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Wavelet methods for shape perception in electro-sensing ∗

Habib Ammari†, Stéphane Mallat‡, Irène Waldspurger‡, and Han Wang†

October 11, 2013

Abstract

This paper aims at presenting a new approach to the electro-sensing problem using
wavelets. It provides an efficient algorithm for recognizing the shape of a target from
micro-electrical impedance measurements. Stability and resolution capabilities of the
proposed algorithm are quantified in numerical simulations.

Mathematics Subject Classification (MSC2000): 35R30, 35B30
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1 Introduction

The aim of electro-sensing is to learn geometric parameters and material compositions of a
target via electrical measurements. In this paper, we suppose that the target is composed
of a homogeneous material with a known electrical property and focus uniquely on the
problem of geometry. Geometric identification of a target may mean to recognize it from a
collection of known shapes (up to rigid transformations and scaling), or to reconstruct its
boundary.

In the recent work [2], an approach based on polynomial basis has been proposed for
the far-field measurement system. Using Taylor expansion of the Green functions, on one
hand, the geometric information of the target can be coded in some features, which are the
action of a boundary integral operator on homogeneous polynomials of different orders, and
on the other hand the measurement system is separated into a linear operator relating the
features to the data. The features are then extracted by solving a linear inverse problem
and can be used to identify the target in a database. Unlike other methods (e.g. in electrical
impedance tomography [9]) which attempt to reconstruct directly the target, this approach
is more effective and computationally efficient in the applications of shape recognition.

From a more general point of view, the problem is to know, given the physical config-
uration of the measurement system, how to choose the basis for representation of features
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and how to extract them from data for identification. The ill-posedness in electro-sensing
is inherent to the diffusion character of the currents and cannot be removed by a change
of basis. Nonetheless, the particularity of a basis can modify totally the way in which
information is organized in the feature and the manner in which it should be reconstructed.

In this paper we present a new approach for electro-sensing with the near-field mea-
surement system using the wavelet basis. Unlike the far-field measurement configuration
which is known to be exponentially unstable, the near-field measurement system is much
more stable and the data reside in a higher dimensional subspace, hence one can expect to
reconstruct more information of the target from the data. With the near-field measurement
system, the new approach based on wavelet presents more advantages than the approach
based on polynomials, for the reason that the wavelet representation of the features is local
and sparse, and reflects directly the geometric character of a target. Furthermore, the fea-
tures can be effectively reconstructed by seeking a sparse solution via `1 minimization, and
the boundary of the target can be read off from the features, giving a new high resolution
imaging algorithm which is robust to noise.

This paper is organized as follows. In section 2 we give a mathematical formulation and
present an abstract framework for electro-sensing. We introduce the basis of representation
and deduce a linear system by separating the features from the measurement system. The
question of the stability of the measurement system is discussed. In section 3 we summarize
essential results based on polynomial basis developed in [2]. The wavelet basis and new
imaging algorithms, which are the main contributions of this paper, are presented in section
4, where we discuss some important properties of the wavelet representation and formulate
the `1 minimization problem for the reconstruction of the features. Numerical results are
given in section 5, and followed by some discussions in section 6. The paper ends with some
concluding remarks.

2 Modelling of the electro-sensing problem

Let D ⊂ R2 be an open bounded domain of C2-boundary that we want to characterize via
electro-sensing. We suppose that D is centered around the origin and has size 1, furthermore
there exists Ω ⊂ [−1, 1]2 an a priori open bounded domain such that D is compactly
contained in the convex envelope of Ω (in practice, both the center of D and Ω can be
estimated using some location search algorithm [5, 17]). We also assume that the positive
conductivity number κ 6= 1 of D is known, and the background conductivity is 1. We denote
by Dc = R2 \D.

A measurement system consists of Ns sources {xs}s=1...Ns , and Nr receivers {yr}r=1...Nr

disposed on Ω. The potential field us generated by the point source xs is the solution to
the equation {

∇.((1 + (κ− 1)χD)∇us) = δxs in R2,

us − Γs = O(|x|−1) as |x| → ∞,
(1)

where χD is the indicator function of D, and Γs(x) := Γ(x − xs) = 1
2π log|x − xs| is the

background potential field. Similarly, we denote Γr(x) := Γ(x− yr).
The difference us − Γs is the perturbation of potential field due to the presence of D in
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the background, and evaluated at the receiver yr it gives the measurement

Vsr = us(yr)− Γs(yr), (2)

which builds the multistatic response matrix V = (Vsr)sr by varying the source and receiver
pair. In this section, we show that with the help of a bilinear form, the problem can be
formulated through a linear system relating the data V and the features of D.

2.1 Layer potentials and representation of the solution

Recall the single layer potential SD:

SD [φ] (x) =

∫
∂D

Γ(x− y)φ(y)ds(y), (3)

and the Neumann-Poincaré operator K∗D:

K∗D [φ](x) =
1

2π

∫
∂D

〈x− y, νx〉
|x− y|2

φ(y)ds(y), (4)

where νx is the outward normal vector at x ∈ ∂D. K∗D is a compact operator on L2(∂D)
for a C2 domain D and has a discrete spectrum in the interval (−1/2, 1/2]. Therefore, the
operator (λI −K∗D) is invertible on L2(∂D) for the constant

λ =
κ+ 1

2(κ− 1)
. (5)

Moreover, its inverse (λI −K∗D)−1 : L2(∂D) → L2(∂D) is also bounded. An important
relation is the jump formula:

∂SD [φ]

∂ν

∣∣∣
±

=

(
±1

2
I +K∗D

)
[φ], (6)

where ∂/∂ν denotes the normal derivative across the boundary ∂D and ± indicate the
limits of a function from outside and inside of the boundary, respectively. Details on these
operators can be found in [7].

