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Abstract
The Mojette Transform (MT) is an exact discrete
form of the Radon transform. It has been origi-
nally defined on the cubic lattice Zn (where n is the
dimension). We propose to study this transform
when using the densest lattice for the dimension 3,
namely the face-centered cubic lattice A3. In order
to compare the legacy MT using Z3, versus the new
MT using A3, we use a fair comparison methodol-
ogy between the two MT schemes. Statistic criteria
have been defined to analyse the information distri-
bution on the projections. The experimental results
show the specific nature of the information distri-
bution on the MT projections due to the compacity
of the A3 lattice.
Keywords Mojette Transform, Discrete Tomogra-
phy, Lattices, Densest Lattices.

1 Objectives of the study
The Mojette transform is an exact discrete form
of the Radon transformdefined for specific rational
projection angles. Guédon et al. originally devel-
oped this transform and its corresponding inverse
in 1995, in order to represent an image as a set
of discrete projections which can be chosen highly
redundant. Since, the MT properties have been
largely explored and a lot of applications have been
found [1]. The MT has been mainly defined, stud-
ied and applied using the cubic lattice Zn (where n

∗Thank to Ugo Maury and Maxime Pineau who worked
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is the dimension of the initial grid to transform).
We propose to study this transform when using
densest lattices, because we expect that the lattice
high compacity will improve the MT performances
when representing the data. In the paper we focus
the study by considering the dimension 3.
The paper is organised as follows: in the second sec-
tion, basics on MT and lattices are given. Exactly,
we present the MT properties that are used in the
paper, and the densest lattice for the dimension 3
namely the face-centered cubic lattice A3. In the
third section, a fair comparison method between
the two MT schemes is defined. The fourth sec-
tion explains the statistic criteria used to analyse
the information distribution on the MT projections,
and gives the experimental results. A conclusion is
given in the last section.

2 Basics on Mojette Trans-
form and Lattices

2.1 The Mojette Transform
2.1.1 Direct Transform

The Mojette transform is an exact discrete form
of the Radon transform defined for specific rational
projection angles [2]. These angles θi are defined by
a set of discrete vectors (pi, qi) as θi = tan(qi, pi),
with the condition that qi and pi are coprime (i.e.
gcd(pi, qi) = 1), and qi is restricted to be positive
except for the case {pi, qi} = (1, 0). The transform
domain of an image (or any 2D grid) is a set of
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projections where each element (called bin) corre-
sponds to the sum of the pixels centered on the line
of projection. This is a linear transform defined for
each projection angle by the operator:

[Mf ](b, p, q) = projp,q(b)

=
∞∑

k=−∞

∞∑
l=−∞

f(k, l).∆(b+ kq − lp)

(1)

where (k, l) defines the location of an image pixel,
b is the bin index, and ∆(n) is the Kronecker delta
function. Equation (1) can be rewritten in a matrix
form:

[Mf ](b, p, q) =
∑
k

∑
l

f(k, l).∆
(
B − P2→1

[
k
l

])
(2)

where B = b, and P2→1

[
k
l

]
is the projection ma-

trix.
Equation (2) can be generalised to higher dimen-

sions. In 3D, a projection plane is defined by a
discrete vector (p, q, r) with gcd(p, q, r) = 1. In
the same way, the projection planes are built from
a discrete 3D volume f(k, l,m). Bins are discrete
points onto the projected plane, indexed by a vec-
tor B =

[
b1 b2

]t. The 3D Mojette transform is
then defined as [3], [4]:

Mf(b1, b2, p, q, r) =
∑
k,l,m

f(k, l,m).

∆

B − P3→2

 kl
m

 (3)

In order to obtain a simple and unique index
method for the vector of projection, the following
conventions are taken [3]: r ≥ 0 and q ≥ 0 if r = 0.
The projection P3→2 matrix has been first defined
in[3]. Its computation has been optimised in or-
der to ensure entire displacements and points with
integer coordinates [5], [6]. So the projection of a
3D regular grid on a plane with the vector (p, q, r)
always produces a 2D regular grid[4].

2.1.2 Projection matrix and recon-
structibility

The reconstructability is the ability to ensure the
exact reconstruction of any information using only

a set of viewpoints. In other words, an region is
reconstructible by a set of projections if a unique
correspondence exists between the region and the
set of projections [7]. The reconstructability con-
ditions depends strongly on the discrete shape of
the region support under projection. Simple rules
exist for 2D convex shapes[2], [8]. The reconstruc-
tion conditions for any convex region were derived
by Normand [8].

