Theorem 4.3. Let y be a Sturmian word over A. If y = f (x) and x = g(x) for some morphisms f, g on A and a word x over A then:

• f ∈ St and g ∈ St;

• there exist n ∈ N and a Sturmian word x such that x = a n x or x = b n x ;

• if g = Id A then x is Sturmian and x is generated by g.

Proof. Let x, y be two infinite words over A and f , g two morphisms on A such that y = f (x) and x = g(x). This proves the first part of the result.

The second part comes from Proposition 4.2: there exist n ∈ N, c ∈ A, and a Sturmian word x such that x = c n x .

If n = 0 then x = x is a Sturmian word and the third part is proved thanks to Theorem 3.2. So, in the following, we will suppose that n ≥ 1. We also assume, by way of contradiction, that x is not Sturmian (but x is aperiodic because x is Sturmian, thus Property 2.1 applies).

The morphism g is not prolongable on c. Indeed if g is prolongable on c then, since x begins with c, g k (c) is a prefix of x = g k (x) = g k (c n x ) for every k ∈ N. Now, if x is not Sturmian then, from Property 2.1, it contains the two factors cwc and cwc for some w ∈ A * . For a sufficiently large k, these two words are factors of the prefix g k (c) of x, consequently g k (c) is not balanced. But, since x is aperiodic it contains infinitely many occurrences of c thus of g k (c), which implies that g k (c) is balanced; a contradiction. Since g(c) begins with c (because g(x) = g(c n x ) = x = c n x with n ≥ 1), the fact that g is not prolongable on c implies that g(c) = c. For if not, |g(c)| c ≤ 1 implies g(c) = cc k for some k ∈ N, k ≥ 1, and g not being prolongable on c means g(c) = ε; a contradiction with g ∈ St.

Moreover g(c) begins with c. Indeed let m ∈ N be such that x starts with c m c: if g(c) begins with c then g(c m c) begins with c m+1 ; a contradiction with x = g(x).

Let p < n be the integer such that c p x is Sturmian and c p+1 x is not Sturmian. Then, from Property 2.1, c p+1 x contains the two factors cwc and cwc for some w ∈ A * . Moreover, since c p x is Sturmian, the unique occurrence of cwc in x is as a prefix of c p+1 x thus wc is a prefix of c p x . But, since every Sturmian word is recurrent ([10], Proposition 6.1.2), wc appears as a factor of x in another position, which means that cwc is also a factor of x. Now, since g = Id A , g ∈ St implies that one of the two words g(c) or g(c) is a proper prefix or a proper suffix of the other one ( [START_REF] Séébold | On the conjugation of standard morphisms[END_REF], Lemma 3). But g(c) = c and g(c) begins with c, thus g(c) is a proper suffix of g(c) which means that g(c) ends with c.

This implies that g(cwc) ends with cg(wc). But c p+1 x begins with cwc thus x = c n-p-1 c p+1 x starts with c n-p-1 awa and g(x) = g(c n-p-1 c p+1 x ) = c n-p-1 c p+1 g(x ) = c n-p-1 cg(c p x ) starts with c n-p-1 cg(wc).

Thus, since x = g(x), one has that g(wc) begins with wc which implies that g(cwc) contains cwc. This is, in x, an occurrence of cwc in a different position than the prefix of c p+1 x ; a contradiction. Consequently, if g = Id A then x is Sturmian and it is generated by g from Theorem 3.2.

Another formulation of this result, joined with Corollary 3.3, is the following. 1. y is the image by a morphism f on A of a fixed point of a morphism g on A, g = Id A 2. y is generated by an HD0L system H = (A, g, f, c) where the morphisms f and g are Sturmian,

g ω (c) is the Sturmian word generated by the D0L system (A, g, c) where g is prolongable on the letter c ∈ A, and y = f (g ω (c)).

3. y is generated by an HD0L system H = (A, g, f, u) where the morphisms f and g are Sturmian, g ω (u) is the Sturmian word generated by the D0L system (A, g, u) where g is prolongable on the word u ∈ A + , and y = f (g ω (u)).

An example

We end this section with an example showing that the two families described in Theorems 3.2 and 4.3 are not equal, the first one being strictly included in the second.

Proposition 4.5. Let F be the Fibonacci word. The word φ(F ) fulfills the conditions of Theorem 4.3 but not those of Theorem 3.2 (with g = Id A in both cases).