With the help of these operators, the solution us of (1) can be represented as

us(x) = Γs(x) + SD [φ] (x) (7)

with φ satisfying (λI −K∗D) [φ] = ∂Γs/∂ν on ∂D. Therefore, the perturbed field can be
expressed as

(us − Γs)(x) =

∫
∂D

Γ(x− y)(λI −K∗D)−1

[
∂Γs
∂ν

]
(y)ds(y). (8)

We assume in the sequel xs, yr /∈ ∂D for all s, r which is necessary for Vsr to be well defined.
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2.2 Bilinear form T

We denote by Hs(Ω), for s = 1, 2, the standard Sobolev spaces and introduce the bilinear
form T : H2(Ω)×H1(Ω)→ R defined as follows

T (f, g) :=

∫
∂D

g(x)(λI −K∗D)−1

[
∂f

∂ν

]
(x) ds(x) for f ∈ H2(Ω), g ∈ H1(Ω). (9)

By the boundeness of (λI −K∗D)−1 and of the trace operator, it follows that

|T (f, g)| ≤ C‖f‖H2‖g‖H1 ,

and hence, T is bounded. Now, we observe from (2) and (8) that Vsr can be rewritten as

Vsr = T (Γs,Γr). (10)

2.2.1 Characterization of D by T

One of the interests of T is that it determines uniquely the domain D, as stated in the
following result.

Proposition 2.1. Let D,D′ ⊂ Ω be open bounded domains with C2-boundaries with the
same conductivity κ 6= 1, then D = D′ if and only if their associated bilinear forms are
equal:

TD(f, g) = TD′(f, g) ∀f ∈ H2(Ω), g ∈ H1(Ω). (11)

Proof. Clearly D = D′ implies that TD = TD′ . Now suppose D 6= D′. There exist a point
x ∈ ∂D \ ∂D′. Let V be a small open neighborhood of x such that V ∩ ∂D′ = ∅.

Let f ∈ C∞0 (Ω) verifying that the support of f is included in V and ∂f
∂ν 6≡ 0 over V ∩∂D.

Such a f can be constructed for example in the following way. Let ϕ be a compactly
supported C∞ function, whose support is included in V and φ = 1 in a small neighborhood
of x. Then the function

f : y 7→ ϕ(y)〈y, νx〉

satisfies the required conditions: its support is included in V and ∂f
∂ν (x) = 1 (in a neighbor-

hood of x, f coincides with the function y 7→ 〈y, νx〉, whose gradient is νx).

We set h = (λI − K∗D)−1
[
∂f
∂ν

]
∈ L2(∂D), which is not identically zero because (λI −

K∗D)[h] = ∂f
∂ν . Consequently, by the density of the image of the trace operator in L2(∂D),

there exist g ∈ C∞(Ω) such that

T (f, g) =

∫
∂D

g(x)h(x)ds(x) 6= 0.

On the other hand, (λI−K∗D′)
[
∂f
∂ν

]
= 0 over ∂D′ because ∂f

∂ν = 0 over ∂D′. So TD′(f, g) = 0,

which implies TD 6= TD′ .
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2.3 Representation of T

As suggested by Proposition 2.1, all information about D is contained in T . This motivates
us to represent T in a discrete form (features of D) that will be estimated from the data.

2.3.1 Basis of representation

Let B = {en ∈ L2(Ω)}n∈N be a Schauder basis of L2(Ω). We denote by VK the finite
dimensional subspace spanned by {en}n≤K and PK the orthogonal projector onto VK :

PKf = inf
g∈VK

‖f − g‖L2(Ω). (12)

We require the following conditions on the basis B:

• For any f ∈ Hs(Ω), s = 1, 2,

‖f − PKf‖Hs(Ω) → 0 as K → +∞. (13)

• There exists a function u(s, t) such that for s = 1, 2 and some t > s, we have u(s, t) > 0.
Furthermore, it holds for any f ∈ Ht(Ω)

‖f − PKf‖Hs(Ω) ≤ CK−u(s,t)‖f‖Ht(Ω) as K → +∞ (14)

with the constant C being independent of K and f .

2.3.2 Polynomial basis

The first example of B is the homogeneous polynomial basis. The property (13) is a direct
consequence of the following classical result (see Appendix A for its proof):

Lemma 2.2. Let |α|∞ := maxi αi. The family of polynomials {xα, |α|∞ ≤ K}K≥0 is
complete in Hs(Ω) for s ≥ 0.

Estimate (14) can be obtained using an equivalent result of Legendre polynomials es-
tablished in [11], with u(s, t) = t− 2s+ 1/2.

2.3.3 Wavelet basis

Another example of B is the wavelet basis. Let φ̃ ∈ Cr0(R), r ≥ 2 be a one-dimensional
orthonormal scaling function generating a multi-resolution analysis [19], and let ψ̃ ∈ L2(R)
be a wavelet which is orthogonal to φ̃ and has p > 2 zero moments. We construct the
two-dimensional scaling function φ = ψ0 by tensor product as φ(x1, x2) = φ̃(x1)φ̃(x2), and
similarly we construct the wavelets ψk for k = 1, 2, 3 by tensor product of φ̃, ψ̃ [19]. We
denote by

ψkj,n(x) := 2−jψk(2−jx− n), j ∈ Z, n ∈ Z2.

