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Mojette Transform on Densest Lattices
in 2D and 3D
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Polytech Nantes, rue Christian Pauc BP 50609, 44306 Nantes Cedex 3, France
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Abstract. The Mojette Transform (MT) is an exact discrete form of
the Radon transform. It has been originally defined on the lattice Z™
(where n is the dimension). We propose to study this transform when
using the densest lattices for the dimensions 2 and 3, namely the lattice
A? and the face-centered cubic lattice A%. In order to compare the legacy
MT using Z", versus the new MT using A", we define a fair comparison
methodology between the two MT schemes. In particular we detail how
to generate the projection angles by exploiting the lattice symmetries
and by reordering the Haros-Farey series. Statistic criteria have been also
defined to analyse the information distribution on the projections. The
experimental results study shows the specific nature of the information
distribution on the MT projections due to the high compacity of the A™
lattices.

Keywords Mojette Transform, Discrete Tomography, Lattices, Densest
Lattices, Haros-Farey series.

1 Objectives of the study

The Mojette transform is an exact discrete form of the Radon transform [1] de-
fined for specific rational projection angles. Guédon et al. originally developed
this transform and its corresponding inverse in 1995, in order to represent an
image as a set of discrete projections which can be chosen highly redundant
(i.e. a frame description). Since 1995, the MT proprieties have been largely ex-
plored (spline MT, reconstructability of convex regions, MT in high dimensions,
multi-resolution MT, etc.), and a lot of applications have been found (data com-
munication and storage, Mojette discrete tomography, Mojette based security,
etc.). Nevertheless, the MT has been mainly defined, studied and applied using
the lattice Z™ (where n is the dimension of the initial lattice to transform). We
propose to study this transform when using densest lattices, because we expect
that the lattice high compacity will improve the MT performances when repre-
senting the data. In the paper we naturally start the study by considering the
first dimensions 2 and 3 for which the densest lattices are known.

* Thank to Clément Rougale, Jimmy Thomas, Ugo Maury and Maxime Pineau who
worked on this project for their MSc at Polytech Nantes.



The paper is organised as follows: in the second section, basics on MT and
lattices are given. We focus on the MT proprieties (direct/inverse transform,
projection matrix, conditions of reconstructability) that are used in the paper,
and the densest lattices for the dimensions 2 and 3 (namely the lattice A% and
the face-centered cubic lattice A%) are also presented, the lattice density will
be also defined at this level. A fair comparison method between the two MT
schemes has to be defined, in order to compare the legacy MT using Z", versus
the new MT using A™. The comparison methodology is detailed in the third
section where we explain in particular how to generate the truncated lattice
containing the data to transform, and how to generate the projection angles by
exploiting the lattice symmetries and by reordering the Haros-Farey series. The
fourth section gives the experimental results, and it explains the statistic criteria
used to analyse the specific nature of the information distribution on the MT
projections. A conclusion and perspectives are given in the last section.

2 Basics on Mojette Transform and Lattices

2.1 The Mojette Transform

Direct Transform The Mojette transform is an exact discrete form of the
Radon transform defined for specific rational projection angles. Following the
work of M. Katz [2], Guédon et al. originally developed this transform and
its corresponding inverse in 1995, in order to represent an image as a set of
discrete projections. The rational projection angles 6; are defined by a set of
discrete vectors (p;,q;) as 0; = tan(g;, p;), with the condition that ¢; and p; are
coprime (i.e. ged(p;,q;) = 1), and ¢; is restricted to be positive except for the
case {pi,q;} = (1,0). The transform domain of an image (or any truncated 2D
lattice) is a set of projections where each element (called bin) corresponds to the
sum of the pixels centered on the line of projection. This is a linear transform
defined for each projection angle by the operator:

IMFI(b,p,q) = projea®) = Y > fkDAb+kg—1Ip) 5 (1)

k=—o00l=—00

where (k,) defines the location of an image pixel, b is the index of a bin, and
A(n) is the Kronecker delta function, equals to 1 when n = 0 and 0 otherwise.
The line of projection is represented by b = kq — Ip, and then A(b + kq — Ip)
is equal to 1 only for the pixels on this line. The previous equation 1 can be
rewritten in a matrix form:

M) = 35 1008 (8P [7])
= ;;f(k,l)ﬂ <[b] — [~qp] m> :



where Po_,1 is the projection matrix.