Before proving this result, we recall from Séébold, 1985 [START_REF] Séébold | Sequences generated by infinitely iterated morphisms[END_REF] some properties of the elements of the monoid {ϕ, φ} * . We recall that |h| ϕ, φ is the number of elements of {ϕ, φ} implied in any decomposition of a morphism h on A (from 2. of Proposition 4.6 below, a given h may have several decompositions but all of them contain the same number of elements of {ϕ, φ}).

Property 4.6 ([16]).

Let h be a morphism on A.

1. If h generates an infinite word having the same set of factors than F then h ∈ {ϕ, φ} + .

2. The only non trivial relations between ϕ and φ are ϕ 2 φ = φ2 ϕ and its derivatives. 

Morphisms sending non Sturmian words on Sturmian words

From Lemma 4.1 and Proposition 4.2, we deduce that the whole family of binary infinite words can be partitioned in three sets:

• the set of Sturmian words;

• the set of non Sturmian words which can be transformed into Sturmian words by applying a morphism, i.e., the words c n x with c ∈ A, n ∈ N \ {0}, x Sturmian and cx non Sturmian;

• the set N S of non Sturmian words which cannot be transformed into Sturmian words by applying a morphism.

In the following, we are interested in the second of these sets. The aim is to give a characterization of the morphisms which change non Sturmian words into Sturmian words, i.e., those morphisms involved in Proposition 4.2. This characterization needs an intermediate construction.

Let c ∈ A. For every n ∈ N we denote S c n the set of words S c n = {c n x, x Sturmian and cx non Sturmian}.

Of course, S a 0 ⊂ S and S b 0 ⊂ S where S is the set of Sturmian words, and for every n ∈ N, if y ∈ S c n then y is aperiodic.

The sets S c n , n ∈ N, have the following properties.

Lemma 5.1.

1. For every f ∈ St, f (S) ⊂ S and f (N S) ⊂ N S.

For every n ∈ N and c

∈ A, E(S c n ) = S c n . 3. For every n ∈ N \ {0}, ϕ(S b n ) ⊂ S a n and φ(S b n ) ⊂ S a n-1 .
4. For every n ∈ N \ {0}, ϕ(S a n ) ⊂ N S. 2. This second relation is straightforward. We prove the others. Since x is Sturmian, so is ϕ(x). Moreover, since bx is not Sturmian, aϕ(x) = ϕ(bx) is not Sturmian (Lemma 2.4(ii)). From this we deduce

For every n

∈ N \ {0, 1}, φ(S a n ) ⊂ N S.
-ϕ(y) = ϕ(b n x) = a n ϕ(x) ∈ S a n ; -φ(y) = φ(b n x) = a φ(b n-1 x) = (by Lemma 2.3) ϕ(b n-1 x) = a n-1 ϕ(x) ∈ S a n-1 .
4. Let n ∈ N, n ≥ 1, and y ∈ S a n : y = a n x with x Sturmian and ax non Sturmian.

From Lemma 2.3, bϕ(a n-1 x) = ba φ(a n-1 x) = φ(a n x) which is not Sturmian from Lemma 2.4(iii). Hence ϕ(y) = ϕ(a n x) = abϕ(a n-1 x) ∈ N S from Lemma 4.1.

5.

Let n ∈ N, n ≥ 2, and y ∈ S a n : y = aa n-1 x with x Sturmian and ax non Sturmian.

Since n -1 ≥ 1, ax non Sturmian implies a n-1 x non Sturmian thus a φ(a n-1 x) = φ(ba n-1 x) is not Sturmian from Lemma 2.4(iv). Hence φ(y) = φ(aa n-1 x) = ba φ(a n-1 x) ∈ N S from Lemma 4.1. These results are summarized in the following automaton

&% '$ S a n ' ϕ ' E E C ϕ, φ &% '$ S b n n ≥ 3 % φ &% '$ S a 2 ' ϕ ' E E ' ϕ, φ &% '$ S b 2 A φ &% '$ S a ' ϕ ' E E E ϕ φ k &% '$ S b © φ &% '$ S T E, ϕ, φ &% '$ N S T E, ϕ, φ
From Lemma 5.1, we deduce that if f is a morphism on A and if an infinite word y on A is such that there exist c ∈ A and n ∈ N with y = c n x, x Sturmian and cx non Sturmian, then f (y) is Sturmian if and only if f = f g where f is any Sturmian morphism and g is the mirror image of the label, in the previous automaton, of a path starting at the state S c n and ending at the state S. Note that the if part can more or less be deduced from Chapter 5 of Parvaix, 1998 [12]. This (and Proposition 4.2) leads to the following characterization of morphisms which transform non Sturmian words into Sturmian words. Theorem 5.2. Let x be a Sturmian word and let f be a morphism on A.