Then {ψkj,n}k,j,n for j ∈ Z, n ∈ Z2, k = 1, 2, 3, constitute an orthonormal basis of L2(R2).
Particularly, the Daubechies wavelet of order 6 (with 6 zero moments) fulfills the conditions
above [15].
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Let Vj be the approximation space spanned by {φj,n}n∈Z2 , and Pj be the orthogonal
projector onto Vj :

Pjf =
∑
n∈Z2

〈f, φj,n〉φj,n. (15)

The property (13) follows from the fact that the Pjf converges to f in Hs(Ω) for any |s| ≤ r
(see [21, Theorem 6, Chapter 2]).

The wavelet basis introduced above verifies the polynomial exactness of order p− 1 [19]
(i.e., the polynomials of order p− 1 belong to V0) and φ ∈ Hs(R2) for s = 1, 2. Therefore,
we have the following result (see [14, Corollary 3.4.1]): For any f ∈ Ht(Ω), s < t ≤ p

‖Pjf − f‖Hs(Ω) . 2j(t−s)‖f‖Ht(Ω) as j → −∞. (16)

Then the estimate (14) is fulfilled with u(s, t) = (t−s)/2. By abuse of notation, throughout
this paper, we still use PK (with K ∝ 2−2j) to denote the projection for the wavelet basis.

2.3.4 Truncation of T

Thanks to the boundedness of T and property (13), one can verify easily that for any
f ∈ H2(Ω), g ∈ H1(Ω)

T (f, g) = T (PKf, PKg) + o(1), (17)

with the truncation error o(1) decaying to zero as K → +∞. Using the approximation
property (14), a bound on the truncation error o(1) can be established.

Proposition 2.3. Suppose that the basis B fulfills the conditions (13) and (14). Let
ũ(t, t′) := min(u(2, t), u(1, t′)) with the constants t > 2 and t′ > 1 being those of estimate
(14). Then for any f ∈ Ht(Ω), g ∈ Ht′(Ω)

|T (PKf, PKg)− T (f, g)| ≤ CK−ũ(t,t′) as K → +∞, (18)

where the constant C depends only on f, g, t, and t′.

Proof. By the triangle inequality

|T (PKf, PKg)− T (f, g)| ≤ |T (PKf − f, PKg)|+ |T (f, PKg − g)| . (19)

Using the boundedness of T on the first term of the right-hand side, we get

|T (PKf − f, PKg)| ≤ C‖PKf − f‖H2‖PKg‖H1 .

On one hand, one can apply (14) on ‖PKf − f‖H2 with the constant t > 2 verifying
u(2, t) > 0. On the other hand, for any t′ > 1 and g ∈ Ht′(Ω) we have PKg → g in H1(Ω)
by (13). Therefore, we obtain that

|T (PKf − f, PKg)| . K−u(2,t)‖f‖Ht‖g‖H1 .

Similarly, for the second term of the right-hand side in (19) we get

|T (f, PKg − g)| ≤ C‖f‖H2‖PKg − g‖H1 . K−u(1,t′)‖f‖H2‖g‖Ht′ ,

which holds for any g ∈ Ht′(Ω) for the constant t′ > 1 of (14). Combining these two terms
yields the desired result.
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2.3.5 Coefficient matrix

We define the coefficient matrix X as follows

X = X[D,K] = (T (em, en))mn for m,n = 1 . . .K, (20)

which represents T under the basis B up to the order K. We denote by f the coefficient
vector of PKf , i.e.,

PKf =
∑
n≤K

fnen, (21)

and similarly g for PKg. Then T restricted on VK can be put into the following matrix
form:

T (PKf, PKg) =
K∑

m,n=1

fmT (em, en)gn = f>Xg. (22)

Thanks to property (13) of the basis, there is a one-to-one mapping between T and its
coefficient matrix X as K → +∞. Hence the domain D is also uniquely determined from
X[D] when K → +∞, as a consequence of Proposition 2.1.

2.4 Linear system

In (10), the Green functions Γs and Γr play the role of the measurement system while the
information about D is contained in the operator T . This motivates us to separate these
two parts and extract information about D from the data V.

By removing a small neighborhood of xs and yr if necessary, we can always assume that
Ω does not contain any source or receiver, in such a way that Γs and Γr restricted on Ω
become C∞, and hence can be represented using the basis B (note that since xs, yr /∈ ∂D,
removing the singularity does not affect T (Γs,Γr) which depends only on the value of the
Green functions on ∂D).

We denote in the sequel γxs ,γyr ∈ RK the (column) coefficient vectors of PKΓs and
PKΓr, respectively. From (10), (17) and (22) one can write

Vsr = T (Γs,Γr) = γxs
>Xγyr + Esr (23)

with Esr being the truncation error of order K which can be controlled using Proposition
2.3. We introduce the matrices of the measurement system

Γs = [γx1 . . .γxNs ], Γr = [γy1 . . .γyNr ], (24)

as well as the linear operator L : RK×K → RNs×Nr :

L(X) = Γs
>XΓr. (25)

Then (23) can be put into a matrix product form:

V = Γs
>XΓr + E = L(X) + E (26)
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with E = (Esr)sr being the matrix of truncation error. Further, suppose that V is contam-
inated by some measurement noise Nnoise, i.e., the m,n-th coefficient follows the normal
distribution

(Nnoise)mn
iid∼ N (0, σnoise)

with σnoise > 0 being the noise level. Using the bound (18) of the truncation error, we can
assume that for a large K

|Esr| � σnoise (27)

uniformly in all s and r, so that E can be neglected compared to the noise. Finally, we
obtain a linear system relating the coefficient matrix to the data

V = L(X) + Nnoise, (28)

and the objective is then to estimate X from V by solving (28).

