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1 Introduction

Abstract. We introduce a new approach to aircraft cargo compartment
surveillance. The originality of the approach is in the use of a single
sensor type, a CCD camera, to detect fire events and freight movement
in aircraft cargo holds (multiphenomenom/monosensor approach). The
CCD camera evaluation and the radiometric and geometric models are
provided in (Sentenac et al., 2002). We go on to discuss the image
analysis algorithms used in the detection of fire signatures (hot spots,
flame, and smoke) and load displacement. For each phenomenon, the
discriminant parameters are established and the algorithm is explained.
The crucial factor is the validation procedure according to aeronautical
standards. The experimental trials were carried out in a test chamber
providing the fire and smoke test facilities [TF1 to TF6 following EN 54
(Afnor, 1997) requirements].

Subject terms: detection; sensors; surveillance; image analysis; charge-coupled
devices.

concern. Freight movements can arise due to faulty stow-

The work presented in this paper forms part of a load video
surveillance system project carried out in parallel with Eu-
ropean projects.'> The overall objective is to develop a
new, more effective surveillance approach to the detection
of fire events and freight movement in aircraft cargo holds.

Fire events are defined as the different signatures of the
combustion process that releases energy and produces gas-
eous, solid, and condensed liquid emissions. The energy
released and the products formed depend on the composi-
tion of combusting materials, the oxygen concentration, the
mode of combustion, and so on. In any case, the pyrolysis
reaction is the first step of the combustion process. This
step involves the heating of the material surface and the
production of smoke and gases. This can lead to the next
step in the pyrolysis reaction: the evolution into flaming
fire. Whereas certain solids will often remain in the smol-
dering mode of combustion, certain liquid materials can
evolve rapidly and dramatically into flame. The materials
involved in cargo compartment fires are as varied as the
cargo being transported: cardboard boxes, clothes, soft ny-
lon or rigid plastic suitcases, fuel, etc. To conclude, the
candidate fire signatures for early fire detection are instance
of overheating (see Fig. 1), smoke (see Fig. 2), and flame
(see Fig. 3).

In certain special air-freight sectors, such as transport of
aircraft sections, satellites, etc. (see Fig. 4, the Airbus
A300-600ST Super Transporter, known as “The Beluga™)
surveillance of freight displacement can be the more crucial

age procedures in the cargo area.

Fire events or freight movements represent two of the
most dangerous situations in an aircraft hold, and their
early detection by surveillance systems is crucial. At the
activation of the fire alarm the pilot must immediately ac-
tivate the halon fire extinguishing system and will be po-
tentially obliged to make an emergency landing. However,
according to the Federal Aviation Administration,® on board
commercial aircraft, the ratio of false to genuine alarms is
estimated as high as 500:1. This situation is highly unde-
sirable as it leads to the emptying of the halon stock, which
may be needed for a subsequent real fire, and the risks
involved in emergency landings are considerable due to a
wide variety of factors: the pilot’s unfamiliarity with the
airport, inferior navigation aids, shorter runways, etc. Up to
now, the surveillance systems most commonly used in
cargo areas are based on the smoke detectors, which sense
the presence of aerosols (radioactive ionization and photo-
electric light attenuation detectors). This means the pres-
ence of fire is detected by one fire signature only. By add-
ing thermal sensors, the detection of the heat fire signature
improves awareness, but the time response limits perfor-
mance. It seems clear that a multisensor/multicriteria ap-
proach, enabling detection of all fire signatures is the way
ahead. Another problem is that the pilot is not able to verify
the occurrence or the state of a real fire in an unaccessible
cargo compartment during flight. Very early on, some re-
searchers suggested monitoring the cargo hold with imag-
ing systems combined with conventional detection



Fig. 1 Image of a simulated smoldering fire in near infrared spectral
band.

systems.** Afterward, overheating, flame presence, and
smoke concentration measurement capabilities were added
to various imaging systems®™ (color video, IR, and mi-
crobolometer cameras). The result is a multipurpose ma-
chine vision based on different imaging system technolo-
gies, capable of detecting smoldering, flame, and smoke
situations.”

A fire detection system based on imaging systems can
cover wide areas of observation and allows visual inspec-
tion by the pilot. However, while increasing the number of
detection parameters by adding different imaging technolo-
gies improves detection efficiency, it also increases costs
and limits the maintenance capability of the system. Rather
than relying on combinations of sensors, the proposed new
fire-surveillance system is based on one single CCD tech-
nology capable of monitoring the whole area and of detect-
ing all possible fire signatures. To ensure this, the new sys-
tem is supplemented by detect and track movement
capabilities covering the entire cargo area.

The proposed new video surveillance system is based on
a single CCD technology with multi-measurement capabili-
ties. Reference 10 characterizes the CCD sensor, referred to

Fig. 3 Image of a gasoline flame in visible spectral band.

as the video sensor unit'! (VSU) (see Fig. 5), which oper-
ates in the near-IR spectral. The paper is organized as fol-
lows. Section 2 describes the overheat detection algorithm
and its validation in different situations. Next, Sec. 3 gives
the principle of the smoke detection algorithm. Section 4
presents and justifies the parameters chosen in the flame
detection algorithm. The results of the tests conducted us-
ing liquid and solid fuels in flaming combustion (kerosene,
wood, paper, etc.) are discussed. These algorithms are used
in parallel together to significantly enhance the accuracy of
the fire detection. For example, the system can enter alert
mode after an overheating detection or after a smoke-only
detection in cases of hidden fires. Finally, Sec. 5 provides
the movement detection algorithm and explains the compu-
tation of the displacement between two successive 3-D lo-
calizations of the freight in the cargo hold.

2 Overheat Detection Algorithm

The initial phase of the combustion process is the pyrolysis
reaction, which represents the smoldering mode of combus-

Fig. 2 Image of smoke phenomenon in visible spectral band.

Fig. 4 Satellite transportation (airbus).



Fig. 5 Video sensor unit (Latécoere).

tion. It is characterized'? by a heat increase with a tempera-
ture of 200 to 600°C. The duration of the hot spots can vary
from a few seconds to several minutes. This duration de-
pends on the flight conditions (concentration of oxygen,
pressure, etc.) and the type of fuel.

The performance objective of the video camera is to
sense rapidly a temperature increasing from 200°C with a
tolerance of =12.5%. Note that a temperature in excess of
600°C would be considered as a flame temperature. The
lower limit of the detected hot spot size is 50 mm at an
observation distance of 15 m. After the detection of the hot
spot, the image processing software must identify and track
the overheat condition by estimating the temporal and spa-
tial gradients of the hot spot’s temperature.

