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Abstract
A novel approach for correcting both spatial and drift distortions that are
present in scanning electron microscope (SEM) images is described. Spatial
distortion removal is performed using a methodology that employs a series
of in-plane rigid body motions and a generated warping function. Drift
distortion removal is performed using multiple, time-spaced images to
extract the time-varying relative displacement field throughout the
experiment. Results from numerical simulations clearly demonstrate that the
correction procedures successfully remove both spatial and drift distortions.
Specifically, in the absence of intensity noise the distortion removal methods
consistently give excellent results with errors on the order of ±0.01 pixels.
Results from the rigid body motion and tensile loading experiments at 200×
indicate that, after correction for distortions, (a) the displacements have
nearly random variability with a standard deviation of 0.02 pixels; (b) the
measured strain fields are unbiased and in excellent agreement with previous
full-field experimental data obtained with optical illumination; (c) the strain
field variability is on the order of 60 microstrain in all components with a
spatial resolution on the order of 25 pixels. Taken together, the analytical,
computational and experimental studies clearly show that the correction
procedures successfully remove both spatial and drift distortions while
retaining excellent spatial resolution, confirming that the SEM-based
method can be used for both micromaterial and nanomaterial
characterization in either the elastic or elastic–plastic deformation regimes.

Keywords: scanning electron microscope, images, drift distortion removal,
spatial distortion removal, digital image correlation, full-field displacement
measurement

1. Introduction

Computer vision and digital image correlation (DIC) have
been applied to the study of in-plane material behaviour at the
macro-scale [1–4]. For nominally planar objects undergoing
in-plane motions, the 2D-DIC technique became one of the

preferred optical methods for measurements in experimental
mechanics. For general surface shapes with arbitrary motions,
3D-DIC (stereo-vision) employing at least two views to
recording object positions has been shown to have general
capability to measure 3D shape and full-field 3D motions
[5–13]. Nowadays, 2D and 3D methods using computer



vision are widely used in many applications, and commercial
software is available [14].

A first step to access a reduced-length scale of
measurement is to apply the DIC method with images
obtained using high-magnification optical systems for 2D or
3D measurements [15–17]. Few authors have investigated the
problem of the accurate calibration of micro-scale imaging
systems, including the determination and correction of the
underlying distortions in the measurement process. One
reason may be the obvious complexity of high-magnification
imaging systems, weakening the underlying assumptions
commonly used in parametric distortion models that correct
simple lens systems such as digital cameras [18, 19].

Recently, Schreier et al proposed a new methodology to
calibrate accurately any imaging sensor by correcting a priori
for the distortion using a non-parametric model [13]. The
a priori correction of distortion transforms the imaging sensor
into a virtual, distortion-free sensor plane using unknown
arbitrary rigid body motions of a gridless planar target.
As opposed to classical calibration techniques relying on a
dedicated target marked with fiducial points, this approach
can be applied using any randomly textured planar object (i.e.,
a ‘speckle pattern’). This type of distortion depends only on
the pixel location in the image and is designated as spatially
varying distortion or spatial distortion in this work.

Due to the nature of light, optical imaging systems
are limited to a maximum resolution that corresponds to
a magnification of ≈1000×. For higher spatial resolution
(and also smaller displacements), imaging systems based on
electron microscopy (such as SEM and TEM) are employed.
Since the physics of electron microscopy [20, 21] is quite
different from optical microscopy, a new model and a
calibration process are necessary compared to a classical
approach. For example, SEM systems have both spatial
distortion and also a time-varying distortion or drift distortion.
Drift distortion occurs in an SEM imaging system since the
electron beam scanning process oftentimes results in a non-
uniform ‘apparent’ displacement field across the specimen;
relative motions occur between pixel locations that have
been shown to change with time. The cumulative effect of
both spatial and drift distortions can introduce large image
displacements and substantial image deformations.

To correct for the combined effect of spatial and drift
distortions, different projection models have been established
but no work has provided both a satisfactory model and a
correction method for such image distortions. In fact, most
papers and even commercial SEM imaging systems simply
ignore these effects and consider a pure projection model
[22–28]. A few authors taking into account distortion consider
only a parametric model [29–31] and neglect the effect of drift
[32–37].