• f (x) is Sturmian if and only if f ∈ St; • if bx is not Sturmian, f (bx) is Sturmian if and only if f = f φ, f ∈ St; • if ax is not Sturmian, f (ax) is Sturmian if and only if f = f g, f ∈ St and g ∈ φ{E, φ}; • if bx is not Sturmian, f (b n x) is Sturmian for some integer n ≥ 2 if and only if f = f g, f ∈ St and g ∈ φ{E, φ}{E φ, ϕE, ϕ φ} * φ [(Eϕ) * E φ] n-2 (Eϕ) * ; • if ax is not Sturmian, f (a n x) is Sturmian for some integer n ≥ 2 if and only if f = f g, f ∈ St and g ∈ φ{E, φ}{E φ, ϕE, ϕ φ} * φ [(Eϕ) * E φ] n-2 (Eϕ) * E.

A characterization with standard morphisms

In Séébold, 1998 [17] it is proved that each Sturmian morphism is a conjugate of a unique standard morphism obtained by replacing, in any writing of the morphism, all the occurrences of φ by ϕ. This construction is important because many properties of the morphism can be deduced from that of its standard representative. In this section we produce a new interesting property of the standard representatives of the morphisms described in Theorem 5.2. More precisely, we will prove that the morphisms g of Theorem 5.2 are conjugates of standard morphisms and we will indicate how to directly obtain such a morphism from its standard representative. This requires more information regarding Sturmian morphisms.

Standard morphisms and conjugacy

Standard morphisms are those Sturmian morphisms obtained by composition from E and ϕ only. They are representatives of the whole Sturmian morphisms thanks to the following conjugacy operation (see [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF] and [START_REF] Séébold | On the conjugation of standard morphisms[END_REF]).

Let γ be the permutation over

A + defined by γ(cu) = uc, c ∈ A, u ∈ A * . Let f be a standard morphism and let ||f || = |f (a)| + |f (b)|. For 0 ≤ i ≤ ||f || -2, the i-th conjugate of f is the morphism f i defined by f i (ab) = γ i (f (ab)) and |f i (a)| = |f (a)|. Of course, f 0 = f . We call f ||f ||-2 the last conjugate of f .
In the following proposition we put together several results from [START_REF] Séébold | On the conjugation of standard morphisms[END_REF]. Proposition 6.1. Let f be a standard morphism.

• The ||f || -1 conjugates of f are Sturmian and are pairwise different. 

• For 0 ≤ i ≤ ||f || -3, f i (a)
• For 0 ≤ i, j ≤ ||f || -2, |f i | ϕ, φ = |f j | ϕ, φ.
Let f be a Sturmian morphism. There exists a unique standard morphism g of which f is a conjugate and

• f = f 1 f 2 • • • f n , f i ∈ {E, ϕ, φ}, 1 ≤ i ≤ n; • g = g 1 g 2 • • • g n , g i ∈ {E, ϕ}, 1 ≤ i ≤ n; • if f i = E or f i = ϕ then g i = f i ; if f i = φ then g i = ϕ. Let R : St → St, the transformation defined by R(E) = E, R( φ) = R(ϕ) = ϕ. For every f ∈ St, R(f ) is called the standard representative of f : R(f ) is the standard morphism of which f is a conjugate.
Since φ = φEE, it is straightforward that, with each writing over {E, ϕ, φ} of any Sturmian morphism f , can be associated a writing of f over {E, ϕ, φE} : St = {E, ϕ, φ} * = {E, ϕ, φE} * . In Richomme, 2003 [START_REF] Richomme | Conjugacy and episturmian morphisms[END_REF] it is proved that the number, as a conjugate of its standard representative, of a Sturmian morphism f is obtained by searching the occurrences of φE in any writing of f over {E, ϕ, φE}. We give here a binary version of this result (see [START_REF] Levé | Conjugation of standard morphisms and a generalization of singular words[END_REF]).

