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Perceptual Texture Similarity for Machine

Intelligence Applications

Karam Naser, Vincent Ricordel and Patrick Le Callet

Abstract Textures are homogeneous visual phenomena commonly appearing in the
visual scene. They are usually characterized by randomness with some stationar-
ity. They have been well studied in different domains, such as neuroscience, vision
science and computer vision, and showed an excellent performance in many applica-
tions for machine intelligence. This book chapter focuses on a special analysis task
of textures for expressing texture similarity. This is quite a challenging task, because
the similarity highly deviates from point-wise comparison. Texture similarity is key
tool for many machine intelligence applications, such as recognition, classification,
synthesis and etc. The chapter review the theories of texture perception, and pro-
vides a survey about the up-to-date approaches for both static and dynamic textures
similarity. The chapter focuses also on the special application of texture similarity
in image and video compression, providing the state of the art and prospects

1 Introduction

Textures are fundamental part of the visual scene. They are random structures often
characterized by homogeneous properties, such as color, orientation, regularity and
etc. They can appear both as static or dynamic, where static textures are limited
to spatial domain (like texture images shown in Fig. 1), while dynamic textures
involves both the spatial and temporal domain Fig. 2.

Research on texture perception and analysis is known since quite a long time.
There exist many approaches to model the human perception of textures, and also
many tools to characterize texture. They have been used in several applications such
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Fig. 1: Example of texture images from VisTex Dataset

Fig. 2: Example of dynamic textures from DynTex Dataset [1]. First row represents
the first frame, and next rows are frames after respectively 2 seconds

as scene analysis and understanding, multimedia content recognition and retrieval,
saliency estimation and image/video compression systems.

There exists a large body of reviews on texture analysis and perception. For ex-
ample, the review of Landy [2][3] as well as the one from Rosenholtz [4] give a
detailed overview of texture perception. Besides, the review of Tuceryan et al. in
[5] covers most aspects of texture analysis for computer vision applications, such as
material inspection, medical image analysis, texture synthesis and segmentation. On
the other hand, the book Haindl et al. [6] gives an excellent review about modeling
both static and dynamic textures. A long with this, there are also other reviews that
cover certain scope of texture analysis and perception, such as [7, 8, 9, 10, 11].

This chapter reviews an important aspect of texture analysis, which is texture
similarity. This is because it is the fundamental tool for different machine intelli-
gence applications. Unlike most of the other reviews, this covers both static and
dynamic textures. A special focus is put on the use of texture similarity concept in
data compression.
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The rest of the chapter is organized as follows: Sec. 2 discusses about the mean-
ing of texture in both technical and non-technical contexts. The details of texture
perception, covering both static texture and motion perception, is given in Sec. 3.
The models of texture similarity is reviewed in Sec. 4, with benchmarking tools in
Sec. 5. The application of texture similarity models in image and video compression
is discussed in 6, and the conclusion is given in Sec. 7.

2 What is Texture

Linguistically, the word texture significantly deviates from the technical meaning
in computer vision and image processing. According to Oxford dictionary [12], the
word refers to one of the followings:

1. The way a surface, substance or piece of cloth feels when you touch it
2. The way food or drink tastes or feels in your mouth
3. The way that different parts of a piece of music or literature are combined to

create a final impression

However, technically, the visual texture has many other definitions, for example:

• We may regard texture as what constitute a macroscopic region. Its structure is
simply attributed to pre-attentive patterns in which elements or primitives are
arranged according to placement order [13].

• Texture refers to the arrangement of the basic constituents of a material. In a
digital image, texture is depicted by spatial interrelationships between, and/or
spatial arrangement of the image pixels [14].

• Texture is a property that is statistically defined. A uniformly textured region
might be described as predominantly vertically oriented, predominantly small in
scale, wavy, stubbly, like wood grain or like water [2].

• We regard image texture as a two-dimensional phenomenon characterized by
two orthogonal properties: spatial structure (pattern) and contrast (the amount
of local image structure) [15].

• Images of real objects often do not exhibit regions of uniform and smooth inten-
sities, but variations of intensities with certain repeated structures or patterns,
referred to as visual texture [16].

• Textures, in turn, are characterized by the fact that the local dependencies be-
tween pixels are location invariant. Hence the neighborhood system and the ac-
companying conditional probabilities do not differ (much) between various im-
age loci, resulting in a stochastic pattern or texture [17].

• Texture images can be seen as a set of basic repetitive primitives characterized
by their spatial homogeneity [18].

• Texture images are specially homogeneous and consist of repeated elements, of-
ten subject to some randomization in their location, size, color, orientation [19].

• Texture refers to class of imagery that can be characterized as a portion of infinite
patterns consisting of statistically repeating elements [20].
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• Textures are usually referred to as visual or tactile surfaces composed of re-
peating patterns, such as a fabric [7].

The above definitions cover mostly the static textures, or spatial textures. How-
ever, the dynamic textures, unlike static ones, have no strict definition. The naming
terminology changes a lot in the literature. The following names and definitions are
summary of what’s defined in research:

• Temporal Textures:

1. They are class of image motions, common in scene of natural environment,
that is characterized by structural or statistical self similarity [21]

2. They are objects possessing characteristic motion with indeterminate spatial
and temporal extent[22]

3. They are textures evolving over time and their motion are characterized by
temporal periodicity or regularity[23].

• Dynamic Textures:

1. They are sequence of images of moving scene that exhibit certain stationarity
properties in time [24][9].

2. Dynamic textures (DT) are video sequences of non-rigid dynamical objects
that constantly change their shape and appearance over time[25].