In this paper, the procedure we have developed
for quantifying time-varying distortion (section 2.1) and
spatially varying distortion (section 2.2) is presented, along
with an overall procedure for implementing the distortion
determination procedure (section 2.3). Section 3 describes
computer simulations performed to demonstrate the potential
accuracy of the method when employed to identify and remove
typical spatial and drift distortion fields. Section 4 describes
the translation and uniaxial strain experiments performed in an
SEM to demonstrate the accuracy of the methods developed.

2. Image distortions in an SEM

It is assumed that there are two independent distortion
functions. First, Ddr(t) is defined as the drift distortion
function, where t is the scan time and t ∈ [0, ∞). Second,
Dsp(x, y) is defined as the spatial distortion function, where
(x, y) is a pixel location on the image plane.

A position is distorted due to both drift and spatial
distortions in an SEM image. Since distorted positions are
the measurable quantities in experiments, the inverse functions
for both drift and spatial distortions are the quantities that are
determined during the calibration process4.

2.1. Time-varying distortion

Time-varying distortion or drift distortion occurs throughout
the scan process, introducing artificial relative displacements
as the image is formed, resulting in errors when computing
strains using the drift-distorted images; we have observed
relative displacements within a single image of up to 6 pixels
at 10 000× though relative drift of 0.80 pixels across an
image is more common. Because of its non-stationary
nature (magnitude and direction are a function of time), this
effect cannot be removed when performing spatial distortion
correction.

To quantify drift distortion at each pixel throughout
an experiment, a novel drift correction procedure has been
developed and is described in the following sections.

2.1.1. SEM scanning basics. An SEM image is generated
through a raster-scanning process. Each pixel requires a dwell
time, tD, to define the ‘intensity’ of image at that location, so
that the time required to scan an entire row, tR, and an entire
frame, tF, of an image are given by

tR = WtD + tJ, (1)

tF = HtR = HWtD + HtJ, (2)

where W is the number of columns in the image, H is the
number of rows in the image and tJ is the time delay to
reposition and stabilize the electron beam prior to initiating
the next row scan. Since the (x, y) position in the image is in
direct correspondence with the scan time, one can write

t (x, y) = xtD + ytR, (3)

where 0 ! x ! W − 1 and 0 ! y ! H − 1.
Equation (3) implies that two pixel locations, and hence

two distinct scan times, will generally experience very
different drift functions. Such differences have been observed
for consecutive rows in an image, with a clearly defined shift
in drift measured when moving from the last pixel in one row
to the first pixel in the next row.

In order to correct SEM images for drift, three approaches
have been investigated: (a) global model of the drift function
developed with the data from all images to correct for the drift
at (x, y) positions in every image; (b) local time-based models,
Ddr(t), that are different for each image and (c) local spatial-
based models, Ddr(x, y), that are also different for each image.

4 Though the focus of this study is 2D-DIC with a single view, the procedure
could be applied to each camera (view) in a multi-camera system to remove
distortions from individual views. Thus, the procedure is equally important
when 3D reconstruction is performed using SEM images.
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Figure 1. Schematic representation for noiseless vertical drift as a
function of time for three images, along with definition of disparity.
The dashed line represents the best linear fit.
(This figure is in colour only in the electronic version)

It is noted that (b) and (c) imply that the drift distortion will
only be known locally and must be reestimated when a new
image is acquired. This ‘incremental’ procedure to determine
drift distortion correction requires that corrections be made
throughout the experimental process, and is in contrast with
spatial distortion, which is determined during the calibration
phase and does not require re-estimation during the post-
calibration phase of an experiment.

Preliminary experiments and comparison of experimental
observations to model predictions clearly indicate that
the global model cannot adequately represent experimental
observations whereas both the local model predictions are
in good agreement with experimental measurements. In the
following sections, only the two local models will be discussed
in more detail.

2.1.2. Time-based local model. The drift distortion function
is expressed as follows:

Ddr(t) = [δx(t), δy(t)], units in pixels, (4)

where t is given in equation (3) for a point of interest in the
image (x, y).

Consider an object point P located at a position (x, y) in
the image plane at time t. At time t + ", the image of the
object point is located at a new position, P′, due to drift.