2.4.1 Measurement systems and stability

The stability of the operator L is inherent to the spatial distribution of sources and re-
ceivers that we suppose to be coincident in what follows. The far-field measurement system
(Figure 1 (a)) is the situation when the characteristic distance ρ between transmitters and
the boundary of the target is much larger than the size δ of the target. On the contrary,
in the near-field internal measurement system (Figure 1 (b)) which is used in micro-EIT
[18, 20], we have ρ� δ and the transmitters can be placed “inside” the target. Other types
of far-field measurements exist; see [1, 4].

(a) Far-field measurement (b) Near-field measurement

Figure 1: Far-field and near-field measurement systems with a flower-shaped target D. (a):
360 coincided sources and receivers (cross) are uniformly distributed on a circle including
the target. (b): 15× 15 coincided sources and receivers (dots) are uniformly distributed
inside Ω, and the minimal distance to ∂D is ∼ 10−3. The red cross in both figures marks
the center of Ω.
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Note that a singular value of L is the product of a pair of singular values of Γs and Γr.
In Figure 2 we compare the distribution of the singular values of the operator L (computed
with the Daubechies wavelet of order 6 as B) corresponding to the systems of Figure 1. One
can notice the substantial difference between these two systems: the singular values of the
far-field system decays very fast, revealing the exponential ill-posedness of the associated
inverse problem [2, 3, 6]. On the contrary, for the near-field system, the stability of L is
considerably improved. This can be explained by the decay of the wavelet coefficients of
the Green function. In fact, Γs is smooth away from xs, therefore most rows (populated
by detail wavelet coefficients) in Γs have tiny numerical values which make the matrix ill-
conditioned. More precisely, the following result holds. We refer to Appendix B) for its
proof.

Proposition 2.4. Let F be a compact domain. Suppose that xs /∈ F and denote by ρ the
distance between xs and F . If the wavelet ψk, k = 1, 2, 3 has p > 0 zero moments, then as
j → −∞:

|〈Γs, ψkj,n〉| � 2j(p+1)ρ−p for n ∈ Λkj , (29)

where Λkj := {n ∈ Z2 | the support of ψkj,n intersects with F}.

Figure 2: First 5× 104 singular values of L computed with a wavelet basis. The curve with
dashed and solid line correspond respectively to the far-field and the near-field measurement
systems of Figure 1.

As a consequence of the stability, the data V of the far-field measurement reside in
a low dimensional subspace while those of the near-field measurement reside in a high
dimensional subspace. Therefore, the type of estimation of X and afortiori the type of
basis for the implementation of estimator, should be adapted to the physical configuration
of the measurement system. In the next sections, we show that in the case of the far-field
measurement, the polynomial basis with linear estimation is well suited, while for the near-
field measurement case it is possible to use a wavelet basis which creates a high dimensional
but sparse matrix X, and to reconstruct more information by a nonlinear estimator.
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3 Polynomial basis and linear estimation

Under the homogeneous polynomial basis, the coefficients in X are given as follows:

Xαβ := T (xα, xβ) (30)

with α, β being multi-indices. These Xαβ are also referred as Generalized Polarization
Tensors (GPTs) in the perturbation theory of small inclusions [5, 7]. The coefficient vectors
γxs and γyr in (23) are now obtained by the Taylor expansion of the Green functions:

Vsr =

K∑
|α|,|β|=1

(−1)|α|+|β|

α!β!
∂αΓ(xs)Xαβ[D]∂βΓ(yr) + Esr. (31)

Moreover, the truncation error Esr can be expressed explicitly, and in case of the far-field
measurement it decays as O((δ/ρ)K+2) [2] (with δ being the size of D and ρ > δ being the
radius of the measurement circle), which is far better than the previous bound (18).

Expression (31) can be simplified to the matrix product form (26) by recombining all Xαβ

of order |α| = m and |β| = n using coefficients of harmonic polynomials. The resulting linear
operator L is injective for the far-field system (Figure 1 (a)) having NS > 2K transmitters,

and its singular value decays as λmn = O((mn)−1(δ/ρ)
m+n

2 ); see [2, 3].

3.1 Linear estimator of X

Due to the global character of the polynomials, in general the coefficient matrix X is full.
On the other hand, the fast decay of truncation error under the polynomial basis suggests
that the energy of X is concentrated in the low order coefficients. Therefore, the simple
truncation in the reconstruction order provides an effective regularization, and the first K
order coefficients can be estimated by solving the least-squares problem

Xest := arg min
X

‖L(X)−V‖2F , (32)

where ‖·‖F denotes the Frobenius norm. The following bound on the error of the estimation
can be established: for m,n = 1 . . . 2K,√

E(((Xest)mn − (X)mn)2) ≤ Cσnoise

NS
mn(δ/ρ)−

m+n
2 . (33)

As a consequence, the maximum resolving order K is bounded by [2]

K . logδ/ρ σnoise. (34)

Hence, the far-field measurement has a very limited resolution. However, the first few
orders of coefficients contain important geometric information of the shape (e.g. the first
order tells how a target resembles an equivalent ellipse), and can be used to construct shape
descriptors for the identification of shapes. We refer the reader to [2] for detailed numerical
results.
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4 Wavelet basis and nonlinear estimation

In this section we use the wavelet (more exactly, the scaling function φ) introduced in
section 2.3.1 for the representation T and the reconstruction of X. This yields a sparse and
local representation, and makes the wavelets an appropriate choice of basis for the near-field
measurement which allows the reconstruction via `1 minimization and the visual perception
of ∂D.