In aircraft applications, the overheat situations can gen-
erally be detected by sensing the change in the thermal
environment with temperature sensitive resistance. Tem-
perature measurement, combined with smoke sensors, im-
proves the detection of nearly smoke-less fires."* The ap-
proach is available from a large number of manufacturers.
In contrast, the direct heat flux produced by hot spots is
rarely measured in aircraft applications. Thus, photodetec-
tors can quickly respond to the incident flux from the hot
source. The remaining problem is to evaluate sensor sensi-
tivity at low temperatures, and this becomes more complex
with a CCD detector.'”

First, this section begins with principal results on the
configuration and the calibration proposed for the CCD de-
tector. The section then describes the algorithm principle

for detecting and measuring the temporal gradient of tem-
perature over detected hot spots. Next, the section analyzes
the influence of the hot source type, the measurement situ-
ation, and the environment transmittance by computing the
resulting temperature uncertainty. Finally, the algorithm
performances are discussed.

2.1 Configuration and Calibration of the Camera

The ability of a camera system to detect a low temperature
depends mainly on the sensitivity of the camera sensor to
radiation generated by hot spot relative to camera noise
sources. For low-cost CCD imaging systems operating in
near-IR (NIR) spectral band (0.75 to 1.1 um), Ref. 10 de-
termines that a minimal temperature of 330°C can be de-
tected with a low optical system f~-number of 1.4 and an
integration time t; of 360 ms. The integration time respects
a total detection time of 3 s in accordance with our surveil-
lance application requirements. Note that the temperature
value is higher than the minimal smoldering fire tempera-
ture and limits the overheat detection algorithm capability.
Then, as the hot sources temperature increases the sensor
signal increases with a possible saturation. The ability of
sensors to measure the temperature ranging from 330 to
600°C is obtained by varying the exposure time ranging
from 360 to 1 ms (see Figs. 6 and 7).

Reference 10 provides also the CCD camera radiometric
model and the calibration procedure. In the temperature
range under concern (330 to 600°C), the principal result is
a temperature sensitivity that rises rapidly from 0.3 to 7.25
gray levels/°C and a maximal noise equivalent temperature
difference (NETD), which is measured as being =4°C.

2.2 Detection Principle

In the high sensitivity of the sensor (1;=360 ms), the over-
heat situations are detected in the image when the digital
output camera [ is greater than three times the standard
deviation o of the noise signal. For our system with a

digitizer of 8 bits, the noise fluctuations represent a stan-
dard deviation Ty, of 1 gray level. This threshold corre-

sponds to the minimal temperature of 330°C. Note that the
standard deviation of the noise signal is also estimated for
each exposure time.

After detection, the image pixels corresponding to this
minimal temperature are labeled overheat region of interest
(OROQI) for hot spots (see Figs. 8 and 9). The minimal and
maximal digital intensity, number, size, and barycenter of

t1 = 360ms

ti = 20ms

ti = lms

Fig. 6 Evolution of an overheat situation with a surface of diameter 65 mm at an observation distance
of 3 m with different exposure times in the NIR spectral band.



ti = 360ms

ti = 20ms

ti = 1ms

Fig. 7 Beginning of a kerosene fire with a based surface of diameter 120 mm at an observation
distance of 3 m and different exposure times in NIR spectral band.

each overheat event are computed from each image ac-
quired (for each exposure time #;=360, 20, and 1 ms). Note
that a part of the phenomenon can be saturated in the high-
sensitivity image and not in the low-sensitivity image. Re-
gions with a surface lower than 3 pixels are eliminated
(from the projection geometry considerations, the pixel sur-
face corresponds to a surface of diameter 1 cm at an obser-
vation distance of 15 m).

For each image acquired and in each OROI, the radio-
metric model of the camera, previously calibrated, maps the
measured intensity values /;, of only the nonsaturated pix-
els to equivalent blackbody temperature values T as is
given by

B
= G-+’

(1

where A, B, and C are the parameters of the radiometric
model, which was previously determined experimentally in
the specific off-line calibration procedure described in Ref.
10.

The determination of the hot spot absolute temperature
T, involves correcting the equivalent blackbody tempera-

Fig. 8 Labeled image in an overheat situation.

ture by the emissivity (e), the location of the hot source
[cos(8,)] and the environment transmittance (7,). Note that
8, 1s the angle between the source-camera axis and the
normal direction of the CCD detector. To this end, Eq. (1)
should be modified as follows:

B
[‘":]n[(AET:. cos(B)t;)/(Ip—C)+1]"

2

Moreover, if the source of the scene is not under focus, the
source-camera distance () must be introduced in Eq. (2).
Except for 7, , which can be estimated by the measurement
of the reflection coefficient of a known remote target illu-
minated by an emitting IR source (see the smoke detection
algorithm in Sec. 3), it is difficult to control the other pa-
rameters. Therefore, an absolute uncertainty is associated
with each temperature to represent the worst case (see Fig.
10). The uncertainty is computed from the radiometric
model and from experiments carried out to analyze the un-
certainty of each influencing parameter. If the absolute tem-
perature is greater than 600°C and rate of increase in tem-

OROLS ORQL3

Fig. 9 Labeled image in a beginning fire.
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Fig. 10 Thermal image of the overheat situation.

perature and size are significant, the flame algorithm is
activated to investigate a flame situation (see Sec. 4).

2.3 Performances Evaluation

Experiments are performed in a cargo test cell as shown in
the image of Fig. 11. The position of sensors within the
simulated cargo compartment is optimized to cover all ac-
cessible surfaces of containers and lining. This configura-
tion permits monitoring and detecting hot spots between
both containers and between containers and lining.

First, the heated objects in the hold are generated with
blackbodies at temperature 7' ranging from 300 to 600°C.
The specific experiment, shown in Fig. 12, is composed of
an optical test bench where the distance and the orientation
between the sensor and the blackbody can be adjusted. The
blackbody cavity aperture can be modified to test different
overheat sizes of diameter ranging from 5 to 65 mm. At a
distance of 1.5 and 6 m, the detection overheat algorithm
detects a blackbody placed in front of the sensor at a tem-
perature of 330°C. Moreover, the temperature T measured
by the system is compared to reference blackbody tempera-
ture T, according to the following criterion:

Fig. 11 Cargo test cell (12x3x3 m®).

Fig. 12 Overheat test.

AT E Tot— TI

T:T- (3)

2.3.1 Temperature measurement

The blackbody was placed at a distance of 3 m from the
camera and it generated hot spols at temperature ranging
from 350 to 575°C with increments of 25°C. Table | proves
that the relative temperature error is less than 1.5%.

2.3.2 Influence of the blackbody-camera distance

The previous tests were repeated with the blackbody placed
at different distances of the camera, respectively, 4, 6, 8,
and 10 m. The temperature relative error AT/T was found
to be less than 6.5%. Note that the blackbody surface rep-
resents an area of 37 pixels at the distance of 10 m. It was
supposed that there were no effects from smoke or fog
absorption.