Let us call

N C(f ) the conjugate number of a Sturmian morphism f : N C(f ) is such that f is the N C(f )-th conjugate of R(f ). Lemma 6.2 ([13], Proposition 6.2). Let f be a Sturmian morphism and n ∈ N such that f = f 0 . . . f n with f i ∈ {E, ϕ, φE}, 0 ≤ i ≤ n. Then N C(f ) = 0≤i≤n|fi= φE |f 0 . . . f i-1 (a)| (with |f 0 . . . f i-1 (a)| = 1 if i = 0).
This means that if f = g N C(f ) where g is a standard morphism, then N C(f ) is obtained from any decomposition of f over {E, ϕ, φE}, f = f 0 . . . f n , by summing the lengths of the words f 0 . . . f i-1 (a) for each i, 0 ≤ i ≤ n, such that f i = φE. Let f, f be morphisms on A such that f = f cd(E φ) t φ(E φ) s e for some c ∈ {ϕ, φ}, d ∈ {E, φ}, e ∈ {Id A , E}, and t, s ∈ N. We call seed of f the morphism s f = φd(E φ) t φ(E φ) s e.

It must be noticed that the value of the seed depends only on the letter d, i.e., the last letter of f cd. Moreover, from Theorem 5.2, if t = 0 and s = n -2 then s f is the shortest morphism such that s f (b n x) (or s f (a n x)) is Sturmian for a Sturmian word x with bx (or ax) non Sturmian.

We now prove that if a morphism f is as above, its seed is the last conjugate of R(f ) and we can give the value of N C(f ). • If d = E and t ≥ 1, then f = φEE( φE) t-1 φEE( φE) s φe. From 2. to 5. above, N C(f ) = 1 + 2 + 2(t -1) + 2(t -1) + 3 + s(2(t -1) + 3) = (2t + 1)(s + 2).

• If d = φ and t ≥ 1, then f = φEE( φE) t φEE( φE) s φe. From 2. to 5. above, N C(f

) = 1 + 2 + 2t + 2t + 3 + s(2t + 3) = (2t + 3)(s + 2).
In the four cases, N C(f ) = (2t + 1 + 2|d| φ)(s + 2) and, from 1. to 5. above, f (a) and f (b) start with different letters which implies, from Proposition 6.1, that f is the last conjugate of R(f ).

More about Sturmian morphisms

It is known (see, e.g., [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF]) that the set St of Sturmian morphisms has the following presentation

E 2 = Id A (3) ϕ(ϕE) k E φ = φ( φE) k Eϕ. (4) 
In particular, when k = 0 and k = 1, relation (4) gives ϕE φ = φEϕ and ϕϕ φ = φ φϕ.

Relations ( 3) and ( 4) indicate that a given Sturmian morphism may have several different writings. However it is important for what follows to notice that, from Proposition 6.1, if g 1 g 2 • • • g n and g 1 g 2 • • • g n are two writings of a given Sturmian morphism g (with g i , g i ∈ {E, ϕ, φ}, 1

≤ i ≤ n) then |g 1 g 2 • • • g n | ϕ, φ = |g 1 g 2 • • • g n | ϕ, φ.
The following lemma gives a set of relations induced by the presentation of St. Lemma 6.4. Let u ∈ φ{E, φ}{E φ, ϕE, ϕ φ} * . Then uϕ = R(u) φ.

Proof. Let n ∈ N be such that u ∈ φ{E, φ}{E φ, ϕE, ϕ φ} n . The proof is by induction on n.

By [START_REF] Cobham | Uniform tag sequences[END_REF], φEϕ = ϕE φ and φ φϕ = ϕϕ φ thus the property is true if n = 0. Now we suppose that, for every n ≥ 0, the property is true for every non negative integer less than n, and we prove that it is also true for n + 1.

Let u ∈ {E φ, ϕE, ϕ φ} n . By induction, φEu ϕ = ϕER(u ) φ and φ φu ϕ = ϕϕR(u ) φ.