The difference in positions for the same object point is the
disparity, dispdr, and can be written in the form

dispdr = Ddr(t + ") − Ddr(t), (5)

with

t = xtD + ytR

" = tF + "tn + tdisp

tdisp = [δx(t + ") − δx(t)]tD + [δy(t + ") − δy(t)]tR,

where "tn is the delay time between one image scan and the
next image scan. Figure 1 shows a schematic of the process
mathematically described by equations (4) and (5), with the
experimentally observed shift between images clearly visible
since the drift for position (W–1, H–1) is not similar to the
drift for position (0, 0) in the next image.

From the drift evolution shown in figure 1, different
functional forms can be assumed to represent the local drift.
Figure 1 shows an estimated linear fit to the drift data for three
images. The linear fit will smooth regions with high gradients
in drift, especially those positions where step changes may
occur during the image acquisition process.

To determine the fitting parameters for the assumed form
of the drift distortion function, two consecutive images are
taken at each step in the experiment. Assuming that only drift
occurs between the two images in each consecutive image pair,
the drift velocity, vdr(t), at each position is determined by the
disparity in each pair divided by the time increments:

vdr(t + "/2) = {[δx(t + ") − δx(t)]/",
(6)

[δy(t + ") − δy(t)]/"},
where " is defined for pixel (x, y) in equation (5) and the
disparity values are obtained in the sensor plane.

Advantages of the time-based approach are its direct
relationship with the actual scanning process and the relative
simplicity of the data-fitting process for time-streamed
disparity data. Disadvantages are as follows: first, there
are gaps in the time history due both to the repositioning of
the electron beam after each row scan and to the time delay
between acquisitions of images. Second, the drift data in
actual experiments exhibit step changes in magnitude during
the time gaps, resulting in difficulties in extracting accurate
results near these positions. Third, finite-sized subsets in
the image matching process will introduce averaging effects
across the scanned rows, introducing errors in the time-based
approach.

2.1.3. Hybrid spatial–temporal (HST) local model. As
shown in equations (3)–(5), the drift function can be written
in terms of spatial variables, the fixed position (X, Y ). The
elapsed time during the whole imaging process for calibration
can be written as

t = XtD + Y tR + (n − 1)(tF + "tn), n = 1, 2, . . . , N,

(7)

where N is the total number of images for the drift function
estimation.

In this form, one can write Ddr(X, Y ) as the total drift
function and dispdr(X, Y ) as the disparity. The overall imaging
process for the HST model is as follows:

• A specimen is patterned so that the SEM images are
appropriate for image correlation.

• A sequence of image pairs is acquired. They are numbered
as (1, 2), (3, 4), . . . , (n − 1, n) . . . , (N − 1, N), where
drift occurs between image n − 1 and n in an image
pair.

• Between the acquisition of each image pair, rigid body
motions are applied (these will be used to quantify the
spatial distortion field).

• For each image pair, 2D-DIC is performed5 to determine
the drift disparity, dispdr(X, Y ), for each fixed position
(X, Y ) in the sensor plane.

• A B-spline function is used to obtain a least-squares best
fit surface to the components of dispdr(X, Y ) for each
image pair.

• With known values for tD, tR and tF, along with recorded
values for "tn between each image, equation (7) can
be used to determine the elapsed time associated with

5 When using spatially based drift correction, the subset size should be as
small as possible without introducing non-uniqueness in the matching process,
thereby minimizing local averaging.



position (X, Y ) in each image. Using equation (6), the
velocity of drift for each position, vdr(X, Y ; t +"/2), can
be estimated using a central finite difference form.

• At each position (X, Y ), vdr(X, Y ; t) is fitted with a B-
spline function in time.

• Using the initial condition Ddr(0, 0) = (0, 0) at t = 0, the
B-spline approximation for vdr(X, Y ; t) can be integrated
over time to determine the drift for each position (X, Y )

in the nth image6, Ddr,n(X, Y ), n = 1, 3, . . . , N − 1.
• Ddr,n(X, Y ) is used to correct images n = 1, 3, . . . ,

N − 1 for the drift distortion.