2.3.3 Influence of the emissivity

Additional tests were performed to consider the influence
of overheat emissivity in Eq. (2). In fact, in aircraft cargo
compartments, the usual objects are often made of metal,
wood, cardboard, plastic, and textiles. In the NIR spectral
band, they are considered as opaque and gray bodies with a
constant emissivity ranging from 0.4 to 0.97 (see Table 2).
Therefore, the hot objects were simulated by a hot copper
sheet (see Fig. 13) with four different emissivily areas in
the range of Table 2. The real emissivilr values are sum-
marized in the Table 3. The 0.1x0.1-m~ sheet of 0.01-m
thickness was warmed up at a temperature 7', , which was
regulated by a thermocouple associated to a controller. The
experiments were carried out with a sheet temperature of
425°C and a sensor exposure time of 360 ms. This experi-
mental configuration provides the maximal sensor sensitiv-
ity to the measured temperatures 7; of each area.

These temperatures were compared to the reference cop-
per temperature T,;. Next, the relative temperature uncer-
tainty (AT/T=|T — T:|/ T,) was derived, as illustrated in
Fig. 14. An error of 57% on emissivity, resulting from the
choice of a value | instead of 0.48, leads to a relative tem-
perature uncertainty AT/T of 7.2%. Similarly, an error of
20% on emissivity only provides a relative temperature un-
certainty AT/T of 2%.



Table 1

Temperature relative error AT/T at an observation distance of 3 m.

T.(°C) 350 375 400 425
T(°C) 355 377 403 429
AT 14 05 075 095
B (%)

450
453
0.66

475 500 525 550 575
476 501 526 553 577
0.21 0.2 0.19 0.543 0.345

2.3.4

The influence of the location parameters of Eq. (2) was also
analyzed. In the cargo area, a variation in the field of view
angle 8, between the blackbody and the camera, ranging
from 0 to 40 deg, infers a low relative temperature error
(0.15%).

Note that some experiments were carried out with inter-
fering phenomena such as a powerful light (1000 W), a
sampled light, and different fires. In each case, the overheat
detection system is capable of detecting phenomena out of
limit with a temperature higher than 600°C. The discrimi-
nation task between interfering phenomena and fires is car-
ried out by the flame detection algorithm (see Sec. 4).

Influence of the blackbody orientation

2.4 Conclusion

The overheat detection algorithm gives an alert by measur-
ing the temperature increase of the flux produced by the
phenomenon. The tests carried out demonstrated the ability
to detect the beginning of an overheat situation from a tem-
perature around 330°C with a relative temperature error
below than *=12.5%C. Additional tests were conducted
with blackbody temperature ranging from 350 to 575°C
and at observation distance ranging from 3 to 10 m. The
relative temperature error remains below than 6.5%. In a
future version, the model of the temperature increase over a
period of time could predict the phenomenon evolution and
select the best configuration of the sensor, i.e., the right
exposure lime to measure a higher temperature.

3 Smoke Detection Algorithm

This section describes the camera mode of smoke detection
and transmissivity measurements with the associated algo-
rithm based on video image processing. The smoke detec-
tion mode is always active, in parallel with the overheat
and flame detection algorithm, to prevent a hidden fire and
to provide an additional parameter to discriminate fire from
nuisance sources (interfering phenomena). In fact, smoke is
the fire signature that is present as much in a smoldering as
in a flaming combustion.

The term “smoke™ defines the aerosols produced by the
combustion reaction. Smoke aerosols vary widely in ap-
pearance and structure, from light colored during smolder-
ing combustion, to black during flaming combustion. Aero-

Table 2 Literature emissivity values.'*'3

Black Paint Wood-Paper Aluminum Paint  White Paint

€ 0.97-0.89 0.9-0.8 07-05 0.4

sol size can vary from 0.01 to more than 10 um and density
from 107 to 10° particles/cm’. These values depend on the
combustion rate and the type of fuel.'®

Photodetectors such as a video cameras operate on the
extinction principle (reflection, diffusion, or absorption) of
aerosol. This kind of detector is generally associated with a
light source (typically a light-emitting diode in the visible
or IR spectral band), which produces a beam that aerosols
reflect, scatter, or absorb. The resulting signal in the photo-
detector, located near or in front of the light source, is
proportional to the smoke particle properties (size and num-
ber of the particles in the sensing volume). Generally, the
efficiency of the photodetectors depends on the diameter of
the smoke particles D, and the sensor wavelength X in the
ratio (wDp)/\. For example, if the ratio is larger than one,
the forward diffusion on the smoke particles is the domi-
nant effect. Next, the backward diffusion increases when
the diameter of particles is smaller than the wavelength.
Consequently, a forward diffusion detector is then particu-
larly suited for detecting smoldering fire that is accompa-
nied by relatively large smoke particles. These particles
scatter forward much more light than the small particles
produced in flaming combustions.

Aluminum paint
Black area P

area

White area Copper area
oxidized

Fig. 13 Copper sheet with different emissivities.



Table 3 Experimental emissivity values.

Black Area  Aluminum Area  Copper Area  White Area

€ 0.94x0.19 0.67%0.15 0.54+0.11 0.48+0.12

Moreover, photoelectric detectors monitor the light ex-
tinction coefficient with many signal analysis techniques.
Three main techniques are (1) the histogram-based
techniques'” compare the computed histogram of the stan-
dard image with precomputed histograms of typical smoke
scenes to determine the likelihood of smoke existence; (2)
the temporal-based lcchniques6 compute the difference and
the segmentation between frames to detect and to identify a
pattern that is the result of a smoke agglomerate (the pat-
terns can be classified as smoke events); and (3) the rule-
based lechniques8 also classify the smoke situation from a
sequence of images to infer smoke presence.

The principle of our system consists in measuring the
beam absorption from light reflected by specific targets
which are illuminated with the active infrared source
mounted on the VSU (see Fig. 15). The targets are horizon-
tal and vertical reflectors placed in the top and the side of
the cargo area (see Fig. 16). Finally, the system measures
the attenuation of light over twice the distance between the
light source, mounted on the camera, and the target. The
ratio of attenuation rate is given by the ratio of the intensity
I, in presence of smoke and /p,; without smoke of the two
regions of interest represented by the targets in the image as
follows:

1
—D=exp[*{cr‘,2ds)]. (4)
]Drcf

The ratio depends on the light extinction coefficient o, and
the path length d; (m) between camera and target.

This section outlines a first approach of the smoke algo-
rithm. The detection principle is explained with the sensor
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Fig. 14 Evolution of AT/T versus e with a sheet temperature of
425°C and a sensor exposure time of 360 ms.

Camera

smoke targets

Fig. 15 Measurement principle of smoke.

configuration. The experiments and results are then de-
scribed to determine smoke detection capability of the cam-
€ra Sensor.

