
HAL Id: hal-01644899
https://hal.science/hal-01644899

Submitted on 27 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A speckle-texture image generator
Jean-José Orteu, Dorian Garcia, Laurent Robert, Florian Bugarin

To cite this version:
Jean-José Orteu, Dorian Garcia, Laurent Robert, Florian Bugarin. A speckle-texture image generator.
Speckle06 - Speckles from grains to flowers, Sep 2006, Nimes, France. �10.1117/12.695280�. �hal-
01644899�

https://hal.science/hal-01644899
https://hal.archives-ouvertes.fr


A Spe
kle-Texture Image Generator
Jean-José Orteu and Dorian Garcia and Laurent Robert and Florian Bugarin

École des Mines d’Albi, Campus Jarlard, F-81013 Albi CT Cedex 09, FRANCE

ABSTRACT

We propose a framework for obtaining synthetic speckle-pattern images based on successive transformations of
Perlin’s coherent noise function. In addition we show how a given displacement function can be used to produce
deformed images, making this framework suitable for performance analysis of speckle-based displacement/strain
measurement techniques, such as Digital Image Correlation, widely used in experimental mechanics.

Keywords: synthetic speckle-pattern images, digital image correlation, displacement accuracy assessment

1. INTRODUCTION

A major challenge posed by speckle analysis techniques for metrology applications, such as Digital Image Cor-
relation (DIC), is their performance assessment. As the number of influencing parameters is large, a practical
approach consists in analysing computer generated images given sets of varying settings. Several authors1–4

have used synthetic deformed speckle-pattern images for DIC evaluation, however the generated patterns are
quite non realistic, often exhibit very different spectral properties as present in real speckle images, and elude
potentially important effects brought by the digitization process of an imaging system.
We want to produce synthetic images of a realistic speckle pattern. Among many different approaches discussed
in,5 the one we propose is based on a coherent noise generator and a set of continuous transformations to produce
the desired pattern aspect.

Figure 1. Real pattern obtained by spray-paint (left) and synthetic pattern realized with our coherent noise generator
(right).

Our objectives are: (a) to mimic speckle patterns which would be obtained using regular approaches such
as spray painting, toner powder deposit, . . . ; (b) to simulate the sensor fill-factor to exhibit eventual moiré
structures due to the spatial sampling characteristics; (c) to limit the introduction of a bias of some sort due to
interpolation; (d) to be deterministic: running twice the algorithm with the same parameters must produce the
same pattern; (e) to simulate a deformation field of arbitrary type; (f) to simulate lens distortion of arbitrary
type if necessary; (g) to be approved by the photomecanic community to standardize performance evaluations.

2. GENERATION OF THE SPECKLE IMAGE

The core speckle pattern generator algorithm is presented in Figure 2 and consists of five elementary steps.
The algorithm is given at the end of the paper.

Further author information: E-mail: Jean-Jose.Orteu@enstimac.fr, Telephone: +33 (0)563 493 073



anti-aliasing and
fill-factor simulation

normalized texture
generation

realistic pattern
adjustment

combine
all the samples grey-level scale

map texture value to

grey-level value2-D point Basic Noise
Integration Digitization

TransformationFunction

Coherent Noise
Super-sampling

Figure 2. Processing pipeline for computing the pixel value within a speckle-image given its coordinates.

2.1. Super-sampling and fill-factor simulation

The integration of the texture function over the domain corresponding to the sensitive photometric material of
a pixel is performed by a sub-sampling technique. To reduce the band-limitation of the texture spectrum that a
regular grid-sampling technique would produce, we perform a Monte-Carlo integration scheme using stochastic
samples to approximate the integral. Stochastic sampling scatters aliasing into noise, thus eliminating any
systematic bias in the generated patterns if the sample distribution is chosen carefully. We have opted for the
Jittering distribution which is both computationally efficient and has satisfactory spectral properties.