In 2D, each projection direction vector (pi, qi)
is associated with a two-pixels structuring element
Bi (2PSE). Taking G as the region support formed
by the successive dilations of the structuring ele-
mentsBi, the convex region is reconstructible if and
only if it can not contain G [7], [8]. The method
is directly extended [4] in 3D: each projection di-
rection vector (pi, qi, ri) is associated with a two-
voxels structuring element, and any convex 3D re-
gion R is reconstructible by a set of projections, if
the dilation of the two-voxels structuring elements
produces a form than is not included in R.

2.2 The lattices
2.2.1 Lattices

A lattice Λ is a regular arrangement of points in
a n-dimensional space. Λ is characterised by its
basis [9] or correspondingly by its generator matrix
M . By combination of the basis vectors, the lattice
fundamental parallelotope is constructed. This par-
allelotope, when repeated, can fill the whole space
with just one lattice point in each copy.

Different lattices have been studied to solve dif-
ferent problems as sphere packing problem, sphere
covering problem, kissing number, fast quantisa-
tion, etc. In the paper we focus on the dimension
n = 3, with the cubic lattice Z3, and on the densest
lattice for this dimension, namely A3.
A sphere packing is an arrangement of non-

overlapping identical spheres within a containing
space. The lattice is then constituted with the
spheres centers, and the densest packing maximises
the volume occupied by the spheres. The lattice
density can be defined by:

∆ = vol. of one sphere
vol. of the fundamental region

= vol. of one sphere
det(MM tr) 1

2

(4)
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2.2.2 Zn lattices

The cubic lattice, also known as the integer lattice,
is defined as [9]:

Zn = {(x1, . . . , xn)|xi ∈ Z} (5)

Its generator matrix is the identity matrix. The
density of the lattice Z3 is ∆Z3 = π

6 = 0.524...
We will exploit the lattice symmetries for the

MT. The Zn automorphism group consists of all
possible symmetries that are obtained by vector
coordinates permutation and/or sign change, it is
equal to (2n ∗ n!). So, after removing the sign
changes, Z3 counts 24 symmetries (see figure 1).

(a) Side view. (b) Top view.

Figure 1: Symmetry in Z3 (without sign change).

2.2.3 An lattices

The An lattice (for n ≥ 1) can be defined as:

An = {(x0, . . . , xn) ∈ Zn+1|x0 + x1 + · · ·+ xn = 0}
(6)

Its generator matrix is [9] :

MAn =


−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 1

 (7)

An is the densest lattice for the dimension 3.
A3 is also known as the face-centered cubic lattice
(FCC), its density is ∆A3 = π√

18 = 0.7405.... The
automorphism group of the lattice A3 equals 48,
after removing the sign changes, 12 symmetries are
remaining [9] (see also the figure 2).

Figure 2: Neighbors of the point (0, 0, 0) in A3 [10]

2.3 Projections and Haros-Farey se-
quences

The Haros-Farey sequence gives the set of rational
angles in a centered square or cube, this sequence
is used to enumerate the MT projections (up to the
reconstructability conditions).

In 3D, according to [6], the Haros-Farey sequence
of order N , noted F̂N , is the set of points ( yx ,

z
x )

such as gcd(x, y, z) = 1, between [0, 0] and [1, 1],
and which denominator x does not exceed N . In
other words, a point ( yx ,

z
x ) ∈ F̂N if x ≤ N , 0 ≤ y ≤

x, 0 ≤ z ≤ x and if gcd(x, y, z) = 1. Let A1( y1
x1
, z1
x1

)
and A2( y2

x2
, z2
x2

), two points of F̂N−1 such as x1 +
x2 = N . The median point between A1 and A2 has
the coordinates ( y1+y2

x1+x2
, z1+z2
x1+x2

) [6]. The sequence
is used in order to generate the (p, q, r) projections
of the 3D MT, with (p, q, r) representing the point
( qp ,

r
p ).

3 Comparison
The section explains how the 3D grids were con-
structed and how the projections were selected.
The proposed criteria of comparison are also pre-
sented.

3.1 Methodology of comparison
3.1.1 Grids construction

The goal is to compare the legacy MT using the Z3

grid, with the MT using the densest grid A3. Each
grid (Z3 or A3) is truncated such as it counts the
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same number of points Npoints. An iterative pro-
cess is used where, from the 0 point, at each loop,
we find the lattice points on successive embedded
spheres. Locally, a basic pattern is used which gives
for a lattice point its closed neighbours (see fig-
ures 1 and 2). The growing lattice process is stoped
when the number of points Npoints is reached. Each
point of the grids is set to an unitary value.