3.1 Detection Principle

In a calibration procedure performed beforehand, an obser-
vation of noise system is performed to determine the signal
standard deviation Ty, These noise fluctuations establish

the minimal intensity ratio (/p— 3U,D)/1_DM. For our
system with a digitizer of 8 bits, a standard deviation oy, of

1 gray level is estimated.

The initial step of the algorithm consists in measuring
the reference image intensity /5, without smoke between
camera and smoke targets located vertically and horizon-
tally in the cargo area. First, the algorithm extracts from the
initial image the smoke targets, which are labeled as smoke
region of interest (SROI). The system then measures the
reference intensity I, of each region, which corresponds
to the reflected luminance of the illuminated smoke targets.
For smoke targets at a distance of 15 m, a maximal refer-
ence region intensity /., of 200 gray levels is measured
with an exposure time of 8 ms. From the measurement of
the signal standard deviation ;,,» @ minimal intensity ratio

(I,),e,-—f%U;D!ler) of 0.985 can be deduced. Note that this

ratio value corresponds to a light extinction coefficient
from 0.015 to 0.001 m ™" for an observation distance from 1
to 15 m using Eq. (4). However, the light extinction coef-
ficient vary from 0.6 to 1.5 m~' in smoldering fire
conditions'™ and from 0.04 to 03 m~! in flaming

Fig. 16 Image of smoke targets in the NIR spectral band.



Reference image Image at time of t = Oms

Image after a time of t = 200 ms Image after a time of ¢ = 400 ms

Fig. 17 Smoke images at different times.

conditions.'” ! In these conditions, the absorption effect
produced from a smoldering or a flaming combustion can
be detected. Moreover, a fit of the detection threshold
(30’;0 or 60',«0) enhances the false alarm immunity (e.g

B
alarms caused by dust or fog).

Next, the intensity 7, of each SROI is measured and the
ratio I/l p.r is computed at video rate of 50 Hz. These
ratio values are compared to the calibration data from
smoke and nonsmoke situations. The detection time corre-
sponds to various calibration situations that depend on the
smoke targets distance from the camera. For each combi-
nation of location camera and smoke target, a minimal ratio
is calibrated. Next, by observing the decrease of the inten-
sity /I that is produced from the absorption of smoke par-
ticles, it is possible in real time to measure smoke concen-
tration versus time and to track obscuration rates (see Fig.
17). The measurement of the obscuration rate on the verti-
cal target could be a discriminant parameter to distinguish
smoke from fog.

Results from the smoke detection algorithm are given in
the following subsection.

3.2 Performance Evaluation

Small-scale tests were performed with a specific smoke test
chamber shown in Fig. 18 and large-scale tests with the
cargo test cell shown in Fig. 11.

Fig. 18 Smoke chamber.

Open test-fires in smoldering and flaming conditions
were performed with different hydrocarbons (kerosene,
gasoline, etc.) and wood fires, according to the
standard.>>> The produced smoke was not turbulently
mixed with air.

In these conditions, the smoke detection algorithm was
tested for smoke generated in and out of the camera’s field
of view (see Fig. 15). The detection times of the algorithm
are summarized in Table 4 in some critical situations.

In the worst situations, the algorithm triggered an alarm
60 s after the beginning of the phenomenon. These labora-
tory measurements prove that the algorithm emits an alarm
in the early stages of a real full-scale fire. Note that as
visibility decreases rapidly after the alarm with a kerosene
fire, it is difficult to monitor the cargo area. Moreover, the
smoke of a cigarette located at a distance of 5 m from the
detector is detected in a time below 1 min.

3.3 Conclusion

The tests carried out in this section have proven the feasi-
bility of using a video camera for the detection and mea-
surement of smoke concentrations. The smoke detection is
accomplished via a video camera that analyzes the lumi-
nance from reflectors illuminated with an active IR source
mounted on the camera. The reflectors placed in the cargo
enable an early alarm in real fire conditions (hidden fire or
fire in flaming conditions).

Further investigation is currently in progress to test the
immunity of the smoke detection to fog conditions. The
algorithm must distinguish between smoke and fog to avoid
false alarms. In fact, fog produces water particles with
similar characteristics as smoke in the NIR spectral band.
The light extinction coefficient varies™ from 6X107% to
0.15 m~! with a diameter of water particles from 1 to 10
um > Observations must reveal a valuable discriminatory
parameter for distinguish between attenuation due to smoke
and that due to fog. The measurement of the obscuration
rate versus time on the vertical target and the comparison
between two systems should be developed and tested to
distinguish smoke from fog.

After smoke detection, the flame detection algorithm,
described in the next section, can be applied to investigate
a fire situation.



Table 4 Smoke detection times in some critical conditions.

Smoke from Generator

Distance (m) in Field of View (s)

Smoke from Generator
Out of Field of View

Smoke from Kerosene Fire
in Flaming Conditions (s)

2 4
5 6
10 10

not performed 30
60 s 15
not performed 20

4 Flame Detection Algorithm

After an overheat and/or smoke detection, the flame detec-
tion algorithm must verify if a flame event is occurring.
The event characterizes the transition of the smoldering and
the flaming combustion.

In an open space, flaming fires emit radiation over a
broad band of wavelengths (UV, visible, and IR emissions).
The emissions correspond to an equivalent blackbody
temperature”® from 600 to 1200°C. Unlike hot spots, flame
emissions are characterized by spatial fluctuations (see Fig.
19). In fact, the flame can be divided into two parts: the
base of the flame, which is stationary, and the top which
fluctuates with a specific puffing frequency (value in our
application is around 4 Hz for a flame diameter” around
0.12 m). Moreover, the height of the flame then ranges
from 0.2 to 0.5 m for the same flame diameter”” Finally,
the flame detectable parameters, are temperature and the
spatial fluctuations of the height of the flame.

In aircraft applications, flame radiation detectors use
UV, visible, and IR flame emissions separately and in vari-
ous combinations to discriminate nuisance sources like so-
lar radiation.”® In general, these radiation detectors are in-
dividual spot-type sensors and the cargo area is covered by
a matrix coverage of these sensors. Another approach con-
sists in surveying this large area with only one video sen-
sor. A multispectrum video has been described in Ref. 29
that records images in the UV visible, and NIR spectral
bands simultaneously. A video-based machine-vision fire
detector has also been proposed and tested in a military
aircraft cargo comparlmenl.9 The detector is a multispec-
trum video system that analyzes red, blue, green, and IR
components of the image with color, IR, and microbolom-
eter cameras. Image processing software is suggested to
detect a variety of fires in the camera’s field of view.

Our approach is to measure a specific set of flame pa-
rameters such as radiation, surface and frequency with a
video system operating only in the NIR spectral band.
Through the study of the frequency and the radiative inten-
sity over a sequence of images, the proposed algorithm can
detect and discriminate fire events from nuisance sources.