Given a two-dimensional point (u, v), a set of super-sampled coordinates (ui, vi) (i.e. set of neighboring
points) is generated (see Figure 3-left). In modern CCD cameras it is possible that a portion of the camera
surface is not sensitive to light (see Figure 3-middle). The fraction of the surface that is sensitive to light is
called the fill-factor. In our algorithm, a fill-factor can be taken into account during the super-sampling process
(see Figure 3-right).

u + 1

2

u

u − 1

2

3

2

1

0

3210

v + 1

2
v − 1

2
v

photon lost

volume of

integrated photons

photosensitive material

nonsensitive material

1

2

3

0

25%

3210

u

v + 1

2
v − 1

2
v

u + 1

2

u − 1

2

Figure 3. Super-sampling (left) ; fill-factor (middle) ; super-sampling with fill-factor (right).

In reality, as mentioned above, we have implemented a Jittered distribution by slightly perturbing each
samples of the regular grid in a random direction. The super-sampled coordinates are generated using the
following equations:

ui = u +
√

f
2i + 1 − n

2n
+ rd (1)

vj = v +
√

f
2j + 1 − n

2n
+ rd

where rd is used for jittering the super-sampled coordinates. The random variable rd is uniformly distributed
over a range which is proportional to the super-sampling spacing

√
f/n, and further controlled by a jittering

rate noted J : rd = J random([−1, +1])
√

f/n. Hence, rd is uniformly distributed over the range ±J
√

f/n.
It is important to note that in order for the algorithm to be deterministic, the random function must be approx-
imated by a pseudo-random generator as found readily available on most software platforms.



2.2. Coherent Noise Function

2.2.1. Basic Noise Function

The basic algorithm to generate a coherent noise is to setup a regular grid of random values and then interpolate
these values at non lattice positions. Perlin6 first proposed to generate random vectors ni at lattice points mi,
then interpolate these vectors by the means of a dot-product si = ni × di, i = 1 . . . 4 (see Figure 4-left) and a
s-shaped weight function in order that the noise function be more influenced by a coefficient si when the point
m is near from mi.
Figure 4-right shows a coherent noise generated using Perlin’s algorithm.6, 7 As it can be seen in that figure,
Perlin’s noise function is inherently continuous and is made up with “bumps”, or grains, of roughly the same
size.

m4m3

δx

δy

m1

d2

n1

n2

n4

m2

n3

m

d1

d3

d4

Figure 4. Generation of the coherent noise (left) and corresponding speckle-pattern image (right).

2.2.2. “Harshness” Control

The noise function as described in the previous section does produce only one “grain size” as shown in Figure 4-
right. This characteristic is defined as the wavelength of the noise signal: the distance separating two lattice
points. The amplitude of the noise signal is defined as the difference between the maximum and the minimum
values the noise function can be.
Some speckle patterns are sometimes made up with many different grain sizes (spray painted speckle is one
example). We can have control over it by summing noises of different wavelengths (frequencies F) and amplitudes
A. In 1989, Lewis8 proposed two new interpolation schemes to solve Perlin’s algorithm issues. Both of them
offers spectral control over the generated noise. Results obtained with one of his algorithm are shown in Figure 5.

F=1, A=1 F=2, A=1/2 F=4, A=1/4

...

∑

Figure 5. Controlling the noise “harshness”: the bottom-right coherent noise is built by summation of five basic noises
of different frequency F=1,2,4,8,16 and amplitude A=1,1/2,1/4,1/8,1/16 (Lewis’ sparse convolution algorithm is used for
the basic noise function).