4.1 Wavelet coefficient matrix

For the wavelet basis, we use the scale number L (in place of K as in section 2.3) to
denote the truncation order. The coefficient matrix X = X[D,L,L] under the wavelet basis
contains the approximation coefficients

Xn,n′ = T (φL,n, φL,n′), (35)

so that T (PLf, PLg) = f>Xg with PL being the orthogonal projector onto the approxima-
tion space VL as introduced in section 2.3.3, and f ,g are the coefficient vectors

f = [{〈f, φL,n〉}n], g = [{〈g, φL,n〉}n]. (36)

The matrix X of a flower-shaped target is shown in Figure 3 (a).

4.2 Properties of the wavelet coefficient matrix

In the following we discuss some important properties of the wavelet coefficient matrix.

Bounds of matrix norm Proposition 4.1 establishes bounds on the spectral norm of X
showing that ‖X‖2 diverges as L → −∞. The proof is based on the inverse estimate and
the polynomial exactness of the wavelet basis, and is given in Appendix C.

Proposition 4.1. When L→ −∞, the spectral norm of the matrix X is bounded by

C ′2−L ≤ ‖X‖2 ≤ C2−3L (37)

with C,C ′ > 0 being some constants independent of L.

Sparsity From the definition of T we observe that T (φj,n, φj,n′) is non-zero only when
the support of both wavelets intersect ∂D. Therefore, the non-zero coefficients of X carry
geometric information on ∂D. Moreover, X is a sparse matrix. In fact, when the scale
L → −∞ there are ∼ 2−2L wavelets contributing to D, so the dimension of X is ∼ 2−4L.
On the other hand, the number of wavelets intersecting ∂D is ∼ 2−L. Hence, the number
of non zero coefficients is about 2−2L and the sparsity of X is asymptotically 22L.

11



Band diagonal structure Numerical computations show that the pattern of non-zeros
in X has a band diagonal structure. The largest coefficients appear around several principal
band diagonals in a regular manner that reflects different situations of interaction between
wavelets via the bilinear form T , as shown in Figure 3 (a). We notice that the major band
diagonals describe the interaction between a φL,n and its immediate neighbors (the width of
the band is proportional to the size of the support of φL,n). In particular, the main diagonal
corresponds to the case n = n′, while the other band diagonals describe the interactions
between other non-overlapping φL,n and φL,n′ .

(a) X (b) Mask M

Figure 3: (a): Wavelet coefficient matrix X of a flower-shaped target with L = −5 computed
using Daubechies wavelet of order 6. Image is the amplitude of coefficients in logarithmic
scale. Only the first 5h of largest coefficients (in magnitude) are shown, and the relative
error of the N -term approximation is ∼ 3%. The number of wavelets contributing to Ω is
38 × 38. (b): Diagonal mask M for the estimation of X (11 band diagonals). There are
∼ 7% non-zeros in M and the relative error of approximation of X with this mask is ∼ 3%.

Localization of ∂D Numerical evidence further suggests that the strongest coefficients
appear around the major band diagonal of {T (φL,n, φL,n′)}n,n′ , i.e., when n and n′ are close.
Therefore, a large value in the diagonal coefficient T (φL,n, φL,n) indicates the presence of
∂D in the support of φL,n. We plot the 815-th column of X in Figure 4, which correspond
to the interaction between φL,n, n = [17, 21] and all others φL,n′ , n

′ ∈ Z2. We call this
the localization property of X. It indicates that the operator (λI −K∗D)−1 can loosely
preserve the essential support of a localized L2(∂D) function. The next proposition gives a
qualitative explanation when D is the unit disk.

Proposition 4.2. Let D be a unit disk. As L→ −∞ we have

|T (φL,n, φL,n′)| =

{
O(2−2L) for overlapped φL,n, φL,n′ ,

O(2−L) otherwise.
(38)
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Proof. For D being a unit disk, one has [7]:

K∗D [f ](x) =
1

4π

∫
∂D

f(y)ds(y).

By simple manipulations one can deduce that

(λI −K∗D)−1 [f ](x) = λ−1(I + (κ− 1)K∗D)(f)(x). (39)

Therefore, the bilinear form T (f, g) is reduced to∫
∂D

g(λI −K∗D)−1

[
∂f

∂ν

]
ds =

1

λ

∫
∂D

g
∂f

∂ν
ds+

κ− 1

4πλ

∫
∂D

g ds

∫
∂D

∂f

∂ν
ds. (40)

Taking f = φL,n and g = φL,n′ as L → −∞ the intersection between ∂D and the support
of φL,n is well approximated by a line segment. By a change of variables, it follows that∫

∂D
φL,n′ds

∫
∂D

∂νφL,nds = O(2−L). (41)

Similarly, one has∫
∂D

φL,n′∂νφL,nds =

{
O(2−2L) for overlapped φL,n, φL,n′ ,

0 otherwise.
(42)

Substituting (41) and (42) into (40) yields (38).

Hence, as L → −∞, the coefficients of the main diagonal behave like O(2−2L), and
dominate the other band diagonals that behave like O(2−L).