Moreover, {E φ, ϕE, ϕ φ} n+1 = {E φ, ϕE, ϕ φ}{E φ, ϕE, ϕ φ} n = E φ{E φ, ϕE, ϕ φ} n ∪ ϕE{E φ, ϕE, ϕ φ} n ∪ ϕ φ{E φ, ϕE, ϕ φ} n . • If u = φEE φu then uϕ = φEE φu ϕ = φ φu ϕ = ϕϕR(u ) φ (by induction) = ϕEEϕR(u ) φ.
• If u = φEϕEu then uϕ = φEϕEu ϕ = ϕE φEu ϕ = ϕEϕER(u ) φ (by induction).

• If u = φEϕ φu then uϕ = φEϕ φu ϕ = ϕE φ φu ϕ = ϕEϕϕR(u ) φ (by induction).

• If u = φ φϕEu then uϕ = φ φϕEu ϕ = ϕϕ φEu ϕ = ϕϕϕER(u ) φ (by induction).

• If u = φ φϕ φu then uϕ = φ φϕ φu ϕ = ϕϕ φ φu ϕ = ϕϕϕϕR(u ) φ (by induction).

• If u = φ φE φu and u does not contain any occurrence of ϕE or ϕ φ then u = φ φE φ(E φ) n (this includes the case n = 0).

Thus uϕ = φ φE φ(E φ) n ϕ = φ( φE) n+2 Eϕ = ϕ(ϕE) n+2 E φ (by (4)) = ϕϕEϕ(Eϕ) n φ.
• Otherwise u = φ φE φu and u contains at least one occurrence of ϕE or ϕ φ (this means in particular that n ≥ 1). There are two subcases If u = (E φ) p ϕEu , with u ∈ {E φ, ϕE, ϕ φ} n-p-1 for some p ∈ N then u = φ φ(E φ) p+1 ϕEu .

Thus uϕ = φ φ(E φ) p+1 ϕEu ϕ = φ( φE) p+2 EϕEu ϕ = ϕ(ϕE) p+2 E φEu ϕ (by (4)) = ϕϕ(Eϕ) p+1 φEu ϕ = ϕϕ(Eϕ) p+1 ϕER(u ) φ (by induction since n -p -1 < n). If u = (E φ) p ϕ φu , with u ∈ {E φ, ϕE, ϕ φ} n-p-1 for some p ∈ N then u = φ φ(E φ) p+1 ϕ φu . Thus uϕ = φ φ(E φ) p+1 ϕ φu ϕ = φ( φE) p+2 Eϕ φu ϕ = ϕ(ϕE) p+2 E φ φu ϕ (by (4)) = ϕϕ(Eϕ) p+1 φ φu ϕ = ϕϕ(Eϕ) p+1 ϕϕR(u ) φ (by induction since n -p -1 < n).
In all the cases, uϕ = R(u) φ.

Two characterizations

As seen above, standard morphisms are canonical representatives of Sturmian morphisms. We will show that this canonical representation extends to the computation of the words g(c n x), c ∈ A, described in Theorem 5.2 since, for each g, the application of its standard representative to the word x gives the same word as g(c n x).

In order to prove this, we need the following lemma which is a trivial generalization of Lemma 2.3. Lemma 6.5. Let x be an infinite word over A.

1. For any n ∈ N, E φ(b n+1 x) = b n Eϕ(x).

For any

n ∈ N, Eϕ(b n x) = b n Eϕ(x). 3. φ(b 2 x) = aϕ(x); ϕE(ax) = aϕE(x); ϕ φ(ax) = aϕ 2 (x); E φ(ax) = aEϕ(x).
4. φE(ax) = ϕE(x); φ2 (ax) = ϕ 2 (x).

Theorem 6.6. Let x be an infinite word over A and n ∈ N, n ≥ 2.

Let

g 1 ∈ φ{E, φ}{E φ, ϕE, ϕ φ} * φ [(Eϕ) * E φ] n-2 (Eϕ) * and g 2 ∈ φ{E, φ}{E φ, ϕE, ϕ φ} * φ [(Eϕ) * E φ] n-2 (Eϕ) * E. Then g 1 (b n x) = [R(g 1 )] (x) and g 2 (a n x) = [R(g 2 )] (x).
We remark that this provides an alternative proof of the if parts of Theorem 5.2. Indeed if f ∈ St and x is a Sturmian word, then R(f ) ∈ {E, ϕ} * thus R(f ) (x) is Sturmian by Lemma 2.4(i) and (ii).

Proof. Let x be an infinite word over A.