3. Dynamic texture is used with reference to image sequences of various natural
processes that exhibit stochastic dynamics [26].

4. Dynamic, or temporal, texture is a spatially repetitive, time-varying visual
pattern that forms an image sequence with certain temporal stationarity [27].

5. Dynamic textures are spatially and temporally repetitive patterns like trees
waving in the wind, water flows, fire, smoke phenomena, rotational motions
[28].

• Spacetime Textures:

1. The term spacetime texture is taken to refer to patterns in visual spacetime that
primarily are characterized by the aggregate dynamic properties of elements
or local measurements accumulated over a region of spatiotemporal support,
rather than in terms of the dynamics of individual constituents [29].

• Motion Texture:

1. Motion textures designate video contents similar to those named temporal or
dynamic textures. Mostly, they refer to dynamic video contents displayed by
natural scene elements such as flowing rivers, wavy water, falling snow, rising
bubbles, spurting foun- tains, expanding smoke, blowing foliage or grass, and
swaying flame [30].

• Texture Movie:

1. Texture movies are obtained by filming a static texture with a moving camera
[31].



Perceptual Texture Similarity for Machine Intelligence Applications 5

• Textured Motion:

1. Rich stochastic motion patterns which are characterized by the movement of a
large number of distinguishable or indistinguishable elements, such as falling
snow, flock of birds, river waves, etc. [32].

• Video Texture:

1. Video textures are defined as sequences of images that exhibit certain station-
arity properties with regularity exhibiting in both time and space [33].

It is worth also mentioning that in the context of component based video coding,
the textures are usually considered as details irrelevant regions, or more specifically,
the region which is not noticed by the observers when it is synthesized [34] [35]
[36].

As seen, there is no universal definition of the visual phenomena of textures, and
there is a large dispute between static and dynamic textures. Thus, for this work, we
consider the visual texture as:

A visual phenomenon, that covers both spatial and temporal textures. Where spa-
tial textures refer to us as homogeneous regions of the scene composed of small ele-
ments (texels) arranged in a certain order, they might exhibit simple motion such as
translation, rotation and zooming. In the other hand, temporal textures are textures
that evolve over time, allowing both motion and deformation, with certain station-
arity in space and time.

3 Studies on Texture perception

3.1 Static Texture Perception

Static texture perception has attracted the attention of researchers since decades.
There exists a bunch of research papers dealing with this problem. Most of the
studies attempt to understand how two textures can be visually discriminated, in an
effortless cognitive action known as pre-attentive texture segregation.

Julesz extensively studied this problem. In his initial work in [37, 38], he posed
a question if the human visual system is able to discriminate textures, generated by
a statistical model, based on the kth order statistics, and what is the minimum value
of k that beyond which the pre-attentive discrimination is not possible any more.
The order of statistics refers to the probability distribution of the of pixels values,
in which the 1st order measures how often a pixel has certain color (or luminance
value), while the 2nd order measures the probability of obtaining a combination of
two pixels (with a given distance) colors, and the same can be generalized for higher
order statistics.

First, Julesz conjectured that the pre-attentive textures generated side-by-side,
having identical 2nd order statistics but different 3rd order and higher, cannot be
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discriminated without scrutiny. In other words, textures having difference in the 1st

and/or 2nd order statistics can be easily discriminated. This can be easily verified
with the textures given in Fig. 3. The textures are generated by a small texture ele-
ment (letter L) in three manners. First, to have different the 1st order statistics, where
the probability of black and while pixels is altered in Fig. 3a (different sizes of L).
Second, to have difference in 2nd order statistics (with identical 1st order statistics)
by relatively rotating one texture to the other. Third, to have difference in 3rd order
statistics (with identical 1st and 2ndst order statistics) by using a mirror copy of the
texture element (L). One can easily observe that conjecture holds here, as we just
observe the differences pre-attentively when the difference is below the 2nd order
statistics. Several other examples can be found in [38] to support this conjecture.

(a) different 1st order statistics (b) different 2nd order statistics (c) different 3rd order statistics

Fig. 3: Examples of pre-attentive textures discrimination. Each image is composed
of two textures side-by-side. (a) and (b) are easily distinguishable textures because
of the difference in the 1st and the 2nd order statistics (resp.), while (c), which has
identical 1st and the 2nd but different 3rd order statistics, is not. Images were copied
from [39, 37].

However, it was realized then it is possible to generate other textures having iden-
tical 3rd order statistics, and yet pre-attentively discriminable [40]. This is shown in
Fig. 4, in which the left texture has an even number of black blocks in each of its
2x2 squares, whereas the left one has an odd number. This lead to the modified
Julesz conjecture and the introduction of the texton theory [39]. The theory pro-
poses that the pre-attentive texture discrimination system cannot globally process
third or higher order statistics, and that discrimination is the results of few local
conspicuous features, called textons. This has been previously highlighted by Beck
[41], where he proposed that the descrimination is a result of difference in first order
statistics of local local features (color, brightness, size and etc.).