4.3 Wavelet based imaging algorithms

The localization property of X can be used to visualize the target D. A simple algo-
rithm, called imaging by diagonal, consists in taking the diagonal of X (i.e., the coefficients
T (φL,n, φL,n)) and reshaping it to a 2D image. Then the boundary of ∂D can be read off
from the image.

A drawback of this method is that the generated boundary has low resolution. In fact,
any φL,n touching the boundary ∂D is susceptible to yield a numerically non-negligible
value of T (φL,n, φL,n). Hence, larger is the support of the wavelet, more are the wavelets
intersecting ∂D and lower is the resolution. An improved method consists in searching for
each index n ∈ Z2, the index n′ maximizing the interaction between φL,n, φL,n′ :

n′ = arg max
n′∈Z2

|T (φL,n, φL,n′)|, (43)

and then accumulating |T (φL,n, φL,n′)| for the index n. We name this method imaging
by maximum. It is higher in resolution since the effect of the wavelets touching merely
∂D is absorbed by their closest neighbors lying on ∂D. The procedure is summarized in
Algorithm 1. Figures 5 (a) and (b) show a comparison between these two algorithms.
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(a) (b)

Figure 4: Amplitude of {T (φL,n, φL,n′)}n′ with L = −4, n = [17, 21] (or equivalently the
815-th row in Figure 3 (a)). The support of the wavelet φL,n intersects ∂D. (a): View as an
image with each pixel corresponding to one n′. (b): Amplitude as a function of the position
index n′. The highest peak appears around n′ = 815.

Algorithm 1 Imaging by maximum

Input: the matrix X of an unknown shape D, a zero-valued matrix I.
for n ∈ Z2 do

1. n′ ← arg maxn′∈Z2 |Xn,n′ |
2. I(n)← I(n) + |Xn,n′ |;

end for
Output: the 2D image I.

4.4 Reconstruction of X by `1 minimization

As the scale L decreases, the dimension of X increases rapidly as ∝ 2−4L. On the other
hand, the band diagonal structure of X shows that the largest coefficients distribute on
the major band diagonals, which is an important a priori information allowing to reduce
considerably the dimension of the unknown to be reconstructed.

For this, we fix a priori N0 > 0 and assume that the coefficient T (φL,n, φL,n′) can be
neglected when |n − n′| > N0. We construct accordingly a band diagonal mask M taking
values 0 or 1 by choosing N0 proportional to the support size of the wavelet. Remark that
the mask constructed in this way is not adaptive and does not contain any information
about the boundary of the target. Figure 3 (b) shows a mask M with N0 = 5.

Given the high dimension of X and its sparsity, we seek a sparse solution by solving the
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(a) (b)

Figure 5: Images obtained by the imaging algorithms 4.3 applied on the true coefficients X
with L = −4. (a): Imaging by maximum. (b): Imaging by diagonal.

`1 minimization problem as follows [19, 13, 10]:

Xest := arg min
X

‖L(M�X)−V‖2 + µ ‖M�X‖1,w , (44)

where M is the band diagonal mask (Figure 3 (b)), � denotes the termwise multiplication,
µ > 0 is the regularization parameter, and ‖x‖1,w =

∑
nwn|xn| is the reweighted `1 norm.

We set the weight w in such a way that the operator L is normalized columnwisely. The
constant µ is determined by the universal threshold [19] (tuned manually to achieve the
best result if necessary):

µ ∝ σnoise

√
NsNr

√
2 log‖M‖1 (45)

with ‖M‖1 being the number of non-zero values in M. Problem (44) admits a unique
sparse solution [19] under appropriate conditions, and can be solved numerically via efficient
algorithms; see for example [8].

5 Numerical experiments

In this section we present some numerical results to illustrate the efficiency of the wavelet
imaging algorithm proposed in section 4.3. The wavelet used here is the Daubechies wavelet
of order 6. We consider a near-field measurement system (Figure 1 (b)) with 20 × 20
uniformly distributed sources and receivers.

5.1 Parameter settings

We set the conductivity constant κ = 4/3 and use a flower-shaped target as D. The whole
procedure of the experiment is as follows. First, the data Vsr are simulated by evaluating
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(8) for all sources xs and receivers yr of the measurement system. A white noise of level

σnoise = σ0‖V‖F /
√
NsNr (46)

is added to obtain the noisy data V, with σ0 being the percentage of noise in data. There-
after the minimization problem (44) is solved with the parameters and methods described in
section 4.4. Finally, from the reconstructed coefficients X, we apply Algorithm 1 to obtain
a pixelized image of ∂D.

The vectors γxs ,γyr in (23) contain the wavelet coefficients of the Green functions Γs
and Γr respectively. They are computed by first sampling Γs and Γr on a fine Cartesian
lattice of sampling step . 2−11 on Ω (the singularity point xs is numerically smoothed) and
then applying the discrete fast wavelet transform on these samples to obtain the coefficients
at the desired scale.

5.2 Results of the imaging algorithm

Figures 6 (a, b) show the results of imaging obtained at the scale L = −4 with different
noise levels. It can be seen that even in a highly noisy environment (e.g. σ0 = 100%) the
boundary of D can still be correctly located.

Remark that for the near-field internal measurement system Figure 1 (b), one can obtain
an image of ∂D directly from the data V (in fact, Vsr being defined by (8) has large
amplitude if xs and/or yr is close to ∂D). Nonetheless, such a direct imaging method is far
less robust to noise than the wavelet based algorithm and its resolution is limited by the
density of the transmitters, as shown in Figures 6 (c, d).

