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Abstract. This paper presents a method for precise registration of 3D images
acquired from a new sensor for 3D digitization moved manually by an operator
around an object. The system is equipped with visual and inertial devices and
with a speckle pattern projector. The presented method has been developed to ad-
dress the problem that a moving speckle pattern during a sequence prevents from
correlating points between images acquired from two successive viewpoints. So
several solutions are proposed, based on images acquired with a moving speckle
pattern. It improves ICP-based methods classically used for precise registration
of two clouds of 3D points.

1 Introduction

Digitizing 3D objects is a sequential process of geometric modeling from sensory data
acquired while moving a sensor in front of the object, or moving the object in front
of the sensor. 3D images registration must be performed to merge 3D images acquired
from plural view points, so that the fused model is consistent with the reality of the scene
to model, and is accurate. Precision is an important consideration in most applications
ranging from non destructive testing to medical imagery. 3D digitization generated nu-
merous works in the last twenty years: several products exist on the market, exploiting,
for 3D data acquisition, telemetric laser sensors or visual technologies, with or with-
out light projection. This paper presents a vision based hand-held 3D scanner allowing
acquisition of geometry and texture from a scene, representing it first by clouds of 3D
points, before building a textured mesh.

The registration of 3D images has been addressed for a long time. Besl et al. in-
troduced the ICP algorithm (Iterative Closest Points) [2], which is the main method
allowing to estimate the rigid transformation between two clouds of 3D points. Then
numerous variations [13] improved the ICP convergence. Johnson et al. [7] proposed
surface descriptors to get strong pairings between patches extracted from two images
to be registered: it allows to reduce the dependence from the initial estimate quality.
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Sandhu et al. [12] recently proposed a multi-hypothesis registration method combin-
ing ICP with a particle filter approach. Some works are also ongoing on registration
robustness, aiming to provide a guaranteed registration [8].

Registration in visual-based modeling is generally addressed using Bundle Adjust-
ment [19], exploiting fine image correlation methods [5,16]. Viola et al. introduced a
method based on information theory [20] to design a similarity measurement which has
been extended in [15,17] and applied mostly to registration between 3D and 2D data.
Segal et al. [14] proposed a method very similar to our approach, but with different
matching constraints.

Visual methods can exploit fixed speckle pattern projection to make possible correla-
tion even on uniform surfaces [16]. Being hand-held and compact, our sensing system
has been equipped with embedded projecting device. Registration methods based on
fixed speckle patterns cannot be applied here. We had to develop specific criteria for
registration of 3D images based on uncorrelable visual information.

Firstly, the sensor is described in section 2, and an overview of classical registration
methods used in a modeling process is presented in section 3. Our registration crite-
rion is detailed in section 4 and experimental results obtained from this approach are
commented in section 5. Finally, section 6 presents perspectives for our future works.

2 The Sensor

With demand growing in retro-conception (acquisition of CAD model of existing ob-
jects) and photomechanical applications (3D measurements for dimensional control or
defect detection), several 3D digitization systems emerged in the last years, especially
contactless optical measurements systems, based on image processing and computer
vision, and very often, on structured light projection. Although very efficient, these sys-
tems are generally expensive, bulky and need a complex setup imposing to stay fixed
on a tripod during capture. These characteristics limit their use to places specifically
equipped which reduces considerably the field of applications.

Recently, some portable 3D digitization systems appeared. These systems need to
place a magnetic reference in the digitization environment or to equip the object with
markers to make easier the registration process. These setup contraints are often prob-
lematic and prohibitive for some applications, particularly for the digitalization of art-
works, statues, archeological or other precious objects. With our system, we propose
an innovative solution for ultra-portable 3D digitization with no object preparation.
Lightweight and compact, this hand-held sensor allows to digitize 3D shapes from
shootings taken by an operator moving the sensor around the object.

Our vision based sensor achieves 3D modeling of an object from successive regis-
trations of partial 3D reconstructions of the scene. To localize the sensor’s position in
the scene, it integrates a camera dedicated to localization and an inertial motion unit. It
is optimized for digitization of objects contained in 1m3 volume. The device comes in
the form of a pistol fitted with a simple push button used to trigger the scan.

In use, the operator points the sensor at the object. Clicking on the trigger causes the
ignition of two laser pointers placed in the housing to help the user to maintain the sen-
sor at the best work distance. A long push on the trigger causes a sequence acquisition



Fig. 1. Optinum
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Fig. 2. (a) Registered 3D point clouds; (b) A textured mesh

until the button is released. The generated sequence consists of 3D point clouds with
adjustable density acquired with variable frequency. Between 3D acquisitions, 2D im-
ages can be shot by the localization camera. Inertial measurements acquired at high fre-
quency allow to determine the sensor’s attitude. All these data are exploited here to fuse
successive 3D views (figure 2 (left)) and to capture appearance information (grayscale
or color), so that, depending on the application, the system can generate meshed and
textured models (figure 2 (right)).