On the other side, with the evolution of the neurophysiological studies in the
vision science, the research on texture perception has envovled, and several neu-
ral models of human visual system (HVS) were proposed. The functionality of the
visual receptive field in [42], has shown that HVS, or more specifically the visual
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Fig. 4: Example of 2 textures (side-by-side) having identical 3rd order statistics, yet
pre-attentively distinguishable.

cortex, analysis the input signal by a set of narrow frequency channels, resembling to
some extent the Gaborian filtering [43]. According, different models of texture dis-
crimination have been developped, based on Gabor filtering [44, 45], or difference
of offset Gaussians [46], etc. These models are generally performing the following
steps:

1. Multi-channel filtering
2. Non linearity stage
3. Statistics in the resulting space

The texture perception models based on the multi-channel filtering approach is
known as back-pocket model (according to Landy [2, 3]). This model, shown in
Fig. 5, consists of three fundamental stages: linear, non-linear, linear (LNL). The
first linear stage accounts for the linear filtering of the multi-channel approach. This
is followed then by a non-linear stage, which is often rectification. This stage is
required to avoid the problem of equal luminance value which will on average cancel
out the response of the filters (as the filters are usually with zero mean). The last
stage refers to us as pooling, where a simple sum can give an attribute for a region
such that it can be easily segmented or attached to neighboring region. The LNL
model is also occasionally called filter-rectify-filter (FRF) as how is performs the
segregation [4].
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Fig. 5: The Back-pocket perceptual texture segregation model [3]
.

3.2 Motion Perception

Texture videos, as compared to texture images, add the temporal dimension to the
perceptual space. Thus, it is important to include the temporal properties of the
visual system in order to understand its perception. For this reason, the subsection
provides an overview of studies on motion perception.

The main unit responsible for motion perception is the visual cortex [47]. Gen-
erally, the functional units of the visual cortex, which are responsible for motion
processing, can be grouped into two stages:

1. Motion Detectors

The motion detectors are the visual neurons whose firing rate increases when
an object moves in front of the eye, especially within the foveal region. Several
studies have shown that the primary visual cortex area (V1) is place where the
motion detection happens [48, 49, 50, 51]. In V1, simple cells neurons are often
modeled as a spatio-temporal filter that are tuned to a specific spatial frequency
and orientation and speed. On the other hand, complex cells perform some non-
linearity on top of the simple cells (half/full wave rectification and etc.).
The neurons of V1 are only responsive to signal having the preferred frequency-
orientation-speed combination. Thus, there is still a lack of the motion integration
from all neurons. Besides, the filter response cannot cope with the aperture prob-
lem. As shown in Fig. 6, the example of the signal in the middle of the figure
shows a moving signal with a certain frequency detected to be moving up, while
it could actually be moving up-right or up-left. This is also true for the other
signals in the figure.

2. Motion Extractors
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Fig. 6: Examples of the aperture problem: Solid arrow is the detected direction, and
the dotted arrow is the other possible directions.

The motion integration and aperture problem are solved at a higher level of the
visual cortex, namely inside the extra-striate middle temporal (MT) area. It is
generally assumed that the output of V1 is directly processed in MT in a feed-
forward network of neurons [48, 52, 53, 49]. The velocity vectors computation
in the MT cells can be implemented in different strategies. First, the intersection
of constraints, where the velocity vectors will be the ones that are agreed by
the majority of individual motion detectors [48][54][55]. Other than that, one
can consider a maximum likelihood estimation, or a learning based model if the
ground truth is available. An example of this could be MT response measured by
physiological studies [49], or ground truth motion fields such as [56, 57].

It is worth also mentioning that there are other cells responsible for motion per-
ception. For example, the medial superior temporal (MST) area of the visual cortex
is motion perception during eye pursuit or headings [58, 59]. Another thing, the
above review is concerning the motion caused by a luminance traveling over time,
which is known as the first order motion. However, there exist the second and third
order motion which is due to contrast moving and feature motion (resp.). These
are outside the scope of this chapter, as they are not directly related to the texture
perception.

3.3 Generalized Texture Perception

Up to our knowledge, a perceptual model that governs both static and dynamic tex-
tures doesn’t not exist. The main issue is that although extensive perceptual studies
on texture images exist, the texture videos have not been yet explored.

Looking at the hierarchy of the visual system in Fig. 7, we can differentiate two
pathways after V1. The above is called the dorsal stream, while the lower is called
the ventral stream. The dorsal stream is responsible for the motion analysis, while
the ventral stream is mainly concerned about the shape analysis. For this reason, the
dorsal stream is known as the ”where” stream, while the ventral is known as the
”what” stream [47].
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One plausible assumption about texture perception is that texture has no shape.
This means that visual texture processing is not in the ventral stream. Beside this,
one can also assume that the type of motion is not a structured motion. Thus, it is not
processed by the dorsal stream. Accordingly, the resulting texture perception model
is only due to V1 processing. That is, the perceptual space is composed of proper
modeling of V1 filters along with their non-linearity process. We consider this type
of modeling as Bottom-Up Modeling.

On the other hand, another assumption about the texture perception can be made.
Similar to Julesz conjectures (Sec. 3.1), one can study different statistical models for
understanding texture discrimination. This includes either higher order models, or
same order at different spaces. One can also redefine what is texton. These models
impose different properties about the human visual system that don’t consider the
actual neural processing. We consider this type of modeling as Top-Down Model-

ing.

Fig. 7: Hierarchy of the visual system [60]

4 Models for Texture Similarity

Texture similarity is a very special problem that requires a specific analysis of the
texture signal. This is because two textures can look very similar even if there is
a large pixel-wise difference. As shown in Fig. 8, each group of three textures has
overall similar textures, but there is still a large difference if one makes a point by
point comparison. Thus, the human visual system does not compute similarity using
pixel comparison, but rather considers the overall difference in the semantics. For
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this reason, simple difference metrics, such mean squared error, can not accurately
express texture (dis-)similarity, and proper models for measuring texture similarity
has always been studied.