• Let n ∈ N, n ≥ 2, and let f 1 ∈ [(Eϕ) * E φ] n-2 (Eϕ) * : there exist non-negative integers p 1 , p 2 , • • • p n-2 , p n-1 such that f 1 = (Eϕ) p1 E φ(Eϕ) p2 E φ • • • (Eϕ) pn-2 E φ(Eϕ) pn-1 and, from 1. and 2. of Lemma 6.5, f 1 (b n x) = b 2 (Eϕ) r (x) with r = n -2 + p 1 + p 2 + • • • + p n-2 + p n-1 . • Let f 2 ∈ {E φ, ϕE, ϕ φ} * : there exist non-negative integers k, p 1 , q 1 , r 1 , p 2 , q 2 , r 2 , • • • p k , q k , r k such that f 2 = (E φ) p1 (ϕE) q1 (ϕ φ) r1 (E φ) p2 (ϕE) q2 (ϕ φ) r2 • • • (E φ) p k (ϕE) q k (ϕ φ) r k . From 3. of Lemma 6.5, f 2 φ(b 2 x) = f 2 [aϕ(x)] = a (Eϕ) p1 (ϕE) q1 (ϕ 2 ) r1 (Eϕ) p2 (ϕE) q2 (ϕ 2 ) r2 • • • (Eϕ) p k (ϕE) q k (ϕ 2 ) r k ϕ (x).
Applying 4. of Lemma 6.5, we calculate that if g ∈ φ{E, φ}{E φ, ϕE, ϕ φ} * φ [(Eϕ) * E φ] n-2 (Eϕ) * then g(b n x) = [R(g)] (x) and gE(a n x) = g(b n E(x)) = [R(g)] (E(x)) = [R(gE)] (x).

To end, we prove that there is a canonical writing (called normalized writing) of morphisms of Theorem 6.6 which can be obtained directly from the standard representatives by their conjugate number.

Let us call normalizable a Sturmian morphism f for which there exist f 1 ∈ {E, ϕ} * , f 2 ∈ {E, φ} * such that f = f 1 f 2 . We call this decomposition the normalized writing of f . Of course, there exist Sturmian morphisms which are not normalizable, as φϕ or ϕ φϕE φ for example. From Proposition 6.1 the normalized writing of a normalizable morphism is unique, up to occurrences of E 2 . In the following, we denote N (f ) the unique normalized writing without E 2 of a normalizable morphism f . In Theorem 6.7 below we prove that the morphisms g of Theorem 5.2 are all normalizable and we show how to obtain, from its standard representative, the normalized writing of such a morphism.

Notation.

In what follows, we will consider words of the set {E φ, ϕE, ϕ φ} * . Such a word should be written (E φ) p1 (ϕE) q1 (ϕ φ) r1 (E φ) p2 (ϕE) q2 (ϕ φ) r2 • • • (E φ) p k (ϕE) q k (ϕ φ) r k for non-negative integers k, p 1 , q 1 , r 1 , p 2 , q 2 , r 2 , • • • p k , q k , r k . But, since the precise values of k, p 1 , q 1 , r 1 , p 2 , q 2 , r 2 , • • • p k , q k , r k do not matter we will simplify, writing (E φ, ϕE, ϕ φ) p,q,r to indicate that, globally, there are p occurrences of E φ, q occurrences of ϕE, and r occurrences of ϕ φ. n-2 (Eϕ) * {Id A , E}. There exist p, q, r, t ∈ N, c ∈ {ϕ, φ}, d, d ∈ {E, φ}, a morphism f with f cd ∈ { φd, φd (E φ, ϕE, ϕ φ) p,q,r ϕd}, and e ∈ {Id A , E} such that • f = f cd(E φ) t φ(E φ) n-2 e (f is normalizable);