2.3. Basic Noise Transformation

The raw coherent noise function represents a single type of speckle pattern which may not be appropriate for all
applications. Especially, the noise function has a rather uniform distribution hence it is not appropriate for tests
requiring bi-modal distributions for instance. It is therefore possible to apply a transformation to this coherent
noise function so that the transformed outputs mimic one desired speckle pattern appearance. Figure 6 shows
some patterns which can be realized through the use of some specific, very simple, texturing functions.
More effects can be achieved by modulating the texturing function with respect to the point location, eventually
corrupting the point location by an other noise function. Such a technique can allow a better control of the
speckle spots by using, for instance, a sine function with a corrupted phase. Pixar∗ has successfully implemented
this approach in its Renderman software for producing leopard texture, marble, etc.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

→

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

→

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(c)

→

Figure 6. Examples of some simple functions which transform a coherent noise function into some more realistic speckle
patterns. (a) T(x) = x ; (b) T(x) = log(9x + 1) ; (c) T(x) = 4

`

x− 1

2

´

3

+ 1

2

3. DEFORMATION OF THE SPECKLE IMAGE

Knowing how to generate a synthetic speckle-pattern image, it is now straightforward to use it for simulating
a motion or, in general, a deformation. The principle consists of determining the inverse of the displacement
function and evaluate the texture pattern at each inverse mapped point (see the algorithm at the end of the
paper). Let’s say the inverse of the displacement function is:

d−1 : R2 −→ R2

(x, y) 7−→ d−1(x, y)

The first pattern is generated through the noise(·) function following the algorithm described in the previous
section:

(x, y) 7−→ noise(x, y)

The deformed pattern is then computed using the inverted displacement function d−1(·):

(x, y) 7−→ noise
(

d−1(x, y)
)

The inverse of the displacement function is not always easily known (if possible). However it can be approximated
numerically or one can setup directly the inverse displacement as a well-defined function. For example, using a
“punch” function:5

d−1(x, y) =
1 + p(x2 + y2)

1 + pr2

(

x′

y′

)

where x′ and y′ are coordinates normalized in the range [−1 · · · 1], p is the power of the deformation (maximum
magnitude of the gradient), and r defines the radius of a circle at which no point is deformed (the function is
invariant at the origin and on this circle).
The deformation that are implemented so far in the software are: the scale (to control the speckle-pattern grain
size), a translation, a rotation, a punch (for demonstration), a sinusoidal displacement (see section 4), but any
displacement function could be implemented. Figure 7 illustrates the punch function.

∗Pixar is the animation company which realized “Toys Story”, “A Bug’s Life”, “Toys Story II”, “Monsters, Inc”, and
“Finding Nemo”. http://www.pixar.com



p = 0 p = 1

Figure 7. Punch function. We show two results obtained with different values of the parameter p of the punch function;
r = 0.8. The meshes give a better idea of how the original pattern is deformed by tracking the displacements of the points
on a regular grid.

4. APPLICATIONS

Digital Image Correlation (DIC) is a widely used technique for full-field displacement/strain measurements in
experimental mechanics.9 From a metrology point of view, it is crucial to assess the performance of the technique
and to determine the influence of the tuning parameters on the accuracy of the measurements. The French
working group ”GdR CNRS 2519”∗∗ has started a study to assess the performances of the DIC technique for
displacement/strain measurements.10 For this study, images with a speckle-pattern and submitted to a sinusoidal
displacement at various frequencies and amplitudes have been generated. The displacements evaluated using
DIC are compared with the exact imposed displacement values. Deformed images (image size 1024 × 1024)
are obtained assuming a plane wave sinsusoidal displacement† with only tension/compression waves in the X

direction (horizontal direction) and a zero displacement along Y (see Figure 8): uX(X, Y ) = α p sin

(

2π
X

p

)

,

where p is the period in pixels and α is the amplitude of the XX component of the displacement gradient (strain).

(a)

0 200 400 600 800 1000
−60

−40

−20

0

20

40

60

80

Horizontal direction x [pixel]

D
is

pl
ac

em
en

t U
(x

) 
[p

ix
el

]

Theoretical displacement Uth(x)
Measured displacement Um(x)

Im7 

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1

Horizontal direction x [pixel]

D
ev

ia
tio

n 
(U

m
(x

) 
−

 U
th

(x
))

 [p
ix

el
] Im7 

(b)

0 200 400 600 800 1000

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Horizontal direction x [pixel]

D
is

pl
ac

em
en

t U
(x

) 
[p

ix
el

]

Theoretical displacement Uth(x)
Measured displacement Um(x)