3.1.2 Selection of projections

Just enough projections are chosen for the grid to
be exactly reconstructible. Projection vectors are
produced by sorting fractions of Haros-Farey series
according to their squared Euclidean norms, i.e.,
respectively x2 +y2 +z2 and xx+yy+zz−yz−xz,
in lattices Z3 and A3.
Before choosing another projection in the Haros-

Farey set, all equivalent projections by rotation are
generated. The number of equivalent projection by
rotation depends on the lattice symmetries.
In order to know if the grid is exactly recon-

structible using the set of selected projections, the
shape of successive dilatations of the projections di-
rections is generated, as explained in section 2.1.2.
The grid is exactly reconstructible only when its
radius is inferior or equal to the radius of the gen-
erated figure [12].

3.2 Comparison criteria
Global criteria were used to compare the informa-
tion distribution on the MT projections.

3.2.1 The Redundancy

The redundancy is given by [3]:

Red = nbbins
nbpixels

− 1 (8)

If the redundancy is positive, it represents the per-
centage of extra bins compare to the number of
points. If the redundancy is negative, then there is
no reconstructability of the grid.

3.2.2 The bins number, mean and variance

Bi is the bins number on the i-th projection (i.e.
the i-th projection length). The bins number mean

Bm and the bins number variance Bv can be then
calculated as following [11], [12]:

Bm = 1
n

n∑
i=1

Bi, Bv = 1
n

n∑
i=1

(Bi −Bm)2 (9)

where n is the number of projections in the set.
This criteria measures the difference of bins number
in the projections. The smaller Bv for different
projections, the higher those projections carry the
same amount of information [12].

3.2.3 The points number mean per bin

For the test case, each grid point is set to 1, so each
bin value (on every projections) equals to the num-
ber of points that contribute to the bin. The points
number mean per bin for all bins (in all projections)
is computed as [12]:

Mean(points per bin) = bm = 1
m

m∑
i=1

bi (10)

wherem is the total number of bins (considering all
projections) and bi is the value of the i-th bin. The
higher the mean, the higher bins represent more
points. This is directly related to the density of
the lattice.

4 Experimental results
In this section, the main results are presented and
discussed. On each figure, the blue (resp. red)
curve characterises the A3 (resp. Z3) lattice. The
first feature displayed on figure 3(a) is the grid ra-
dius value computed from Npoints, the number of
generated points. For Npoints > 400, the curves
show the higher compacity of A3 on Z3.
The higher total number of bins of Z3 (see fig-

ure 3(b)) explains its higher redundancy (see fig-
ure 3(c)).

The next features are the number of bins Mean
(figure 4(a)) and Variance (figure 4(b)) according to
the number of generated points. Concerning these
2 features, it seems that the two grids performs al-
most equally, but the figure 4(c) shows that the
projections number is different for the 2 lattices, a
finer analysis at the projections level is then neces-
sary.
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Figure 3: Grid radius (a), Total number of bins (b), and Redundancy (c). The blue (resp. red) curves
characterise the A3 (resp. Z3) lattice.
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Figure 4: Number of bins Mean (a) and Variance (b), and redundancy (c). The blue (resp. red) curves
characterise the A3 (resp. Z3) lattice.

We then use histograms. The figure 5 compares
the projections densities considering the number
of points mean per projection. And the figure
6 compares the projections densities considering
their lengths. The histograms with A3 are slightly
smoother that the ones with Z3, it shows the higher
regularity of the projections when using A3, these
results are due to the high compacity of this lattice.

3 4 5 6 7 8 9
nbPixelMeanPerProjection

0

1

2

3

4

5

6

n
o
m

b
re

 d
e
 f

o
is

nbPixelMeanPerProjection Z3 (1021)

Z3

(a)

3 4 5 6 7 8 9
nbPixelMeanPerProjection

0

1

2

3

4

5

6

n
o
m

b
re

 d
e
 f

o
is

nbPixelMeanPerProjection A3 (1021)

A3

(b)

Figure 5: Histograms of the number of points mean
per projection for Z3 (a) and A3 (b).
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Figure 6: Histograms of the projections length for
Z3 (a) and A3 (b).

5 Conclusion & perspectives
In this paper, we examined the behaviour of the
densest lattice in 3D from its discrete Mojette pro-
jections point of view. The analysis of Mojette
Transform projections, when comparing the legacy
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MT with Z3 versus the MT with A3, shows some
interesting differences in terms of dimensions, and
in terms of projections regularity. Since the soft-
ware has been developed to manage any dimensions
and lattices, the next work will focus on higher di-
mensions. Indeed it seems interesting to try higher
dimensions in order to see if the gap between An

and Zn lattices still increases.
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