• f = N (f ) = R(f )s f ;
• f is the [(2t + 1 + 2|d| φ)n]-th conjugate of R(f ). This implies that φ{E, φ}{E φ, ϕE, ϕ φ} * φ [(Eϕ) * E φ] n-2 (Eϕ) * {Id A , E} = φ{E, φ}{E φ, ϕE, ϕ φ} * (ϕE) * φ(E φ) n-2 {Id A , E} = φ{E, φ}{E φ, ϕE, ϕ φ} * φ(E φ) n-2 {Id A , E}. Consequently, f ∈ φ{E, φ}{E φ, ϕE, ϕ φ} * φ(E φ) n-2 {Id A , E} and there exist p, q, r, t ∈ N and c ∈ {ϕ, φ}, d, d ∈ {E, φ}, e ∈ {Id A , E} such that f = f cd(E φ) t φ(E φ) n-2 e for a morphism f with f cd ∈ { φd, φd (E φ, ϕE, ϕ φ) p,q,r ϕd}. This proves the first point. Now, if f cd = φd then f = ε thus R(f ) = ε and f = cd(E φ) t φ(E φ) n-2 e = φd(E φ) t φ(E φ) n-2 e = s f = R(f )s f .

Otherwise, from Lemma 6.4, f c = φd (E φ, ϕE, ϕ φ) p,q,r ϕ = R( φd (E φ, ϕE, ϕ φ) p,q,r ) φ = R(f ) φ. Consequently f = f cd(E φ) t φ(E φ) n-2 e = R(f ) φd(E φ) t φ(E φ) n-2 e = R(f )s f .

Since R(f ) ∈ {E, ϕ} * and s f ∈ {E, φ} * , the second point is established.

From Proposition 6.3, the conjugate number of s f is N C(s f ) = (2t + 1 + 2|d| φ)n. But since R(f ) ∈ {E, ϕ} * , from Lemma 6.2, N C(R(f )s f ) = N C(s f ) thus N C(s f ) is the conjugate number of N (f ), which completes the proof of the theorem.

As a conclusion we remark that Theorem 6.7 is, as we could hope, a generalization of the construction given at the end of the proof of Proposition 4.2. If a Sturmian word x is such that bx is not Sturmian, then a way to obtain a morphism f such that f (b n x) is Sturmian for some n ∈ N, n ≥ 2, is the following. Take any standard morphism g ending with (ϕE) n-1 ϕ: f = g n .

Lemma 2 . 2 (

 22 [START_REF] Mignosi | Morphismes sturmiens et règles de Rauzy[END_REF]). The word generated by a Sturmian morphism f is a Sturmian word if and only if f ∈ {ϕE, φE} * ∪ {Eϕ, E φ} * ) (i.e., if f (a) = a and f (b) = b).

  there exist words r, t, t over A such that f (a) = rat and f (b) = rbt . Moreover, since |f (a)| a = |f (b)| a , one has |t | a = |t| a + 1 and, since |f (a)| = |f (b)|, |t | = |t|. But in this case, f (ab) = ratrbt and f (ba) = rbt rat thus f (x) contains the two factors trb and t ra which are such that |trb| = |t ra| and |trb| a = |t ra| a -2; again a contradiction with f (x) Sturmian. Thus if f (x) is Sturmian then |f (a)| = |f (b)|. Now, suppose that f (a) (resp. f (b)) is neither a prefix nor a suffix of f (b) (resp. f (a)).

Proposition 4 . 2 .

 42 Let x be an infinite word over A. Are equivalent:1. there exists a morphism f on A such that f (x) is Sturmian; 2. there exist n ∈ N, a letter c ∈ A, and a Sturmian word x such that x = c n x .Proof. Assume that f (x) is Sturmian for a morphism f on A. From Proposition 3.1, f ∈ St.

  If y is Sturmian then, from Proposition 3.1, f ∈ St. Moreover, since x = g(x), one has y = f g(x) thus, again from Proposition 3.1, f g ∈ St. Now, since St is left unitary ([4] Corollary 2.3.9), f ∈ St and f g ∈ St imply g ∈ St.

Corollary 4 . 4 .

 44 Let y be a Sturmian word over A. Are equivalent:

3 .