k
l

Equation (2) can be generalised to higher dimensions. In 3D, a projection
plane is defined by a discrete vector (p,q,r) with ged(p,q,r) = 1. In the same
way, the projection planes are built from a discrete 3D volume f(k,I,m). Bins
are discrete points onto the projected plane, indexed by a vector B = [bl bg]t.
The 3D Mojette transform can then be defined as [1]n. 3, [3]:

k
Mf(blab23p7qar) = Z f(k7lvm)A 8—7)3—>2 l ;
k,l,m m (3)
b k
= Z f(k7 l7m)A |:b1:| - P3—>2 l
k,l,m 2 m

Moreover, in order to obtain a simple and unique index method for the vector of
projection, the following conventions are taken [1]en. 3): r > 0 and ¢ > 0 if » = 0.
The projection P;_,o matrix can then be defined as following [1]¢en. s):

1o~z if r #0and ¢ # 0
irr an 5
0112 q ;
P _1*50_ if r=0and g #0 (4)
= itr=0an ;
3—2 00 1 q
(010
ifr=0and ¢g=0 .
001

This matrix is not optimal as it does not use entire displacement (i.e. ratios
are used in this matrix) which creates point with non integer coordinates. Other
matrices P exist and can be generated from the direction projections as presented
in DGCI 2005 [4]. The full and detailed explanations in order to generate the
matrix P from the direction projection (v1,vs,...,v,) are given in [4], [5].

The projection of a 3D regular lattice on a plane with the vector (p,q,r)
always produces a 2D regular lattice, according to the vector (p, q,7) [3].

Projection matrix and reconstructibility The reconstructability is the abil-
ity to ensure the exact reconstruction of any information using only a set of
viewpoints. In other words, a region is reconstructible by a set of projections if
a unique correspondence exists between the region and the set of projections [6].
The conditions determining if a set of Mojette projections is sufficient for invert-
ing the transform depends strongly on the discrete shape of the region support
under projection. Simple rules exist when the shape is convex [1](n. 4). For rect-
angular regions, the Katz criterion solves this problem [2]. The reconstruction
conditions for any convex region were derived by Normand [1]cn. ).



In 2D, each projection direction vector (p;, ;) is associated with a two-pixels
structuring element B; (2PSE). Taking G as the region support formed by the
successive dilations of the structuring elements B;, the convex region is recon-
structible if and only if it can not contain G [6]. In other words, a convex region
(i.e. an image) is not reconstructible if and only if the dilation result by 2PSE
is not included in the image support [1]en. 4. This can be also rephrased as: an
image of convex support C' is reconstructible if and only if the successive erosions
of the C formed by the structuring elements B; gives an empty set [6].

In 3D, the method is extended [3]cn. 4): each projection direction vector
(pi,qi,r;) is associated with a two-voxels structuring element, and any convex
3D region R is reconstructible by a set of projections Sy, if the dilation of the
two-voxels structuring elements produces a form D than is not included in R.

2.2 The lattices

Lattices A lattice A is a regular arrangement of points in a n-dimensional space.
A is characterised by its basis [7](n. 1y or correspondingly by its generator matriz:

V11 V12 ... U1m
V21 V292 ... Uam

My = (5)
Unl1 Un2 --. Unm

By combination of the basis vectors, the lattice fundamental parallelotope is
constructed. This parallelotope, when repeated, can fill the whole space with
just one lattice point in each copy.

Different lattices have been studied to solve different problems as sphere
packing problem, sphere covering problem, kissing number, fast quantization,
etc. In the paper we focus on the Z" lattice, and on the densest lattices for the
dimensions 2 and 3, respectively A% and A3.

A sphere packing is an arrangement of non-overlapping identical spheres
within a containing space. The lattice is then constituted with the spheres cen-
ters, and the densest packing maximises the volume occupied by the spheres.
The lattice density can be defined by:

vol. of one sphere vol. of one sphere

A= - . (6)

vol. of the fundamental region det(MM tr)%

Z™ lattices The integer lattice is defined as [7]cn. 4):
Zn:{(ﬁﬁl,...,xn)|$i€Z} . (7)

Its generator matrix is the identity matrix. The densities of the lattices Z2 and
Z3 are respectively Age = 7=0.785...and Azs = § = 0.524...