Based on the physical characteristics of a flame, this
section describes the detection principle and measurement

of characteristic properties of flame. The performance
evaluation from standard test fires and nuisance sources are
then conducted on a specific test cell.

4.1 Detection Principle

The algorithm principle is to analyze radiometric, spatial,
and temporal characteristics of flame in a video sequence of
N images acquired in the NIR spectral band with an ex-
posure time of 0.1 ms. This time value captures images, as
illustrated in Fig. 20, of the radiations from a low emission
fire (alcohol fire) to a high one (kerosene fire). The radia-
tion intensities are sampled at a video rate (frequency of 25
Hz), which is sufficient to measure the fire frequency
around 4 Hz. The value of the sensor’s spatial resolution is
65 mm at an observation distance of 10 m. This value rep-
resents a ratio between 1/3 and 1/8 of the flame height
(depending on the fire sources). This sensor configuration
detects flame events of all fire scenarios subjected to aero-
nautic standards.

After the detection of the flame event, multiparameters
(temperature, spatial time variations, elc.) are measured
over the image sequence. Finally, basic classification algo-
rithms are used to determine if measured characteristics
correspond to flame properties. This classification enables
the rejection of common interfering signals such as re-
flected sunlight, lamps, etc.

4.1.1 Flame detection

The flame events are detected in the first image when the
mean value of the image pixel I, is greater than a threshold
with corresponds to the minimal temperature of 600°C. Af-
ter detection, the image pixels corresponding to this mini-
mal temperature are labeled flame region of interest (FROI)
of flame events. The first step is concluded by computing
the minimal and maximal pixel digital intensity, number,
size, hight, and center of gravity of each event from each
image of the sequence. The image processing software has
to extract higher level criteria from these initial informa-
tions to decide if a flame is present.

Fig. 19 Spatial fluctuations of acetone flame.



Image at time t =0ms

Image after a time of t = 40 ms Image after a time of ¢ = 80 ms Image after a time of t = 120ms

Fig. 20 Beginning of the flame image sequence.

4.1.2 Temperature measurement

After exhibiting the FROI in the first image, the first crite-
rion computed is the flame temperature using an approach
similar to the method used for overheat detection. For each
image and each FROI, the radiometric model maps the non-
saturated pixels intensity /5 to an equivalent blackbody
temperature value T as given in Eq. (1). In flame detection,
unlike in overheat detection, the exact temperature of the
source is not of great importance. The existence of an event
with a blackbody equivalent temperature higher than 660°C
is sufficient to indicate the probable presence of a flame. In
addition, the radiation emitted by the flame and by the il-
luminated neighboring objects cannot be distinguished. All
those parasite reflections may introduce errors of several
hundred degrees in the temperature measurement. The in-
dication of the equivalent blackbody temperature of differ-
ent fire scenarios ranges from 700 to 800°C (see Table 3).
Note that temperatures are lower at the flame extremities
than at its center.

Flame presence can only be concluded with the compu-
tation of the spatial time variation features of the flame.

4.1.3 Periodicity measurement

Three criteria are defined to compute the flame spatial time
variations. The first criterion is the periodicity P, of the
flame height H (see Fig. 21), which is computed in a finite
sequence of N, images. The sequence is sampled at the
video rate of 25 Hz. For the finite sequence of images, a
discrete Fourier transform breaks up this signal H; into a
sum of sinusoids and computes the power spectrum with an
energy amplitude S. Note that F, is the frequency of the
highest energy amplitude and & its multiple: F, ranges from
0 to the maximal frequency F,,=Ny2XF,_, where F, is

the increment frequency (F,=25/N;Hz). Also N is then
the number of sinusoids present in the signal over the range
[0,F nas]- Finally, the periodicity P, is defined by following
the relation:”

. :2:;1S{ka)—E‘:;lS{ka+Fp/2) -
TN S(kF,)+3Ns S(kF,+F,2)

The periodicity provides a criterion signal with a value be-
tween O and 1.

Tests were performed with the data from N;=64 images
(Fohw=125Hz and F,=0.39Hz) of different fire sources
and nonfire stimuli. In accordance with JTSO standard?!
nonfire stimuli are sources such as a 1000-W lamp, which
represents the sun. A lamp interrupted by a chopper with a
frequency lower than 5 Hz (see Fig. 22) is assumed to be a
periodic source such as sun through an aperture. The com-
puted values of the periodicity P, of alcohol and kerosene
fires vary from 0.7 to 0.8. Tests of wood and paper fires
produce a periodicity value from 0.4 to 0.6. Note that the
computed values of the periodicity can vary over 50% from
the ignition to the extinction point of fires. The indicated
values are recorded for flames in stationary development.
Moreover, a lamp interrupted by a chopper at a frequency
of 3.3 Hz produces periodicity value of 0.55, which corre-
sponds to fire. The discrimination between acetone, alco-
hol, or kerosene fires and interfering phenomena is difficult
with only the periodicity criterion. Moreover, a lower num-
ber of images (because of the memory requirements in an
airborne application) damages the criterion performance.
This low discrimination success rate associated with the

Table 5 Mean temperature T, intermittency /;, and movement of the center of gravity of the flame Cz

values for different fire sources.

Fire Sources Kerosene  Gasoline Type A Acetone Alcohol Wood Paper
T(°C) 870-900 880-900 875-885 740-760 745-850 760-825
1 0.40-0.49 0.48-0.5 0.42-045 041-043 045-055 0.40-0.45
Cs 0.87 0.96 0.96 0.93 0.85 0.96
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Fig. 21 Flame features: height, intermittency, threshold height, and
center of gravity.

needs of a high number of images lead us to propose an-
other criterion, the intermittency If (see Fig. 21).

As illustrated in Fig. 21, the inlermiltencyﬂ criterion If
of flame height, which represents the flame presence prob-
ability. For a sequence of Ny images, the first process con-
sists in performing the flame height Hy in each image (i
=1,....Np) of the sequence and the mean value of the flame
height Hppen. Ina second step, the ratio (i)
=H(i)/Hyean in each image (i=1...Ngp) is provided.
The third process consists in comparing each y(i) to y(j)
of each image (j=1....Ny) and then, if x(j)>x(i), the
variable n; is incremented. At the j end loop, the normal-
ized intermittency /(i) =n,/Ny is computed. Note that a
small value of y(i) leads to 1) around 1, a high value of
X (i) leads to I (i) around 0, respectively. The flame of the
image i is then in the persistent region of flame, in the
buoyant region, respectively.

Fig. 22 Picture of the fire test.

The last process consists in performing the reference
intermittency / for a value of y(i) equal to 1. This value of
intermittency then defines the probability of the flame
height being superior to the mean height flame and charac-
terizes a fire.