 3 If h 1 , h 2 are two morphisms in {ϕ, φ} * such that |h 1 | ϕ, φ = |h 2 | ϕ, φ then |h 1 (a)| = |h 2 (a)| and |h 1 (b)| = |h 2 (b)|.Proof of Proposition 4.5. The Sturmian word F is defined as F = ϕ ω (a) thus F is generated by the D0L system (A, ϕ, a) and, consequently, φ(F ) = φ(ϕ ω (a)) is generated by the HD0L system (A, ϕ, φ, a). Now, we prove that φ(F ) is not generated by a morphism.Assume, contrary to what we want to prove, that there exists a morphism f on A such that φ(F ) = f ω (b) (the starting letter of φ(F ) is b).From Lemma 2.3, a φ(F ) = ϕ(F ) = F thus φ(F ) and F have the same set of factors, which implies f ∈ {ϕ, φ} + from 1. of Property 4.6.Letp = |f | ϕ, φ. Of course, since φ(F ) = f ω (b), f = Id A thus p = 0.Since ϕ p (F ) = F , one has φϕ p (F ) = φ(F ). On the other hand, since φ(F ) is generated by f , f φ(F ) = φ(F ).Consequently φϕ p (F ) = f φ(F ) and, since | φϕ p | ϕ, φ = |f φ| ϕ, φ, one has φϕ p = f φ from 3. of Property 4.6; a contradiction with 2. of Property 4.6 because p = 0.

6 .

 6 φ(S a ) ⊂ S b . Proof. The first part of relation 1. is the definition of St and the second part is Lemma 4.1.

3 .

 3 Let n ∈ N, n ≥ 1, and y ∈ S b n : y = b n x with x Sturmian and bx non Sturmian.

6 .

 6 Let y ∈ S a : y = ax with x Sturmian and y = ax non Sturmian. From Lemma 2.4(iii), φ(y) is not Sturmian. But φ(y) = φ(ax) = ba φ(x) = bϕ(x) (Lemma 2.3) and, since x is Sturmian, ϕ(x) is Sturmian from Lemma 2.4(ii), thus φ(y) ∈ S b .

  and f i (b) start with the same letter. • f ||f ||-2 (a) and f ||f ||-2 (b) start with different letters.

Example.

  Let f = φϕE φ φ = φEEϕE φEE φEE. Then, N C(f ) = 1+| φEEϕE(a)|+| φEEϕE φEE(a)| = 1 + 2 + 5 = 8. Indeed, f = g 8 with g = ϕϕEϕϕ.

Proposition 6 . 3 .•

 63 Let f = φd(E φ) t φ(E φ) s e for some d ∈ {E, φ}, e ∈ {Id A , E}, and t, s ∈ N. Then f is the last conjugate of R(f) and N C(f ) = (2t + 1 + 2|d| φ)(s + 2).Proof. Let n, p ∈ N. Since φEE = φ, and φE(a) = a, φE(b) = ba, one has:1. ( φE) n (a) = a, ( φE) n (b) = ba n : |( φE) n (a)| = 1 2. φEE(a) = ba, φEE(b) = a: | φEE(a)| = 2 3. φEE( φE) n (a) = ba, φEE( φE) n (b) = a(ba) n : | φEE( φE) n (a)| = 2 4. φEE( φE) n φEE(a) = a(ba) n+1 , φEE( φE) n φEE(b) = ba: | φEE( φE) n φEE(a)| = 2n + 3 5. φEE( φE) n φEE( φE) p (a) = a(ba) n+1 , φEE( φE) n φEE( φE) p (b) = ba(a(ba) n+1) p : | φEE( φE) n φEE( φE) p (a)| = 2n + 3. Now, let f = φd(E φ) t φ(E φ) s e for some d ∈ {E, φ}, e ∈ {Id A , E}, and t, s ∈ N. • If d = E and t = 0, then f = ( φE) s+1 φe. From 1. above, | φE(a)| = • • • = |( φE) s+1 (a)| = 1 thus N C(f ) = 1 + (s + 1) = s + 2. If d = φ and t = 0, then f = φEE φEE( φE) s φe. From 2. and 5. above, | φEE(a)| = 2 and | φEE φEE(a)| = | φEE φEE( φE)(a)| = • • • = | φEE φEE( φE) s (a)| = 3. Consequently N C(f ) = 1 + 2 + 3(s + 1) = 3(s + 2).

Theorem 6 . 7 .

 67 Let n ∈ N, n ≥ 2, and f ∈ φ{E, φ}{E φ, ϕE, ϕ φ} * φ [(Eϕ) * E φ]

Proof.

  Let f ∈ φ{E, φ}{E φ, ϕE, ϕ φ} * φ [(Eϕ) * E φ] n-2 (Eϕ) * {Id A , E}, n ≥ 2. From (5), φ [(Eϕ) * E φ] n-2 (Eϕ) * {Id A , E} = (ϕE) * φ(E φ) n-2 {Id A , E}.
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