We will exploit the lattice symmetries for the MT. The Z™ automorphism
group consists of all possible symmetries that are obtained by vector coordinate



permutation and/or sign change, the set of permutations has a cardinality of
(2"n!). So, after removing the sign changes (e.g. (a,b) and (—a,—b) are the
same vector but with opposite direction), Z2? and Z3 counts respectively 4 (see
figure 1) and 24 symmetries (see figure 2).

rotation by 90 of (a, b)

reflexion of (a, b)

(a, b)

. . i .
rotation by 90 of reflexion

Fig. 1: Symmetries in Z2 (without sign change).

(a) Side view. (b) Top view.

Fig. 2: Symmetry in Z3 (without sign change).

A™ lattices The A™ lattice (for n > 1) can be defined as [7]cn. 4:
A" ={(z0,21,...,2n) € Z" M mo + 21+ - + 2, =0} . (8)
The generator matrix is

-11 00...



A" is the densest lattice for dimensions 2 and 3. A2 is also known as the
face-centered cubic lattice (FCC). The densities of the lattices A% and A® are

I — ™ —

respectively A2 = v kn 0.9069... and Ays = ik 0.7405....

The set of permutations of the automorphism group of the lattice A2 (respect.
A3) has a cardinality of 16 (respect. 48). After removing the sign changes, 6
symmetries (respect. 12 symmetries) remain [7]cn. 4 (see also the figures 3 and

1),

.

rotation by 60 of (a,b)

rotation by 60

. .

reflexion of (a, b)

.

rotation by 60 of reflexion

Fig. 3: Symmetries in A% (without sign changes).
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Fig. 4: Neighbors of the point (0,0,0) in A3 [8]



2.3 Projections and Haros-Farey sequences

The Haros-Farey sequence gives the set of rational angles in a centered square
or cube, this sequence is used to enumerate the MT projections (up to the
reconstructability conditions).

In 2D, the Haros-Farey sequence of order N, denoted Fly, is the ordered
sequence of irreducible ratios included between 0 and 1, where the denominator
is less than or equal to V. In order to get Fy41 from Fl, a median ratio m
is inserted between each ratio ‘;—1 and 2 of Fiy, such as aj2 = a; + as and
big = by + by if a0 < N + 1 and byo < °N + 1 [5]. F1, F», F5 are given as an

example:
01 011 01121
Fl=q——b i Fp={— - —b:F=4— - -2 - : 1
! {1’1}’ ? {r2’1}’ 5 {13 2’3’ 1} (10)

Each ratio (1) of the sequence is used in order to generate a corresponding
projection (p, q) of the 2D MT.

In 3D, according to [5], the Haros-Farey sequence of order N, denoted by Fy,
is the set of points (£, Z) such that ged(x,y, z) = 1, between [0, 0] and [1, 1], and

which denominator z does not exceed N. In other words, a point (£,2) € Fy
ifr < N,0<y<ux0<2<azand ged(z,y,2) = 1. LetAl(y—l 1) and

x1’ T

As(£2 ) 22) two points of Z/T\N,l such as 1 + x5 = N. The middle point between

12712

A; and As has the coordinates (%, %) [5]. Below, Fy, Fy, Fs are given as
an example, where each point (£, 2) is written as (z,y,2) [5]:

Fy ={(1,0,0),(1,1,0),(1,1,1)} ;

Fy ={(1,0,0),(1,1,0),(1,1,1),(2,1,0),(2,1,1), (2,2, 1)} :

Fy = FJ{(3,1,0),(3,1,1),(3,2,0),(3,2,1),(3,2,2),
(3,3,1),(3,3,1)}

(11)

The sequence is used in order to generate the (p, g, r) projections of the 3D MT,
with (p, g, ) representing the point (%, o)

3 Comparison

This section explains how the truncated lattices were constructed and how the
projections were selected. The proposed criteria of comparison are also presented.

3.1 Methodology of comparison

The goal is to compare the legacy MT using the Z" lattice, with the MT using
the densest lattice. Each lattice (Z™ or A™) is truncated such that they have the
same number of points Npoints-



Construction of the truncated lattices The first step is to create the trun-
cated lattice. In order to do that, an iterative process is used, where from the 0
point, at each loop, we find the lattice points on successive embedded spheres.
Locally, a basic pattern is used which gives for a lattice point its closed neigh-
bours (see figures 2 and 4). The growing lattice process is stoped when the
number of points Npeints is reached ( Npoints is given by the user). Each point
of the truncated lattices is set to a unitary value.