Every previous test combination of fire was repeated
with intermittency criterion. The intermittency values range
from 04 to 0.56 with a mean value /.., of 0.47. For
different fire scenarios, the uncertainty of /.., is only of
+0.057. In addition, the intermittency value ranges from 0
to 0.22 for nuisance sources such as sun, sampled sun, and
different colored lights. In conclusion, the intermittency
criterion contains useful information for discriminating be-
tween fire and nonfire stimuli.

Robust detection can be obtained by adding a third cri-
terion, the movement of the gravity center of the flame (see
Fig. 21). The first process consists in performing the center
of gravity of the flame [xp(i),y5(i)], in each image (i
=1,....Np) of the sequence. At the end, the mean value
(xc.ye) of all centers of gravity [xz(i),y5(i)] is com-
puted. The second process consists in computing the Eu-
clidean distance Lyg(i) between the coordinates of the cen-
ter of gravity [x5(i),y5(i)] of each image and the mean
value of all centers of gravity (x..v¢) as follows:

Ly(i)={[xp()) —xcP+[yp(i) =y} with
ie[l.Ny]. ©)

In conditions of unvarying phenomenon, the spatial fluctua-
tions of the centers of gravity [xz(i),y5(i)] depend only on
spatial detector noise. In a sequence of N images, the spa-
tial noise detector is characterized by a circle that includes
all the fluctuations of the center of gravity positions. This
“noise” circle is defined by its radius Ry . Moreover, in
conditions of fluctuating phenomenon, if Lg(i) is higher
than Ry, the variable of the center of gravity movement of
the flame np(i) in each image receives the value 1 else
value 0. Finally, the criterion of the movement of the center
of gravity of the flame Cp is computed as follows:

p S ngli) g
BETN (7)

Note that distances Lp(i) are less than the height of the
flame H;. The detector spatial resolution can limit the
computation of the criterion of the movement of the center
of gravity. In addition, the criterion of the movement of the
center of gravity of the flame is applied only if a FROI is
detected (i.e., a flame event is detected in the image). For a
lamp interrupted by a chopper, the criterion is computed if
the flashing light is visible.

Finally, a standard classification algorithm based on
temperature, intermittency, and movement of the center of
gravity of the flame is used to determine if the detected
event is consistent with a flame. The multicriteria fire
analysis is now applied to all test fires used in EN 54 part 9
standards.



Table 6 Temperature T, intermittency /;, and movement of the cen-
ter of gravity of the flame Cg values for different nonfire sources.

Nonfire Yellow Red Light Sampled
Sources Light Light (Power 1000 W) Light
T(°C) 868 828 Saturation -

I; 0 0 0 0.18-0.22
Cg 0-0.1 0-0.1 0 0.25

4.2 Performance Evaluation

The objective is to evaluate our new sensing technology
associated to the image processing software to detect fires
and nonfire stimuli in cargo compartment. The evaluation
was performed according to the aeronautic standards.”
This document applies to a minimum performance standard
and validation for digital computer. The standards require
to detect the flame in 1 min from the start of different fire
scenarios. The specific test cell to emulate the different sce-
nario is first presented. The performances of our system are
then described.

In the cell test structure of an aircraft cargo compartment
(see Fig. 11), a specific fire test was built to simulate the
conditions of fire and nonfire sources (see Fig. 22). Fire
sources were generated by a flaming of wood and paper in
a specific burner and liquid fuels (kerosene, acetone, etc.)
in a specific pan with a diameter D of 0.12 m. Nuisance
sources were emulated by red, yellow and high power
lights and by a sampled light with a power of 1000 W.

Large-scale experiments were conducted in the specific
test cell. Each experiments of fire were repeated several
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Fig. 23 Fire discrimination from intermittency criterion I, and move-
ment criterion Cg.

Fig. 24 Load target.

times to develop a statistically meaningful data base for
each type of fire. The flame properties (mean temperature
T, intermittency /,, and movement of the center of gravity
of the flame Cp) were computed over a sequence of Ny
=32 images of fire and nonfire sources. These results com-
puted for a fire-camera distance of 10 m are recorded in
Tables 5 and 6.

Note that the difference of the mean equivalent black-
body temperature is small between different fire sources. In
fact, the temperature is measured only for nonsaturated pix-
els. Moreover, these values are not real flame temperature
because the emissivity of the flame is not considered. Cri-
teria of spatial time variations are necessary in the classifi-
cation algorithm for discriminating fire and non-fire sources
(see Fig. 23). The figure shows that the sources can be
separated into two categories. The discrimination between
the two categories comes easily.

4.3 Conclusion

Based on the test results reported in previous section, it is
concluded that it is feasible for the same detector, a CCD
camera operating in the NIR, to measure small temperature
gradient in overheat conditions and high temperature in
flame detection. Next, it is also feasible to discriminate fire
and nonfire sources with an analysis of the time variation of
the flame radiations. Temperature, intermittency, and move-
ment measurements enable us to distinguish flame charac-
teristics from nuisance sources properties.
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Fig. 25 Calibration using multiple views of a planar pattern.



Fig. 26 Multiple target recognition.

5 Load Displacement Detection Algorithm

The load displacement system must detect a minimal move-
ment of 50 mm at an observation distance of 15 m of the
freight in the aircraft cargo holds. The system must also
measure its amplitude (higher than 50 mm) with a relative
uncertainty of 10%.

The load displacement detection must be accomplished
with the video sensor operating in the NIR spectral band
(the filter used in the overheat and the flame algorithms
cannot be removed). The detection is then performed with
the reflected luminance from the loads, which are illumi-
nated with an active infrared source mounted on the cam-
era. Moreover, for cost and maintenance reasons, the dis-
placement measurement must be performed in the field of
view of one camera. The load position with respect to the
video sensor can be only computed with a monocular vi-
sion approach. With these conditions, it is necessary to
know the 3-D geometric model of loads. For an application
concerning the monitoring of free-form objects, two solu-
tions can be tested to know the geometric model of load. It
can be learnt in the loading step or a specific visual pattern
can be fixed on each load. For robustness reasons, we have
chosen to equip each load with a known specific target with
a pattern composed of eight reflective patches with diam-
eter of 50 mm. The pattern has been designed in order to
allow an automatic estimation of the load orientation (see

Fig. 28 Initial image (two patterns to be detected and an artifact).