Fig. 8: Three examples of similar textures, having a large pixel-wise differences.
These images were cropped from dynamic texture videos in DynTex dataset [1].

This is even more difficult in the case of dynamic textures, because there exists a
lot of change in details over time, the point-wise comparison would fail to express
the visual difference. In the following subsections, a review of the existing texture
similarity models is provided, covering both static and dynamic textures.

4.1 Transform Based Modeling

Transform based modeling has gained lots of attention in several classical as well
as recent approaches of texture similarity. This is because of the direct link with
the neural processing in the visual perception. As explained in Sec. 3, both neural
mechanisms of static texture and motion perception involve kind of subband filtering
process.

One of the first early approaches for texture similarity was proposed by Manju-
nath et. al. [61], in which the mean and standard deviation of the texture subbands
(using Gabor filtering) are compared and the similarity is assessed accordingly. Fol-
lowing this approach, many other similarity metrics are defined in a similar way,
using different filtering methods or different statistical measures. For example, the
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Kullback Leiber divergence is used in [62] and [63]. Other approach is by using
the steerable pyramid filter [64] and considering the dominant orientation and scale
[18].

Knowing the importance of subband statistics, Heeger et al. proposed to synthe-
size textures by matching the histogram of each subband of the original and synthe-
sized textures. To overcome the problem of irreversibility of Gabor filtering, they
used the steerable pyramid filter [64]. The resulting synthesized textures were con-
siderably similar to the original, especially for the case of highly stochastic textures.
The concept has also been extended by Portilla et al. [19], where larger number of
features defined in the subband domain are matched, resulting in a better quality of
synthesis.

The significance of the subband statistics has led more investigation of texture
similarity in that domain. Recently, a new class of similarity metrics, known as
structural similarity, has been introduced. The structural texture similarity metric
(STSIM) was first introduced in [65], then it was enhanced and further developed in
[66], [67] and [68]. The basic idea behind them is to decompose the texture, using
the steerable pyramid filter, and measure statistical features in that domain. The set
of statistics of each subband contains the mean and variance. Besides, the cross
correlation between subbands is also considered. Finally, these features were fused
to form a metric, that showed a high performance in texture retrieval.

The filter-bank approach, which was applied for static textures, has been also
used in dynamic texture modeling by several studies. However, the concept was
used in a much smaller scope compared to static textures. In [69], three dimen-
sional wavelet energies were used as features for textures. A comparison of different
wavelet filtering based approaches, that includes purely spatial, purely temporal and
spatio-temporal wavelet filtering, is given in[28].

A relatively new study on using energies of Gabor filtering is found in [70]. The
work is claimed to be inspired by the human visual system, where it resembles to
some extent the V1 cortical processing (Sec. 3).

Beside this, there exist also other series of papers, by Konstantinos et. al. [29, 26],
employed another type of subband filtering, which is the third Gaussian derivatives
tuned to certain scale and orientation (in 3D space). The approach was used for
textures representation recognition and also for dynamic scene understanding and
action recognition [71].

4.2 Auto-regressive Modeling

The auto-regressive (AR) model has been widely used to model both static and
dynamic textures, especially for texture synthesis purposes. In its simplistic form,
AR can be expressed in this form:

s(x,y, t) =
N

Â
i=1

fis(x+Dyi,y+Dyi, t +D ti)+n(x,y, t) (1)
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Where s(x,y, t) represents the pixel value at the spatio-temporal position (x,y, t),
fi is the model weights, Dxi,Dyi,D ti are the shift to cover the neighboring pixels.
n(x,y, t) is the system noise which is assumed to be white Gaussian noise.

The assumption behind AR is that each pixel is predictable from a set of its
neighboring spatio-temporal pixels, by the means of weighted summation, and the
error is due to the model noise n(x,y, t). An example of using model for synthesis
can be found in [72, 73, 74].

The auto-regressive moving average (ARMA) model is an extension of the sim-
ple AR model that is elegantly suited for dynamic textures. It was first introduced
by Soatto and Dorreto [24, 9] for the purpose of dynamic texture recognition. The
ARMA model is mathematically expressed in this equation:

x(t +1) = Ax(t)+ v(t)
y(t) = fx(t)+w(t)

(2)

Where x(t) is a hidden state and y(t) is the output state, v(t) and w(t) are system
noise (normally distributed) and A, f are the model weights as in AR. Typically, the
output state is the original frames of the image sequence. Comparing Eqn. 2 with
Eqn. 1, it is clear that the model assumes that the hidden state x(t) is modeled as
an AR process, and the observed state is weighted version of the hidden state with
some added noise.

Both AR and ARMA can be directly used to measure texture similarity by com-
paring the model parameters. In other words, the parameters can be considered as
visual features to compare textures and express the similarity. This has been used
in texture recognition, classification, segmentation and editing [75, 76]. Other than
that, it has been extended by several studies to synthesize similar textures. For ex-
ample, by using Fourier domain [77], by including several ARMA models with tran-
sition probability [78], using higher order decomposition [79] and others [80, 81].

Although there is no direct link between the texture perception and the auto-
regressive models, we can still interpret its performance in terms of Julesz conjec-
tures (Sec. 3.1). The assumption behind these models is that textures would look
similar if they are generated by the same statistical model with a fixed set of param-
eters. While Julesz has conjectured that the textures look similar if they have the
same first and second order statistics. Thus, it can be understood that these models
are an extension of the conjecture, in which the condition for similarity is better
stated.