Mathematically, the determination of the time-dependent
drift function for each fixed position (X, Y ) is obtained via
minimization of the following functional:

# =
N∑

n=1

∣∣vdr(X, Y ; tn) − vfit
dr(X, Y ; aj , tn)

∣∣2
, (8)

where aj are the parameters to be fitted and tn is the elapsed
time associated with each drift disparity at the integer pixel
position (X, Y ). To obtain the total drift function at each
position,

Ddr(X, Y ; t) =
∫ t

0

[
vfit

dr(X, Y, aj , t)
]
dt,

where Ddr(0, 0; t = 0) = 0. (9)

Once the drift distortion is known as a function of time for
each pixel position in each image, this field is fitted by a
piecewise B-spline to provide a functional form for each
image, Ddr,n(x, y), where (x, y) is any real-valued position
in the image.

The HST model described above offers one major
advantage: the spatial description of drift within each image
minimizes the effects of time gaps on local estimates of the
drift function.

2.2. Spatially varying distortions

In simple lens systems, such as those used in a digital camera,
spatially varying distortion or spatial distortion (aka image
distortion) is a well-known problem. The commonly used
method for modelling such imaging systems assumes that
the distortions are not a function of time. Classical models
used to estimate the spatial distortions are parametric in
nature [38]; typical model forms include radial distortion,
decentring distortion, prismatic distortion and tangential
distortion.

Since the SEM imaging process is based upon the
interaction between atoms of the observed specimen and an
electron beam, as well as scanning and focusing processes that
employ electromagnetic principles to perform the required
functions, the pre-specified classical distortions are likely
to be ineffective in quantifying arbitrary aberrations or
unknown (but deterministic) distortions in a complex imaging
system.

6 For the initial image pair, variations in disparity across the image require a
piecewise integration over the disparity field between (0, 0) and (X, Y ) so that
the drift at any position (X, Y ) can be determined. A less accurate approach
would be to integrate the estimated dispdr(X, Y ; t) from t = 0 to the time
corresponding to (X, Y ).

Correlate consecutive 
images in pair to obtain 

drift disparity maps, 
dispdr,n(X,Y), n =
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Determine drift velocity
at a finite number of 

pixel positions,
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Figure 2. Overall procedure employed for correcting distortion in
an SEM. Relaxation methods are implemented during the process to
improve convergence.

To address this issue, non-parametric forms for distortion
models are preferred. Two of the earliest such models were
proposed by Peuchot [39] and Brand et al [40], where cross
targets with known spatial separation are used for the distortion
estimation. Since such targets are likely to be difficult to realize
at the micro- or nano-scale for the SEM, the work of Schreier
et al using a non-parametric distortion correction approach and
a speckle-patterned calibration target [13] is the most readily
adaptable for distortion correction in an SEM, and is employed
in previous work [41] as well as in this study.

As outlined by Schreier et al [13], the process uses images
acquired during translation along two orthogonal directions
and B-splines or other general forms to determine full-field,
spatial distortions. Here, it is assumed that the procedures
outlined in section 2.1.3 have been employed to remove drift
distortions from all the translated images.

2.3. Overall process for distortion removal

The procedure used in this study to extract drift and spatial
distortions is shown as a flow chart in figure 2. The pairs
of images are separately correlated throughout the calibration
phase and measurement phase to obtain the ‘drift’ at selected
pixel positions. The resulting drift disparity fields are used to
obtain the drift velocity at selected pixel positions throughout
the field of view. Using the velocity field as estimates for the
local time derivatives, B-spline fits are obtained for the drift
distortion.

After removing the estimated drift distortion from each
pixel position, the spatial distortion field and rigid body
motions during the calibration phase are determined through an
optimization procedure. Relaxation principles are employed
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Figure 3. Drift distortion and spatial distortion components for computer simulations with spatial distortion ranging from –0.5 to +1 pixels
and drift ranging up to 20 pixels over 2 h.

during the iteration process to verify that the estimated drift
and spatial distortion fields are converged7.

3. Numerical simulations

Consistent with actual experimental conditions, simulations
are performed for both the calibration phase and also the
measurement phase8. The image correlation process is not
simulated. Both drift and spatial distortion functions are
assumed to have pre-defined forms. Using these functional
forms, the distorted positions of a finite number of locations,
(x, y)k , are determined for each image n. The process is
repeated N times, so that the distorted positions (x, y)kn, k =
1, 2, . . . , K, n = 1, 2, . . . , N , are determined9. These data
form the basis for the simulation process, with the long-term
goal of demonstrating the accuracy and robustness of the
approach for SEM image analysis.