Fig. 24). The principle of the displacement measurement is
to localize in 3-D the target pattern between two successive
image acquisitions. First, we must detect the pattern illumi-
nated with the active infrared source mounted on the cam-
era. The load detection principle and the physical model of
the VSU have been presented in Ref. 10. Next, the local-
ization of the pattern can be computed only if the geometric
model of the imaging sensor is also determined. The geo-
metric model based on “*pinhole™ model presented in Ref.
32 and the associated calibration procedures for a CCD
camera operating in the NIR spectral band are described in
Ref. 10. For our application involving accurate dimensional
measurements, a specific flexible technique has been used,
as described in Ref. 33, which requires only the camera to
observe a quasi-planar pattern presented with different ori-
entations (see Fig. 25). The motion of the pattern need not
be known and the pattern itself can be imprecise. The cali-
bration procedure provides the intrinsic parameters of the
camera that will be used by the 3-D localization method.
Finally, if we suppose that the camera has already been
calibrated beforehand, the target localization with respect to
the camera is computed from the 3-D geometric model of
the target, which has been previously learned. In the end,
the displacement is computed between two successive lar-
get localization.

(a)

(b)

Fig. 27 Pattern recognition procedure: (a) binarized image, (b) contour extraction and ellipse fitting,

and (c) successful recognition of the pattern.
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Fig. 29 First iteration of the multiple target recognition procedure: (a) step 1, first principal axis; (b)
step 2, first principal component values; and (c) step 3, differences between adjacent first principal

component values.

The section describes the detection and the recognition
of all the targets that lie in the scene. Next, it presents the
3-D localization of the target pattern and the computation
of the target displacement. Finally, a performance evalua-
tion is conducted with the influence of the distance and the
target orientation.

5.1 Detection and Recognition of the Target Pattern

Before the takeoff phase, a reference image of the cargo
area is recorded. During the flight, in real time, each image
of the targets (one target per load) illuminated by the active
IR source is analyzed to detect and recognize them. Note
that an exposure time of 20 ms is sufficient to extract the
eight reflective patches of the pattern (see Fig. 26). This
exposure time allows a video rate detection. The single and
multi-target recognition algorithms are presented below.

5.1.1 Single-target recognition

First, the algorithm performs a blmrlzation of the image
with automatic threshold selection** Then a region labelm
is performed. After a contour extraction in lhe labeled im-
age, a method based on ellipse fitting® and region filtering
with a shape criterion gives the center and the principle axis
of the patches with a subpixel accuracy. Finally, an opera-
tion of pattern matching concludes the target recognition
phase which relies on straight interactions of lining up el-
lipses. Figure 27 summarizes the different operations.

5.1.2 Multiple-target recognition

The multipattern recognition algorithm is based on a prin-
cipal component analysis (PCA) approach.

An analysis of the image is performed to separate all the
contours of the image in clusters of eight contours (the
pattern is made up of eight reflective patches). Each cluster
is then tested to determine if it is a true pattern or an arti-
fact.

A region segmentation of the image is first performed.
The contour of each region is then computed and approxi-
mated by an ellipse®® Using the residual value of the ap-
proximation, a filtering operation is performed to discard
the contours that cannot be an ellipse (residual value too
high). Each kept contour (it is probably an ellipse and
might correspond to a patch of a possible target) is then
represented by a 4-D data vector containing: the center of
gravity of the ellipse (i,j), the surface of the ellipse (S,),
and the distance to the nearest ellipse in the image (D,).
Note that the pattern is characterized by eight reflective
patches of the same size (i.e., same surface) and same dis-
tance between patches: the surface of the contours and their
inter-distance are relevant factors for the pattern recogni-
tion.

Finally, for all the contours, a recursive
performed in the 4-D space:

algorithm is then

(a)
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Fig. 30 Second iteration of the multiple target recognition procedure: (a) step 1, first principal axis; (b)
step 2, first principal component values; and (c) step 3, differences between adjacent first principal

component values.
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Fig. 31 Target 3-D localization method.

1. The direction of the first principal component is first
computed.

2. The 4-D data vectors are projected on the first prin-
cipal axis, giving principal component values.

3. The differences between adjacent principal compo-
nent values (derivative) are computed, and the loca-
tion of the maximum difference is used to separate
the contours into two groups.

4. Steps 1 to 3 are repeated for both groups.

Steps I to 4 are repeated until all the contours have been
separated in clusters containing eight contours or less.

At the end of the algorithm, we get a number of cluster
of eight contours or less. All the clusters with less than
eight contours are discarded as they are not patterns. Using
the single-target recognition algorithm (see Sec. 5.1.1),
each cluster of eight contours (a possible pattern) is tested
in order to determine if it is a true pattern or an artifact.

As an example, the algorithm is performed on the image
of Fig. 28, which represents two patterns and an artifact.

Itis not easy to visualise data in 4-D space so in order to
explain how the algorithm works each contour is repre-
sented by a data vector (its center of gravity). Figure 29
illustrates the steps of the first iteration of the algorithm.
Figure 29(a) gives 2-D data vectors and first principal axis
(two patterns made up of eight contours and two contours
corresponding to an artifact); Fig. 29(b) shows the first
principal component values; Fig. 29(c) shows the differ-
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Fig. 32 Target displacement D from two successive localizations at
time tand t+At

ences between adjacent first principal component values of
Fig. 29(b).

Figure 30 illustrates the steps of the second iteration of
the algorithm: Fig. 30(a) gives 2-D data vectors and first
principal component of the remaining points; Fig. 30(b)
shows the first principal component values; Fig. 30(c) pro-
poses the differences between adjacent first principal com-
ponent values of Fig. 30(b). At the end of the algorithm two
patterns have been identified and the artifact has been dis-
carded.

5.2 3-D Localization of the Target Pattern

The 3-D localization of each pattern is performed using
Tsai’s localization method®® applied to a 2-D object. The
method requires the 3-D object geometric model, the eight
extracted center of the patches {m;=(u; ,v,-)T, where i
€[0.7]} and the knowledge of camera intrinsic parameters.
Tsai’s technique is based on a distortion-free pinhole cam-
era model. Therefore, we must correct the feature-extracted
points of the pattern from their distortion before using it.
This correction is performed using the intrinsic parameters
provided by the calibration procedure applied in the NIR
spectral band (see Fig. 31). Using the relation between the
eight corrected points [m,;=(u,; ,v,;)"] and the eight 3-D

Table 7 Relative error Ad/d with vertical displacements.

d(mm) 50 100 150 200 250 300 350 400 450 500
d(mm) 5065 9995 15121 20154 24887 29061 34849 397.82 44380 49503
13 005 08 08 05 0.1 0.4 0.5 13 1.0

Ad of
g (%
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Fig. 33 Influence of the load camera distance.

target points [M;=(a; ,b;,0)7], the technique computes the
position t and the orientation R of the target and then, pro-
vides the localization matrix
( R t
1o 1

Finally, the target displacement D (see Fig. 32) is per-
formed from two successive localizations (localization 1
and localization 2) following the relation:

Ry, tl!) ®

D=T '()T(+An= G

where R, is the rotation matrix between localization 1 and
2 and t;, is the displacement vector between localization 1
and 2. From D, we can compute the rotation of the load
(R},) and its displacement norm d=t}»]|=]0,0,].