4.3 Texton Based Modeling

Recalling that textons are local conspicuous features (Sec. 3.1), a large body of
research has been put to define some local features that can be used to measure the
texture similarity. One of the first approaches, and still very widely used, is the local
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binary pattern approach (LBP) [15]. This approach is simply comparing each pixel
with each of its circular neighborhood, and give a binary number (0-1) if the value
is bigger/smaller than the center value. The resulting binary numbers are gathered
in a histogram, and any histogram based distance metric can be used.

The approach has gained a lot of attention due to its simplicity and high per-
formance. It was directly adopted for dynamic textures in two manners [82]. First,
by considering the neighborhood to be a cylindrical instead of circular in the case
of Volume Local Binary Pattern (V-LBP). Second, by performing three orthogonal
LBP on the xy, xt and yt planes, which is therefore called Three Orthogonal Planes
LBP (LBP-TOP).

Several extensions of the basic LBP model have been proposed. For example, a
similarity metric for static textures known as local radius index (LRI)[83, 84], which
incorporates LBP along with other pixel to neighbors relationship. Besides, there is
another method that utilizes the Weber law of sensation, that is known as Weber
Local Descriptor (WLD) [85].

Rather than restricting the neighborhood relationship to binary descriptors, other
studies have introduced also s trinary number [86, 87, 88] and introducing what is
known as texture spectrum.

It is worth also mentioning that some studies consider the textons as the results
of frequency analysis of texture patches. The study of Liu et al. [89] considered the
marginal distribution of the filter bank response as the ”quantitative definition” of
texton. In contrast, textons are defined [90] as the representation that results from
codebook generation of a frequency histogram.

4.4 Motion Based Modeling

The motion based analysis and modeling of dynamic textures has been in large body
of studies. This is because motion can be considered as a very important visual cue,
and also because the dynamic texture signal is mostly governed by motion statistics.
To elaborate on motion analysis, let’s start with basic assumption that we have an
image patch I(x,y, t) in a spatial position (x,y) and at time (t), and this patch would
appear in the next frame, shifted by (Dx,Dy). Mathematically:

I(x,y, t) = I(x+Dx,y+Dy, t +1) (3)

This Eqn. is known as Brightness Constancy Equation, as it states that the bright-
ness doesn’t change from one frame to another. The Eqn. can be simplified by em-
ploying the Taylor expansion as follows (removing the spatial and temporal indexes
for simplicity):

I =
•

Â
n=0

� Ixn

n!
⇥Dx+

Iyn

n!
⇥Dy+

Itn
n!

⇥D t
�

(4)
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where Ixn, Iyn and Itn are the nth order partial derivative with respect to x, y and t.
The Eqn can be further simplified by neglecting the terms of order higher than one,
then the it becomes:

Ix ⇥Vx + Iy ⇥Vy =�It (5)

where Vx, Vy are the velocities in x and y directions (Vx = Dx/D t and so on).
The solution of Eqn. 5 is known as optical flow. However, further constraints are
needed to solve the equation because of the high number of unknowns. One of the
constraints is the smoothness, in which a patch is assumed to move with the same
direction and speed between two frames. This is not usually the case for dynamic
texture, in which the content could possibly change a lot in a short time instant.
Accordingly, there exists also another formulation of the brightness constancy as-
sumption, that doesn’t require the analytical solution. This is known as the normal
flow. It is a vector of flow, that is normal to the spatial contours (parallel to the
spatial gradient), and its amplitude is proportional to the temporal derivative. Math-
ematically, it is expressed as:

NF =
�Itq

Ix
2 + Iy

2
N (6)

where N is a unit vector in the direction of the gradient.
The normal flow, as compared to the optical flow, is easy to compute. It needs

only the image derivatives in the three dimensions (x,y, t), and no computation of
the flow speed is needed. One drawback of normal flow is that it can be very noisy
(especially for low detailed region) when the spatial derivatives are low. For this
reason, a threshold is usually set before evaluating any statistical property of the
normal flow.

The motion based modeling of dynamic textures was pioneered by Nelson and
Palonan in [21], where they used normal flow statistics for dynamic textures clas-
sification. This model has been extended in [91] to include both the normal flow
and some static texture features (coarseness, directionality and contrast). Other than
that, Peteri et. al. [92] have augmented the normal flow with a regularity measure,
computed from correlation function.

The optical flow has been also used in dynamic texture analysis. In [93], the
authors compared different optical flow approaches to normal flow, and showed that
the recognition rate can be significantly enhanced by optical flow.

Similar to the concept of co-occurrence matrix, Rahman et. al. have developed
the concept of motion co-occurrence [94], in which they compute the statistics of
occurrence of a motion field with another one for a given length.

It is worth also mentioning here there are other approaches beyond the concept
of brightness constancy. Since dynamic textures can change their appearance over
time, it is more logical to move towards brightness conservation assumption. It can
be mathematically expressed as [95, 96]:

I(x,y, t)(1�Dxx �Dyy) = I(x+Dx,y+Dy, t +1) (7)



16 Karam Naser, Vincent Ricordel and Patrick Le Callet

Where Dxx and Dyy are the partial derivatives of the shifts in x and y. Compar-
ing this equation to Eqn. 3, the model allows the brightness I to change over time
to better cover the dynamic change inherited in the dynamic textures. The model
has been used for detecting dynamic textures [95], in which regions satisfying this
assumption are considered as dynamic textures. However, further extensions of this
ideas were not found.