In Figure 7 the same experiments of imaging with noisy data were conducted at the
scale L = −5. We notice that the images returned by Algorithm 1 have dimension 64× 64,
which is much higher than that of the grid of transmitters (20 × 20). Furthermore, the
results remain robust up to the noise level σ0 = 50%. These confirm the super-resolution
character of the wavelet based imaging algorithm.

6 Discussion

6.1 Effect of the conductivity constant κ

The constant κ as defined in section 2 is actually the ratio between the conductivity of the
target and the background (set to 1 in this paper). Further numerical experiments suggest
that the performance of Algorithm 1 depend on κ: the results may deteriorate when κ
becomes large (e.g. κ ≥ 4). This can be explained easily for the case of a unit disk. In
fact, it can be seen from (40) that the ratio between the overlapped and non overlapped
(in terms of the functions φL,n, φL,n′) coefficients of X varies with κ as 1/(κ − 1). Hence,
the localization property (section 4.2) becomes more (resp. less) pronounced when κ → 1
(resp. κ→ +∞), and the imaging algorithm is impacted accordingly. Nonetheless, we note
also that when κ → 1, the target D becomes indistinguishable from the background and
the measured data V decreases to zero (without considering the noise). These observations
suggest that in practice there may exist some numerical ranges for κ and for the noise level
on which the imaging algorithm is more or less effective.

16



(a) (b)

(c) (d)

Figure 6: (a, b): Images obtained by Algorithm 1 applied on X reconstructed from data
with noise, L = −4. (c, d): Images obtained directly from data V. (a, c): Noise level
σ0 = 50%, (b, d): σ0 = 100%.
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(a) (b)

Figure 7: Same experiments as Figures 6 (a, b) at the scale L = −5. (a): Imaging by
maximum with σ0 = 10% of noise, (b): with σ0 = 50% of noise.

6.2 Representation with the wavelet ψ

In section 4 we used only the scaling function φ for the approximation and the representation
of T , while it is also possible to use the wavelet functions ψk together with φ to represent
T and obtain another form of X. More precisely, let Wj be the detail space spanned by
{ψkj,n}n∈Z2,k=1,2,3 and Qj be the orthogonal projectors onto Wj . For any two scales L ≤ J ,
it holds

T (PLf, PLg) =
J∑

j,j′=L+1

T (Qjf,Qj′g)︸ ︷︷ ︸
Dj,j′

+
J∑

j′=L+1

T (PJf,Qj′g)︸ ︷︷ ︸
CJ,j′

+

J∑
j=L+1

T (Qjf, PJg)︸ ︷︷ ︸
Bj,J

+ T (PJf, PJg)︸ ︷︷ ︸
AJ,J

= f>Xg, (47)

where we used the fact that PLf = PJf +
∑J

j=L+1Qjf , and f ,g are respectively the

coefficient vectors of f and g under the basis {φJ,n, n ∈ Z2} ∪ {ψkj,n, j = L . . . J, n ∈ Z2, k =
1, 2, 3}. The coefficient matrix X now takes the form

X = X[D,L, J ] =


DL+1,L+1 . . . DL+1,J BL+1,J

...
. . .

...
...

DJ,L+1 . . . DJ,J BJ,J
CJ,L+1 . . . CJ,J AJ,J

 , (48)

where D,C,B, and A denote the block matrices corresponding to the terms marked by
braces in (47) respectively. In particular, Dj,j′ contains the detail coefficients of type
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T (ψkj,n, ψ
k′
j′,n′) with k, k′ = 1, 2, 3, whileAJ,J contains the approximation coefficients T (φJ,n, φJ,n′).

Remark that in the case L = J , X[D,L,L] is reduced to AL,L which is identical to the co-
efficient matrix defined in (35).

Moreover, one can easily prove (using the conjugated filters) that for any J, J ′ ≥ L,
X[D,L, J ′] and X[D,L, J ′], regarded as `2(Z) vectors, are equivalent up to an `2 unitary
transform. Therefore the choice of the scale J is not important since X[D,L, J ] is equivalent
to X[D,L,L] for any J ≥ L, and their dimensions are asymptotically equal as L→ −∞ for
a fixed domain Ω.

A natural question is to know whether the equivalent representation X[D,L, J ] with
J < L is more sparse than X[D,L,L]. In Figure 8 we plot the decay of the coefficients of
the four block matrices in X[D,L,L+1] with L = −5. It can be seen that for the numerical
range considered here, the detail coefficients have similar decay as the approximation coeffi-
cients. In fact, like T (φL,n, φL,n′), the main reason for the sparsity of the detail coefficients
T (ψkj,n, ψ

k′
j′,n′) is the intersection between the support of wavelets and the boundary ∂D,

and for the same reason the localization property (i.e., Proposition 4.2) remains valid for
the wavelets ψkj,n, k = 1, 2, 3. Hence the representation X[D,L, J ] has a similar sparsity as
X[D,L,L] and does not present substantial advantages for the applications considered in
this paper.

(a) (b)

Figure 8: Coefficients (absolute value) of X[D,L,L + 1] with L = −5 in decreasing order
in the logarithmic scale. (a): All coefficients. (b): Zoom-in on the first 106 coefficients.
The different curves in the figures represent: T (φL,n, φL,n′) (dash-dot line), T (ψ3

L,n, φL,n′)

(dashed line in green), T (φL,n, ψ
3
L,n′) (dashed line in red), and T (ψ3

L,n, ψ
3
L,n′) (solid line).