3.1. Simulation for the calibration

With "t = 120 s, tD = 10−4 s, tR = 1.071 × 10−2 s and
an imaging array size of 1024 × 884, the positions of
image points at 30 specific times (corresponding to 15 image

7 SEM images and the corresponding disparity maps have considerable
electronic and measurement noise. Thus, the HST local drift correction model
should employ a reduced order for the B-spline fit to the disparity data so that
smoothing of the data is performed during the fitting process to minimize
oscillations in the estimated velocity field.
8 The procedure whereby the drift distortion is computed separately for the
calibration and measurement phases is used in practice to minimize the effects
of specimen shifts during the initial loading process. However, in principle
the process can be continuous.
9 In practice, 7–11 pairs of images are acquired during the calibration phase;
the only requirement is that several translations in two orthogonal directions
be performed. The number of pairs of images during the measurement phase
will vary with the number of strain increments; for better estimation of the
B-spline function at least seven pairs of images should be acquired.

pairs in an experiment) are generated over a total time of
128 min. Between each image pair, the effect of a cross-
shaped translation is included in the position of each point.
To distort the position of each image point, the drift distortion
function Ddr(t) is assumed to have a quadratic form. The
spatial distortion function is assumed to have the form of a
combination of cosine wave and a quadratic surface. Figure 3
shows the drift and spatial distortion functions. Thus, with the
inclusion of random error, the distorted positions of an image
point (x, y) in image n are written as

P′(x, y; t) = P(x, y; t) + Ddr(x(t), y(t))

+ Dsp(x, y) + G(x(t), y(t)), (10)

where G(x, y) is a Gaussian error function with mean value
0 and a pre-defined standard deviation, varying with time and
by equation (3) spatial position (x, y).

Instead of performing correlation to extract the disparity
maps, a total of 150 × 120 = 18 000 distorted positions with
a spacing of 5 pixels and a ‘beginning’ image position located
at (101, 101) are calculated using equation (10) with known
vectors on the right-hand side.

To obtain the drift component numerically, all 15 drift
disparity maps are computed at each pixel location and
equations (6)–(10) are applied to extract Ddr(x, y). Figure 4
shows a direct comparison between the computed and the
input drift at position (511, 441), where Du and Dv are
the differences between the computed and input drift for the
horizontal and vertical displacement components, respectively.
Figure 5 shows the spatial distribution for the difference
between the computed and the input vertical drift for the image
acquired at t = 36 min.

After correction to remove the effects of drift, the disparity
maps are obtained by subtracting the positions of points in the
reference image, image 1, from the positions of matching
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Figure 5. Spatial distribution of the difference between computed
and input vertical drift for the image acquired at t = 36 min.

points in all other odd-numbered images. The resulting
disparity maps have the form

dispsp(x, y) = Dsp(x + u, y + v) − Dsp(x, y) + G(x, y),

(11)
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where (u, v) is the orthogonal rigid body motion of other
images relative to image 1.

By incorporating the computed disparity maps into
equation (10), the procedure described in [13] is employed
to perform least-squares bundle-adjustment optimization and
determine all translations and all parameters in the spatial
distortion function. Figure 6 shows the difference between the
computed and the input spatial distortion components in the
horizontal (Du) and vertical (Dv) directions, respectively.

As a final check on the accuracy of the drift and spatial
distortion correction method, the residual strain fields (with
and without Gaussian noise in the displacement values) are
computed for all the images within the calibration phase.
Without Gaussian noise in the displacement components, the
computed strains are less than 1 microstrain throughout the
entire sequence. With Gaussian noise having a standard
deviation ≈0.025 pixels in each displacement component, all
strains have an average strain between ±60 microstrain and a
standard deviation ≈50 microstrain.



3.2. Discussion

The simulations assumed a total drift of 10–20 pixels over 2 h.
Thus, between images in the sequence, the drift is relatively
small and the local drift velocities can have considerable
oscillation due to electronic noise. Even so, the simulations
confirmed that the method proposed will give good overall
accuracy, even in the presence of substantial Gaussian noise
in the measurements, when combining both drift and spatial
distortion corrections.