4.5 Others

Along with other aforementioned models, there exist other approaches that cannot
be straightforwardly put in one category. This is because the research on texture
similarity is quite matured, but still very active.

One major approach for modeling texture and expressing similarity is by using
the fractal analysis. It can be simply understood as an analysis of measurements at
different scales, which in turn reveals the relationship between them. For images,
this can be implemented by measuring the energies of a gaussian filter at different
scales. The relationship is expressed in terms of the fractional dimension. Recent
approaches of fractal analysis can be found in [97, 98, 99].

Another notable way is to use the self avoiding walks. In this, a traveler walks
through the video pixel using a specified rule and memory to store the last steps. A
histogram of walks is then computed and considered as features for characterizing
the texture (cf. [100, 101]).

Beside these, there exist also other models that are based on the physical behavior
of textures (especially dynamic textures). This includes models for fire [102], smoke
[103] and water [104].

Although these models suit very well specific textural phenomenon, they cannot
be considered as perceptual ones. This is because they are not meant to mimic the
visual processing, but rather the physical source. For this reason, these are out of
scope of this book chapter.

5 Benchmarking and Comparison

After viewing several approaches for assessing the texture similarity (Sec. 4), the
fundamental question here is how to compare these approaches, and to establish a
benchmark platform in order to differentiate the behavior of each approach. This
is of course not a straightforward method, and a reasonable construction of ground
truth data is required.

Broadly speaking, comparison can either be performed subjectively or objec-
tively. In other words, either by involving observers in a kind of psycho-physical
test, or by testing the similarity approaches performance on a a pre-labeled dataset.
Both have advantages and disadvantages, which are explained here.
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The subjective comparison is generally considered as the most reliable one. This
is because it directly deals with human judgment on similarity. However, there are
several problems that can be encountered in such a methodology. First, the selection
and accuracy of the psycho-physical test. For example, a binary test can be the
simplest for the subjects, and would result in a very accurate results. In contrast,
this test can be very slow to cover all the test conditions, and possibly such a test
would not be suitable. Second, the budget-time limitation behind the subjective tests
would result in a limited testing material. Thus, it is practically unfeasible to perform
a large scale comparison with subjective testing.

Accordingly, there exist few studies on the subjective evaluation of texture sim-
ilarity models. For example, the subjective quality of the synthesized textures were
assessed and predicted in [105] [33], and adaptive selection among the synthesis
algorithms was provided in [106]. The similarity metrics correlation with subjective
evaluation was also assessed in [107, 108].

As explained earlier, subjective evaluation suffer from test accuracy and budget
time-limitation. One can also add the problem of irreproducibility, in which the
subjective test results cannot be retained after repeating the subjective test. There is
also a certain amount of uncertainty with the results, which is usually reported in
terms of confidence levels. To encounter this, research in computer vision is usually
leaded by objective evaluations.

One the commonly used benchmarking procedure is to test the performance on
recognition task. For static textures, two large datasets of 425 and 61 homogeneous
texture images are cropped into 128x128 images with substantial point-wise differ-
ences [67]. The common test is to perform a retrieval test, in which for a test image if
the retrieved image is from the correct image source then it is considered as correct
retrieval. This is performed for all of the images in the dataset, and the retrieval rate
is considered as the criteria to compare different similarity measure approaches. For
example, Table 1 provides the information about the performance of different met-
rics. In this table, one can easily observe that simple point-wise comparison metric
like the Peak Signal to Noise Ratio (PSNR) provides the worst performance.

Metric Retrieval rate (%)

PSNR 4
LBP 90

Wavelet Features [62] 84
Gabor Features [61] 92

STSIM 96
LRI 99

Table 1: Retrieval rate as a benchmark tool for different texture similarity metrics.
Results obtained from [83, 67].

For dynamic textures, similar task is defined. Commonly, the task consists of
classification of three datasets. These are the UCLA [109], DynTex [1] and Dyn-
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Tex++ [110] datasets. For each dataset, the same test conditions are commonly used.
For example, DynTex++ contains 36 classes, each of 100 exemplar sequences. The
test condition is to randomly assign 50% of the data for training and the rest for
testing. The train data are used for training the models, and the recognition rate is
reported for the test data. The procedure is repeated 20 times and the average value
is retained. This is shown in Table 2.

Metric recognition rate (%)

VLBP 94.98
LBP-TOP 94.05

WLBPC [111] 95.01
CVLBP [112] 96.28

MEWLSP [113] 98.48

Table 2: Recognition rate on the DynTex++ as a benchmark tool for different texture
similarity metrics. Results obtained from [112, 113].

6 Texture Similarity for Perceptual Image and Video

Compression

Image/Video compression is the key technology that enables several applications
related to storage and transmission. For video, the amount of data is increasingly
huge, and research on better compression is always growing.

In the context of compression, texture is usually referred to homogeneous regions
of high spatial and/or temporal activities with mostly irrelevant details. According to
this, textures would usually consume high amount of bitrate for unnecessary details.
Thus, a proper compression of texture signal is needed. In the following subsections,
an overview of different approaches for texture similarity in video compression is
provided.