Selection of projections The minimal number of projections are chosen for the
truncated lattice to be exactly reconstructible. Projection vectors are produced
by sorting fractions of Haros-Farey series according to their squared Euclidean
norms, i.e., respectively x2 +y2, 22 +y2+22, k> +1?> —kl and zx+yy+22—yz—x2
in lattices Z2, Z3, A% and A3. For example, with Fj sorted:

1’574°3’572’57374’5" 1
01112131234

SortZQ(F5)_ <1a1a253737474a5a57575> 3 (12)
01112132314

Sorta, (Fs) <1a172,3,37474,57-,5,5>

Before choosing another projection in the Haros-Farey, all equivalent projec-
tions by rotation are generated. The number of equivalent projections by rotation
depends on the lattice (for instance, 3 other projections for the Z? lattice, and
5 other projections for the A2 lattice).

In order to know if the truncated lattice is exactly reconstructible using the
set of selected projections, the shape of successive dilatations of the projections
directions is generated, as explained in section 2.1. The truncated lattice is ex-
actly reconstructible only when its radius is inferior or equal to the radius of the
generated figure..

3.2 Comparison criteria

Global criteria, were used to compare the information distribution on the MT
projections.

Redundancy Redundancy is given by the following equation [1]cn. s) :

Red = "Dvins (13)

nbpoints

If redundancy is positive, it represents the percentage of extra bins compared to
the number of points. If redundancy is negative, then there is no reconstructabil-
ity of the truncated lattice. Here, by construction, Red is positive but small.



Number of bins B; is the number of bins on the i-th projection (i.e. the
i-th projection length). The mean B, and the variance Var(B), can be then
calculated as following;:

B= lzn:Bi , Var(B) = lZ(Bi—]_?)2 , (14)

n < )
i=1 =1

where n is the number of projections in the set. This criteria measures the
difference of the number of bins in the projections. The smaller Var(B) for
different projections, the higher those projections carry the same amount of
information.

Number of points per bin For the test case, each lattice point is set to 1,
so each bin value (on every projections) equals to the number of points that
contribute to the bin. The mean (considering all projections) is computed as:

.1 &
M int bin)=b=—>» b , 15
ean(points per bin) - ; (15)

where m is the total number of bins (considering all projections) and b; is the
value of the i-th bin. The higher the mean, the higher bins represent more points.
This is directly related to the density of the lattice.

4 Experimental results

In this section, the main results are presented and discussed. All the experiments
were done in 2D and 3D, but we shall concentrate here onto the 3D case because
it generalises the 2D case.

The first feature displayed on figure 5(a) is the truncated lattice radius value
computed from Nppints, the number of generated points. For Npgines > 400, the
curves show the higher compacity of 43 on Z3.

The higher total number of bins of Z3 (see figure 5(b)) explains its higher
redundancy (see figure 5(c)).

The next features are the number of bins Mean (figure 6(a)) and Variance
(figure 6(b)) according to the number of generated points. Concerning these 2
features, it seems that the two lattices perform almost equally, but the figure 6(c)
shows that the projections number is different for the 2 lattices, a finer analysis
at the projections level is then necessary.

We then use histograms. The figure 7 compares the projections densities
considering the number of points Mean per projection. And the figure 8 compares
the projections densities considering their lengths. The histograms with A3 are
slightly more uniform than the ones with Z3, it shows the higher regularity of
the projections when using A%, these results are due to the high compacity of
this lattice.
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Fig.5: Truncated lattice radius (a), Total number of bins (b), and Redundancy
(c). The blue (resp. red) curves characterise the A% (resp. Z3) lattice.

5 Conclusion & perspectives

In this paper, we examined the behaviour of densest lattices in 2D and 3D from
their discrete Mojette projections point of view. Exactly, the study focused on
the 3D case because it generalises the 2D one. The analysis of Mojette Transform
projections, when comparing the legacy MT with Z3 versus the MT with A3,
shows some interesting differences both in terms of dimensions and in terms
of projections regularity. Since the software has been developed to manage any
dimension and lattice, future work will focus on higher dimensions. Indeed it
seems interesting to try higher dimensions in order to see if the gap between A™
and Z" lattices still increases.
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