Since the drift is relatively small between images, it may
appear that one can simply ignore this phenomenon. However,
our simulations indicate that ignoring or incorrectly estimating
drift distortion will introduce substantial errors in the spatial
distortion correction that can increase residual strain errors;
deviations of the order of 0.001 were observed in this study
when incorrectly estimating drift distortion.

4. Experiment validation for calibration and strain
measurement

4.1. Experimental setup

Consistent with results obtained in the previous sections, all
SEM imagings in this paper are performed using an FEI
Quanta-200 SEM in high vacuum mode. For the electron
beam, (a) the accelerating voltage is 30 kV, (b) beam spot size
is 3, (c) tD = 10−4 s, (d) tR = 1.071 × 10−2 s. The CCD sensor
array has a size of 1024 × 884. These data correspond to tF =
94.67 s. All images are obtained using the BSE detector with
a working distance of 14.3 mm. For validation purposes,
a magnification of 200× is used, which corresponds to
≈1.25 µm per pixel. The intensity value is stored in 8 bit
format in the file.

To apply a micro-scale pattern to the specimen, the
procedure described in previous publications [42–46] is used.
For comparison to the vision-based measurements, a single
strain gauge is aligned with the loading direction. All
experiments are performed with the specimen installed in a
tensile loading frame and mounted inside the SEM chamber.

4.2. Experiments

The first experiment corresponds to the calibration phase and
requires a series of translations in two orthogonal directions
performed manually via external motion controls. The second
experiment adds a series of strained images that correspond to
the measurement phase; uniaxial loading is performed in load
control using a Labview control and data acquisition program.

After completing each experiment and acquiring all
images, the disparity maps are obtained by 2D-DIC using
a specially modified version of commercial software VIC2D
[14]. All correlations are performed using a 43 × 43 subset
size and spacing between subset centres of 5 pixels, the first
subset centre is at (101, 101). Thus, all disparity maps contain
18 000 points.

The procedures outlined in figure 2 are employed to
determine the drift and spatial distortion functions. To
obtain strain fields from the corrected displacement data, local
quadratic fits to the displacement components are performed10.
10 In this case, the spatial resolution is governed by the subset size. An
estimate for the spatial resolution is ≈25 pixels.
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Figure 7. Measured drift velocity as a function of time at a fixed
pixel location (236, 211) during the calibration phase along with
quadratic fit. Data shown are typical of all locations throughout the
field.

4.3. Calibration phase—drift and spatial distortion removal

A cross-shaped motion path is performed with 16 motions.
Before beginning the motion sequence, two consecutive
images are acquired as ‘references’, resulting in a total of
17 pairs of images for calibration.

Figure 7 shows the measured drift velocity in the y-
direction (dv/dt) at location (236, 211), along with the
best-fit quadratic function. Though oscillations are clearly
present (noise is of the order of ±0.02 pixels), they are small
and only visible due to the relatively small drift velocity of
0.01 pixels min–1 measured in the SEM at this magnification.

The measured spatial distortion functions are presented in
figure 8. Here, it is clear that the spatial distortions are much
larger than the expected drift distortions, with spatial distortion
corrections up to 1 pixel in the x-direction and 2 pixels in the
y-direction.

The strain fields are also computed in each of the 16
calibration images. Results indicate that

• the uncorrected εxx, εyy and εxy have average values
approaching 200 microstrain and a standard deviation of
100 microstrain;

• the drift-corrected εxx, εyy and εxy have average values
between 100 and 200 microstrain and a standard deviation
of 80 microstrain;

• the spatial distortion-corrected εxx, εyy and εxy have
average values near 50 microstrain and a standard
deviation of 60 microstrain;

• the fully corrected εxx, εyy and εxy have average values
near zero and a standard deviation of 60 microstrain.

4.4. Measurement phase—application of uniaxial tension

After completing the calibration phase, the specimen is
subjected to increasing uniaxial loading and images are
acquired at six different load levels. To minimize the potential
for unwanted image motion, after increasing loading on the
specimen each time, a hold time of 30 s is maintained prior to
acquiring additional images.

To obtain the additional drift components that accumulate
during the strain portion of the experiment, the procedures
outlined in section 2.1.3 are employed to extract the drift
corrections during the loading sequence. Both the spatial
distortion and the new local drift functions are used to correct
all spatial positions during the loading process. The disparity
maps are acquired across corrected odd-numbered images to
determine the residual deformation field.