5.3 Performance Evaluation

To evaluate the performance of the system with respect to
the displacement measurement accuracy, we have moved
the target in the view field of the camera using an accurate
XYZ translation setup.

For each displacement, the relative error is computed
using the following relation:

Ad _|d—d] i@

d dyef

Z-rotation

Initial position

where d=|t;,]|=]/0,0,| is the measured displacement
norm, and d,; the reference displacement. Using this crite-
rion, we have also analyzed the influence of the load cam-
era distance and the target orientation.

5.3.1 Displacements orthogonal to the optical axis

The target was placed at a distance d; of 3 m from the
camera. The target is then translated vertically and horizon-
tally in the view field of the camera from the threshold
detection of 50 to 500 mm with increments of 50 mm.

Table 7 proves that the obtained relative error Ad/d with
vertical displacements is less than 1.3%. Same experiments
have been carried out with horizontal displacements and the
relative error is less than 0.8%.

5.3.2 Influence of the load camera distance

The previous tests were repeated with the target placed at
different distances of the camera, respectively, 4, 6, 8, and
10 m (see Fig. 33).

For the target placed at distance below than 6 m far from
the camera, the relative error Ad/d has been found to be
less than 5%. For higher target-camera distances, the rela-
tive error Ad/d has raised and has climbed to 30%. Note
that the camera was focused at a distance of 6 m. In the
future, it could be interesting to mount an autofocus lens, or
to control the focus by the computer, so that the estimation
could not become worse for larger depths. The problem
would be then more complicated because the camera intrin-
sics parameters would vary.

Y -rotation X-rotation

Fig. 34 Influence of the target orientation.



Table 8 Measurement of target orientation.

Measured Orientation (deg)

Imposed Orientation
(X, Y, and Z Rotations) (deg) X Rotation Y Rotation Z Rotation

15 16 13 17
30 32 30 33
45 47 46 48
60 61 58 63

5.3.3 Influence of the target orientation

It is unlikely that the target can be fixed to the load in a
position parallel to the camera image plane. Thus, the aim
of this test was to verify that the system is able to detect
and measure vertical and horizontal displacements of the
target even if the target is not parallel to the camera image
plane. Tests of displacements orthogonal to the optical axis
have been then performed with different orientations of the
target (see Fig. 34). This target was placed 3m far from the
camera. It was rotated, tilted and panned (0 to 60 deg) and
then, moved vertically and horizontally in the view field of
the camera. The measured relative error Ad/d has proved
to be less than 1.9%.

5.3.4 Measurement of target orientation

The localization matrix provides the orientation and the po-
sition of the target. The displacement matrix [see Eq. (8)]
provides the rotation R of the load between two successive
localizations. We have performed several tests to verify that
the system is able to detect and measure a rotation of the
load (see Fig. 34). From Table 8, we can see that the rela-
tive accuracy is better than 10%.

5.3.5 Muiltiple targets detection in presence of
artifacts

Finally, we performed some tests with multiple targets and
we added some artifacts in the view field of the camera to

evaluate the robustness of the algorithm (see Fig. 35). The
patterns were successfully recognized and the artifacts re-
jected.

5.4 Remark

Note that using a single camera is not the best way to tackle
3-D localization problems. A stereo-vision approach®’
would give better results especially with regards to dis-
placements along the optical axis of the camera. For cost
saving reasons, we have decided to develop a single-
camera-based system.

6 Conclusion

The main achievement of the work presented in this paper
is demonstrating that a single sensor, a CCD camera oper-
ating in the NIR spectral band, associated with specific al-
gorithms can simultaneously visualize, detect, and measure
the properties of the whole range of fire signatures (over-
heating, smoke and flame) as well as freight movements in
aircraft applications.

The first candidate fire signature, presence of overheat-
ing, is detected and characterized by a NIR radiation mea-
surement. The detection tests proved that the CCD camera
associated with the proposed overheat detection algorithm
were able to detect overheating conditions generated with a
blackbody from a temperature of 300°C. The blackbody
equivalent temperatures ranging from 350 to 575°C were
measured with a maximal relative error of 6.5%. Addition-
ally, the minimal size of hot spots detected is 65 mm at an
observation distance of 10 m. The result is a thermal image
where the measured image intensity values of hot spots are
mapped to blackbody equivalent temperature values.

As for the second fire signature, presence of smoke, de-
tection is based on a transmissivity measurement between
the CCD camera and specific reflectors illuminated with a
NIR source mounted on the camera. Tests performed in a
custom-built smoke-test facility proved that in a worst case
scenario of concealed fire, the detection time is less than 1

(a)

(b)

Fig. 35 Multiple targets detection: (a) binarized image and (b) successful recognition of three targets

(three loads).



min. This time value is obtained when the obscuration mea-
surement falls below a threshold corresponding to sensor
noise.

Detection of the presence of flame, third on our list of
fire signatures, is achieved by a combination of radiation
and time-variation measurements of the flame itself. The
detection algorithm is based on temperature measurement
and two criteria of flame periodicity. Tests, conducted ac-
cording to aeronautical standards, proved that these multi-
parameter computations in a sequence of 32 images were
able to detect all types of flame and differentiate them from
nuisance radiation sources, such as sunlight.

Another significant result is the performance of the pro-
posed surveillance system in the detection of freight move-
ments in the cargo hold. The proposed load displacement
algorithm is based on a 3-D localizations of load in two
images. This technique enables the measure of vertically
and horizontally load displacements from 50 to 500 mm
with a maximal uncertainty of 5% at an observation dis-
tance below than 6 m. For higher observation distances, the
camera is not under focus and the uncertainty increases to
30%.

The paper has presented a system, comprised of a sensor
and associated software, with multiparameter detection and
measurement capabilities, enabling the protection of an air-
craft cargo compartment against fire and freight movement.
The performance evaluation of the system proves the abil-
ity to measure a large range of fire parameters simulta-
neously and with a high degree of sensitivity. The high
resolution of the sensor also enables the measurement of
small spatial fluctuations in the phenomenon. The trials,
having been performed according to the stringent standards
of the aeronautics industry, show the system to be an ideal
choice for large-body aircraft cargo bays such as on the
Airbus 380. Current systems employing a number of indi-
vidual spot-type sensors can be replaced with this single
sensor, enabling considerable cost savings, along with the
improvements in performance and maintenance facility.
With such a level of technical performance it is evident that
the system will excite interest in other fields where surveil-
lance requires multiparameter detection.

To extend this project, two refinements could further im-
prove the accuracy of the measurements. First, the discrimi-
nation between smoke and fog should be developed by add-
ing a temporal obscuration rate. Second, a temperature
prediction step would improve the phenomenon tracking by
allowing a better control of the sensor potentialities.
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