6.1 Bottom-Up Approaches

As mention in Sec. 3.3, bottom up approaches try to perform the same neural pro-
cessing of the human visual system. We have seen many transform based models
(Sec. 4.1) that showed good performance for measuring the texture similarity. These
models can be also used in image/video compression scenario, such that the com-
pression algorithm is tuned to provide the best rate-similarity trade-off instead of
rate-distortion. By doing so, the compression is relying more on a perceptual sim-
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ilarity measure, rather than a computational distortion metric. Consequently, this
could perceptually enhance the compression performance.

In our previous studies [114, 115, 116], we have used the perceptual distortion
metrics inside the state of the art video compression standard, known as High Ef-
ficiency Video Coding (HEVC [117]), and evaluated their performance. We used
the two metrics of STSIM and LRI (Sec. 4.1 and 4.3) inside as distortion measure
(dissimilarity) inside the rate-distortion function of HEVC reference software (HM
software [118]). The measured distortion is used to select the prediction mode and
the block splitting. Examples of the results are shown in Fig. 9.

Fig. 9: Examples of decoded textures using the same QP. From left to right: Original
texture, compressed using HEVC with default metrics, with STSIM and with LRI.

The visual comparison between the compression artifacts of the default HEVC
versus texture similarity metrics based optimization shows that clearly show that
structural information are better preserved. We can also clearly see the point-
wise differences, when using texture metrics, but the overall visual similarity is
much higher. We have also performed objective evaluation for comparing the rate-
similarity performance at different compression levels. For this, we used another
metric [61] that is based on comparing the standard deviations of the Gabor sub-
bands. The results shown in Fig. 10 indicate that both LRI and STSIM outperform
HEVC default metrics, especially for the case of high compression (low bitrate).
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Fig. 10: Rate Distortion (using Gabor distance metric [61]) of the textures shown
in Fig. 9. x-axes: Bytes used to encode the texture, y-axes: distance to the original
texture.

Beside this, Jin et al. presented another method for using STSIM in image com-
pression. They developed an algorithm for structurally lossless compression known
as Matched-Texture Coding [119]. In this algorithm, a texture patch is copied from
another patch of the image, if the similarity score, measured by STSIM, is above a
certain threshold. By doing this, higher compression is achieved as it is not neces-
sary to encode the patch but rather its copy index. The visual comparison showed
some point-wise difference, but high overall similarity.

6.2 Top-Down Approaches

In contrast to Bottom-Up approaches, Top-Down approaches do not try to model the
neural processing of the human visual system, but rather to formulate a hypothesis
about human vision properties, and validate it with some examples (Sec. 3.3). In the
context of image/video compression, the common hypothesis is that original and
synthesized textures would look similar, if a good synthesis algorithm is used. By
synthesizing the textures, there is no need to encode them, but rather to encode the
synthesis parameters, which need to be significantly easier to encode in order to
provide an improved compression ratio.

One of the first approaches for synthesis based coding was introduced by Nd-
jikiNya et al. in [120][121]. The proposed algorithm consists of two main func-
tions: texture analyzer (TA) and texture synthesizer (TS). The TA is responsible of
detecting regions of details irrelevant textures, via spatial segmentation and tempo-
ral grouping of segmented textures. The TS, on the other hand, is responsible of
reproducing the removed parts in the decoder side. TS contains two types of syn-
thesizers, one employs image warping, which is used to warp texture with simple
motion (camera motion mostly), the other one is based on Markov Random Fields
and is responsible for synthesizing textures containing internal motion. This algo-
rithm was implemented in the video coding standard, in which irrelevant texture
signals are skipped by the encoder, and only the synthesis parameters is sent to the
decoder as a side information.
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Ndjiki-Nya et al. produced several extensions of the above mentioned approach.
In [122], a rate distortion optimization was also used for the synthesis part. The rate
is the number of bits required to encode the synthesis parameters and the distortion
accounts for the similarity between the original and synthesized texture, in which
they used an edge histogram as well as color descriptor for computing the quality.
A review of their work, as well as others, is given in [123].

Similar to these approaches, many other researchers have developed a texture
removal algorithms varying in their compression capability, complexity, synthesis
algorithm and distortion measure. Interested reader may refer to [34] and [36]. For
HEVC, there exist also initial investigations about the pyramid based synthesis [124]
and motion based synthesis for dynamic textures [125].

Recently, as a part of study on texture synthesis for video compression, a new
approach for texture synthesis has been proposed by Thakur et al. in [126]. In this
approach, half of the frames are encoded, and the rest are synthesized based on sub-
band linear phase interpolation. This is shown in Fig. 11, where each intermediate
frame is skipped at the encoder side, and synthesized at the decoder side after recon-
structing the previous and next frames. With this approach, the half of the frames
are encoded, and the rest is synthesized.

Fig. 11: Dynamic texture synthesis approach for alternative frames [126]. E is a
decoded picture and S is synthesized one.

Visually, the synthesized frames as compared to the compressed frames, at a
similar bitrate, are in much better quality (Fig. 12). There is significant reduction
of the blocking artifacts. The results has been verified with a subjective testing, and
it was shown that observers tend to prefer the synthesis based model against the
default compression, for the same bitrate.

One problem of the synthesis based approaches is the necessity of altering the
existing standard by modifying the decoder side. This is certainly undesired as it
required changing the users software and/or hardware, and thus could negatively
impact the user experience. To encounter this problem, Dumitras et al. in [127]
proposed a ”texture replacement” method at the encoder, in which the encoder syn-
thesize some texture areas in a way that it is simpler to encode. In doing this, the
encoded image/video would be the simplified synthetic signal, which would have a
similar look to the original one. Accordingly, it is only a pre-processing step, that
doesn’t require any further modification of the encoder and decoder. However, the
approach was only limited to background texture with simple camera motion.
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Fig. 12: An example of visual comparison between default compression and pro-
posed method in [126]. Left: original frame, middle: is compressed frame with
HEVC and right: synthesized frame at the decoder side.