7 Conclusion

In this paper we presented a general framework for the electro-sensing problem, and pro-
posed a new wavelet based approach for the solution of the inverse problem and the vi-
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sualization of the target. The new approach is complementary to the previous developed
polynomial based approach in that both of them can be seen as choosing the basis adapted
to the measurement system. In case of the near-field measurement, the wavelet approach
is more appropriate than to the polynomial approach since it gives a sparse representation
of the geometric information of the target and allows to reconstruct more information by
exploiting the sparsity using `1 minimization, which is superior in robustness than the lin-
ear estimator in this case. Finally, numerical results show the performance of the wavelet
imaging algorithms, confirming the efficiency of the new approach.

A Proof of Lemma 2.2

Proof. For a given g ∈ Hs(Ω), by density of C∞(Ω) in Hs(Ω), for any ε > 0 there exists
u ∈ C∞(Ω), such that ‖g − u‖Hs ≤ ε/2. On the other hand, since Ω is bounded, one
can construct the Bernstein polynomial to approximate a C∞-function and its first s order
derivatives simultaneously and uniformly on Ω [16]. Hence, there exists K = K(ε) > 0 and
a polynomial

p(x) =
∑
|α|∞≤K

aαx
α, x ∈ R2, (49)

such that ‖u− p‖Hs ≤ ε/2. Therefore,

‖g − p‖Hs ≤ ‖g − u‖Hs + ‖u− p‖Hs ≤ ε,

which proves that the polynomial basis is complete in Hs(Ω) for s ≥ 0.

B Proof of Proposition 2.4

Proof. Since xs /∈ F , there exists a scale j0 small enough such that xs 6= 2jn for any
n ∈ Λkj , j ≤ j0, k = 1, 2, 3. The Taylor expansion up to order p− 1 of Γs reads:

Γs(x) =

p−1∑
|α|=0

(x− 2jn)α

α!
∂αΓ(2jn− xs) +R(x)

with the rest R(x) being given by

R(x) =
∑
|α|=p

p

α!
(x− 2jn)

α
∫ 1

0
(1− t)p−1.∂αΓ(2jn− xs + t(x− 2jn))dt

For k = 1, 2, 3, the two-dimensional wavelet ψkj,n is orthogonal to the polynomial xα for any

|α| < p. Hence by the change of variables x→ 2jx we obtain

〈Γs, ψkj,n〉 =
∑
|α|=p

2j(p+1)p

α!

∫ 1

0
(1− t)p−1

∫
suppψk

xαψk(x)∂αΓ(2jn− xs + t2jx)dx dt. (50)
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When j → −∞, there exists positive constants c0 and c1 depending only on F and ψk, such
that for any n ∈ Λkj , the distance between xs and 2jn satisfies

c0ρ ≤ ‖2jn− xs‖ ≤ c1ρ.

Combining the fact that ψk is compactly supported together with the estimate |∂αΓ(x)| �
‖x‖−|α|, we conclude from (50) that

|〈Γs, ψkj,n〉| � 2j(p+1)ρ−p as j → −∞,

where the underlying constants depend only on xs, F, ψ
k, and p.

C Proof of Proposition 4.1

Proof. For any f ∈ H2, g ∈ H1, let f ,g be the coefficient vectors defined in (36). By the
boundness of T , we have

|f>Xg| = |T (PLf, PLg)| ≤ C‖PLf‖H2‖PLg‖H1 .

Since the scaling function φ ∈ Cr0(R) with r ≥ 2, we have the inverse estimate ([14, Theorem
3.4.1]):

‖PLf‖H2 ≤ C2−2L‖PLf‖L2 = C2−2L‖f‖2, (51)

where the last identity comes from ‖PLf‖L2 = ‖f‖`2 ({φL,n}n∈Z2 is an orthonormal basis of
the approximation space VL). Similarly, one has the inverse estimate ‖PLg‖H1 ≤ C2−L‖g‖2.
Finally, we obtain

|f>Xg| ≤ C2−3L‖f‖`2‖g‖`2 ,

which proves the right-hand side of (37).
Let Dε be a circular domain of width ε around ∂D defined as

Dε = {x | dist(x, ∂D) ≤ ε}. (52)

Let η > ε and Dη be another circular domain containing Dε, and put

f(x) =

{
x1 if x ∈ Dη,

0 otherwis.

As L→ −∞ we can choose the constant η ∝ 2L such that any φL,n whose support intersects
Dε has its support strictly included in Dη. Now by definition of the wavelet basis B in
section 2.3.3, the approximation space VL contains polynomials of order p − 1. Therefore,
when restricted on Dε,

f |Dε = (PLf)|Dε . (53)
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On the other hand, explicit bounds exist on the generalized polarisation tensors (30) Xα,β

([7, Lemma 4.12]). In particular, for |α| = 1 the following estimate holds [12]

|D| ≤ κ+ 1

|κ− 1|
|T (xα, xα)| ≤ C|D| (54)

with C being some constant independent of D and |D| being the volume of D. Hence, if f
is the coefficient vector of PLf , using (53) we obtain that

|f>Xf | = |T (PLf, PLf)| = |T (f, f)| = |T (x1, x1)| ≥ |κ− 1|
κ+ 1

|D|.

Finally, notice that ‖f‖2`2 = ‖PLf‖2L2 ≤ ‖f‖2L2 . 2L, which gives the left-hand side of
(37).
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