Table 1. Strain data obtained using fully corrected SEM images acquired at seven times during the uniaxial tension loading process.

Relative εxx εxy εyy

time to εxx εxy εyy standard standard standard
the first average average average deviation deviation deviation
image (min) (×10−6) (×10−6) (×10−6) (×10−6) (×10−6) (×10−6)

5.0 −83 −10 350 54 38 62
9.9 −249 −26 677 41 53 51

14.9 −387 −48 956 53 71 63
19.9 −446 −32 1290 114 94 71
24.7 −457 −27 1573 105 108 78
29.8 −631 1 1850 87 110 81
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Figure 8. Measured spatial distortion fields. Note the larger gradients in the vertical distortion field.
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Figure 9. Uniaxial stress versus axial strain and transverse strain for
uncorrected, drift-corrected and fully corrected image correlation
data.

Table 1 presents a summary of the average data across
the field, along with estimates for the variability of each strain
component. The data in table 1 indicate that the shear strain
is nearly zero throughout the experiment and the standard
deviation within the field is less than 114 microstrain for all
components.

Figure 9 presents the average strain data for εxx (transverse
to loading direction) and εyy (along loading direction) at
all loading levels, along with a direct comparison to the
independently measured εyy data via a strain gauge. As
shown in figure 9, the average data from the strain gauge
and our fully corrected data are in excellent agreement,
confirming that Young’s modulus obtained from the strain

gauge measurements and the fully corrected data are nearly
the same, 70 GPa. This value is consistent with a wide range
of literature values for aluminium alloys.

Also shown in figure 9 are the strain values that would
be predicted using (a) no corrections and (b) drift correction
only. It is clear that fully corrected images are necessary for
accurate strain estimation so that reasonable estimates can be
made for elastic material response.

Finally, since Poisson’s ratio, v, is defined by v =
−εxx/εyy , the average measured value using fully corrected
image correlation images is 0.33. This is in good agreement
with handbook data, which has a range 0.29 < v < 0.34.

5. Discussion

Algorithms implementing both spatial and drift distortion
correction methods have been shown to be effective for
removing distortions from SEM images. Thus, the data clearly
indicate that basic elastic material properties can be reasonably
quantified using digital image correlation with corrected
SEM images. Furthermore, even at low magnification, both
corrections are essential for accurate measurement of elastic
response.

The methods outlined in this work have been extended
by the authors to make quantitative, high-accuracy 3D
displacement and shape measurements with an SEM [47],
the complete development will be the subject of forthcoming
papers. For such measurements, the equations of 3D computer
vision replace the relatively simple 2D equations given in
section 2, and the calibration phase described previously
[13] is employed where the specimen is rotated about its
eucentric axis to obtain multiple views, and image correlation
is employed to locate a dense set of matching positions in



a component. Though no quantitative data are reported, 3D
profile results obtained by the authors using stereo images
obtained in the FEI Quanta 200 SEM are encouraging and
provide confidence that, when completed, the method will be
both accurate and robust in such applications.

6. Concluding remarks

The novel method outlined in this work relies on a combination
of a priori drift and spatial distortion correction so that accurate
elastic and elastic–plastic deformation measurements can be
obtained using SEM images; both corrections are essential
to obtain accurate deformation measurements throughout the
field of view.

In sharp contrast to the approach of early SEM
measurements, where the investigators simply accepted the
accuracy obtainable and successfully performed their studies
for important problems amenable to such limitations, this
work presents a general approach that successfully extends
the range of measurements obtainable in an SEM to the
small deformation (elastic) regime so that full elastic–plastic
deformation studies can be performed in an SEM.

Simulation results have shown that typical drift processes
in an SEM can be adequately reconstructed using local drift
velocity measurements. However, if higher gradients in drift
are present during the early stages of image acquisition, the
simulations also show that image acquisition time should be
reduced and additional images need to be acquired during this
period for accurate drift reconstruction, a situation that may
not be feasible with a given microscope. In practice, image
acquisition should be conducted 15–30 min after the first image
scan is initiated so that the gradients in drift are reduced to a
more manageable level.
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déplacements tridimensionnels par stéréo-corrélation
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