In one of our studies, we presented a new online synthesis algorithm that is fully
compatible with HEVC. It is named as Local Texture Synthesis (LTS [128]). The
algorithm, as describe in 13, generates for each block to be encoded B a set of
synthetic blocks B containing n blocks (B1, B2, ..., Bn) that are visually similar to B.
A subset B0 out of B that has a good match with the given context is only maintained.
Then, the encoder tries encoding block by replacing its content by the contents in B0,
and will then select the block B j such that B j has the minimum rate and distortion.
Thus, the algorithm tries to replace the contents while encoding, by visually similar
ones, such that the contents will be easier to encode.

An example for comparing the behavior of LTS against HEVC is shown in Fig
14. Due to the simplification procedure of the contents in LTS, one can achieve
about 10% bitrate saving. On the other hand, there is also some visual artifacts due
to this simplification. By carefully examining the differences in Fig. 14, we can see
that some of the wall boundaries are eliminated by LTS. This is because encoding
an edge costs more than a flat area, and thus LTS would choose to replace this edge
by another possible synthesis that is easier to encode.

6.3 Indirect Approaches

Instead of relying on the existing metrics of texture similarity for improving the
compression quality (Sec. 6.1), we have also conducted a psycho-physical experi-
ment to evaluate the perceived differences (or dis-similarity) due to HEVC compres-
sion on dynamic textures [129]. The maximum likelihood difference scaling (MLDS
[130]) was used for this task. The results of this test are shown in Fig. 15, in which
perceived differences for two sequences are plotted against the HEVC compres-
sion distortions measured in terms of mean squared error (MSE-YUV). The figure
presents two interesting scenarios. First, on the left, the computed distortion (MSE-
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Fig. 13: Algorithmic overview of the local texture synthesis approach in [128].

YUV) highly deviates from the perceived difference, whereas in the second (right),
the computed distortion is mostly linearly proportional to the perceived difference.

In the same manner as for STSIM and LRI, a dissimilarity metric is defined as
a mapping function from the computed distortion (MSE) to perceived difference. It
was used inside the HEVC reference software. A subjective test was used to verify
the performance of the proposed metric, and it was shown to achieve significant bi-
trate saving. An extension of this work is given in [131], in which a machine learn-
ing based estimation of the curve is performed, and used to provide an improved
compression results.

The other indirect use of texture similarity measure is to exploit the analysis tools
and features from that domain in image and video compression. For example, In
[132], the visual redundancies of dynamic textures can be easily predicted by a set
of features, such as normal flow and gray level co-occurrence matrix. Similarity, the
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Fig. 14: Compressed texture with QP=27. Left: default encoder, right: LTS. Bitrate
saving=9.756%.

Fig. 15: Subjective test results of MLDS for 2 sequences.

optimal rate-distortion parameter (Lagrangian multiplier) can be predicted similarly
[133].

Beside texture synthesis based coding, there also exist several studies on percep-
tually optimizing the encoder based on texture properties. These studies fall gener-
ally into the category of noise shaping, where the coding noise (compression arti-
fact) is distributed to minimize the perceived distortions. Examples can be found in
[134, 135, 136, 137, 138]. Besides, textures are considered as non-salient areas, and
less bitrate is consumed there [139, 140].
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7 Conclusion

Understanding texture perception is of particular interest in many field of computer
vision applications. The key concept in texture perception is texture similarity. A
large body of research has been put to understand how to textures look similar de-
spite the individual point-by-point differences.

The objective of this chapter is to give an overview of the perceptual mechanisms
on textures, and summarize different approaches for texture similarity. Common
benchmarking tests are also provided, with a highlight on the difference between
objective and subjective evaluation. The chapter also includes a review about the
use of texture similarity in the special context of image and video compression,
showing its promising results and outcome.

As it is shown, static textures, or texture images, have been extensively studied in
different disciplines. There exists a large scale knowledge about their perception and
analysis. In contrast, studies on dynamic textures (or video textures) are relatively
newer. The literature covered in this chapter showed that there is no clear definition
for them. More importantly, there are many computational models for measuring
similarity, but they don’t follow a perceptual/neural model. They mostly formulate
a high level hypothesis about the visual similarity and design the model accordingly
(Top-down approach).

The existing models can be classified into different categories (Sec. 4). They
have proved excellent performance in different applications, such as multimedia
retrieval, classification and recognition. They have also shown a successful synthesis
results. However, large scale visual comparison, in terms of subjective testing, for
differentiating the performance of different models is unfeasible to be performed.
Thus, it is still unclear which one provides the best outcome.

Due to the success of the texture similarity models, different studies have em-
ployed these models in the context of image and video compression. The chap-
ter provided an overview of two main approaches: Bottom-up (similarity-based)
and Top-down (synthesis-based). Both have shown an improved rate-quality perfor-
mance over the existing coding standards. However, the compatibility issue could
be the main factor preventing the deployment of such approaches.

Acknowledgements This work was supported by the Marie Sktodowska-Curie under the PROVI-
SION (PeRceptually Optimized VIdeo CompresSION) project bearing Grant Number 608231 and
Call Identifier: FP7-PEOPLE-2013-ITN.

References
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