Im18 

200 400 600 800
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Horizontal direction x [pixel]

D
ev

ia
tio

n 
(U

m
(x

) 
−

 U
th

(x
))

 [p
ix

el
] Im18 

Figure 8. From left to right: deformed image, displacement field computed using digital image correlation, computed
displacement vs real imposed displacement (along an horizontal line of the image), deviation between computed and real
displacements (along an horizontal line of the image) – Two situations are shown: (a) α = 0.1, p = 510 (displ. max = 51
pixels, def. max = 63%) – (b) α = 0.01, p = 60 (displ. max = 0.6 pixels, def. max = 6.3%).

∗∗http://www.ifma.fr/lami/gdr2519/
†
As mentioned in section 3, the inverse of the displacement function is required to generate the deformed image. To compute a sinusoidal

displacement at X, we have to find X0 such that: X = X0 + uX (X0). In order to find X0, we solve g(X0) = X0 + uX (X0) − X = 0 using
the Newton algorithm.



5. CONCLUSION

We have shown how Perlin’s noise function can be used in a flexible speckle generation framework suitable for
performance assessment of various measurement techniques, such as digital image correlation (DIC).
The multi-step approach used within this framework allows one to extend the range of simulated images by
introducing a new transformation in the processing pipeline. We have given an application example of such an
extension for simulating a displacement function, and used the results for the preliminary performance assessment
of a DIC algorithm.

Algorithm 1 Generate a (deformed) speckle-pattern image

for each pixel (u, v) do

// super-sampling (n× n neighbourhood) and fill-factor
sumNoise ← 0
for (i, j) in 1 · · ·n× 1 · · ·n do

// sample coordinates
(ui, vj)← function(u, v, i, j, n, f, J) // see equation (1)
if deformation then

(ui, vj)← d−1(ui, vj) // deformation (optional)
end if

sumNoise ← sumNoise + coherentNoise(ui, vj) // sample evaluation and aggregation
end for

noise ← sumNoise/n2 // average
noise ← T(noise) // pattern adjustment, see Figure 6
// photometric mapping and digitization
photometry ← noise × (maxGreyLevel - minGreyLevel) + minGreyLevel
pixel(u, v) ← round(photometry)

end for

REFERENCES

1. B. Wattrisse, Étude cinématique des phénomènes de localisation dans des aciers par intercorrélation d’image.
PhD thesis, Université de Montpellier II (France), Feb. 1999.

2. P. Doumalin, Microextensométrie locale par corrélation d’images numériques. Application aux études mi-

cromécaniques par microscopie électronique à balayage. PhD thesis, École Polytechnique (France), June 2001.

3. H. W. Schreier and M. A. Sutton, “Systematic Errors in Digital Image Correlation Due to Undermatched
Subset Shape Functions,” Experimental Mechanics 43(3), pp. 303–311, 2002.

4. M. Stanislas, K. Okamoto, C. J. Kahler, and J. Westerweel, “Main results of the Second International PIV
Challenge,” Experiments in Fluids 39, pp. 170–191, 2005.

5. D. Garcia, Mesure de formes et de champs de déplacements tridimensionnels par stéréo-corrélation d’images.
PhD thesis, Institut National Polytechnique de Toulouse (France), Dec. 2001.

6. K. Perlin, “An image synthesizer,” in SIGGRAPH’85, pp. 287–296, 1985.

7. K. Perlin, “Making noise.” http://www.noisemachine.com/talk1, 1999. Presentation based on a talk pre-
sented at GDCHardCore.

8. J. P. Lewis, “Algorithms for solid noise synthesis,” Computer Graphics 23(3), pp. 263–270, 1989.

9. T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, “Applications of Digital-Image-Correlation
Techniques to Experimental Mechanics,” Experimental Mechanics 25(3), pp. 232–244, 1985.

10. M. Bornert, “Resolution and spatial resolution of digital image correlation techniques,” in Photomechan-

ics’2006, Clermont-Ferrand (France), 10-12 July 2006.