For an hand-held sensor context, an important challenge concerns the registration of
partial data acquired from different view points. Moreover, the precision of the gen-
erated 3D data is an essential consideration regarding to numerous applications; our
objective is to guarantee a 0.1 mm accuracy. The next section presents our algorithms
and strategies for a precise registration with no prior preparation of the object or specific
material for our sensor.

3 Registration

Many approaches for registration of two 3D images Vk and Vk+l acquired respectively
at instants tk and tk+l are based on the Iterative Closest Points algorithm (ICP) [2] [13].
This method aims to align two sets of 3D measurements from geometric optimization.
Though ICP methods can achieve good results in finding the rigid transformation (R, t)
that brings Vk+l in the reference frame of Vk , they need to be fed with a good initial
estimate of this transformation. Moreover, these methods are geometry-based and are
therefore dependant on the density of data.

The ICP Algorithm
Supposing it exists a good initial guess of the rigid transformation between two 3D
images Vk and Vk+l, ICP method minimizes an inter-point distance criterion to align
the two models. It is an iterative algorithm using a set of points {pk

i } selected in scan
Vk. Each iteration is divided in :



– pairing points pk
i with nearest neighbours in scan Vk+l using a k-d tree structure,

– weighting and rejecting pairs,
– estimating rigid transformation minimizing the Sum of Squared Distances (SSD)

between paired points.

The estimated transformation is then applied to align Vk+l on Vk . These steps are iter-
ated until a distance convergence criterion is achieved or when a maximum number of
iterations is reached.

Rejecting pairs is done using two filters. The first one ensures unicity of pairs: one
point in Vk+l can be paired with only one point of Vk. During the pairing step, a can-
didates list in Vk+l is built for each point pk

i from Vk. These lists are then browsed to
ensure both unicity of the pairs and optimality in their choice, in term of 3D distance.
The second filter exploits a statistical criterion based on distance distribution between
paired points [21]. We therefore have a set of N noisy or unperfect pairs

(
pk

i , pk+l
i

)
. es-

timating rigid transformation to align Vk and Vk+l involves minimizing the SSD score:

ϵ =
∑N

i=1

[
pk

i −
(
Rpk+l

i + t
)]2

Arun and al. [1] proposed a least-square minimization method based on SVD decom-
position to solve this problem in a closed form.

The initialization Step
Any local optimization method is exposed to the initialization problem, i.e. these meth-
ods are sensitive to the quality of the initial guess. When such a guess is not available,
a coarse alignment of scans has to be made first; we exploit measurements from inertial
sensing and 2D images [4].

Inertial sensing allows to get attitude of the sensor at the acquisition instants; it gives
a good estimate of the rotation component R of the transformation; the internal filter of
the IMU device provides this attitude estimate. Making more profit of IMU measure-
ments has not been considered, due to the requirement on the registration accuracy.

Exploiting 2D images that our sensor provides, we can achieve a robust interest
points matching. The translation component t of the transformation is then computed
using 3D points corresponding to matched interest points.

Density Dependence
Many works in the state of the art, have proven the capacity of ICP algorithm for data
alignment in euclidian space. However, this method tries to pair points and gives an
estimate based on noisy measurements. The result is necessarily a compromise of pair-
ing errors. With perfect matchings, the rigid transformation could be found exactly, but
scans are discrete: paired points pk+l

i and pk
i do not correspond exactly. So the ICP re-

sult is strongly dependent to the sensor resolution. Figure 3 shows that as the 3D scans
are sampled, precision (and quickly convergence) can not be guaranteed.

The next section shows how a method exploiting 2D images provided by our sensor
can improve scan alignment based on ICP algorithm.



Fig. 3. ICP error according to scan density

4 Image-Based Registration

The ICP-based registration method could give an inaccurate result due to the pairing
method. Working on points sets exclusively is convenient in term of coding simplicity,
but the accuracy depends on the scan density. To solve this problem, several methods
have been proposed, for instance using a point-to-plane metric [9] or exploiting reverse
calibration methods [10].

Our sensor exploits 2D images. A classical method, like bundle adjustment [19],
consists in optimizing the rigid transformation and the reconstructed 3D points by di-
rectly correlating projections in successive images. Using our stereo setup, this could
give precise matched pixels between four images,

(
I left
k , Iright

k

)
acquired at time tk,

and
(
I left
k+l , Iright

k+l

)
acquired at time tk+l. But the scene (including light) must remain

invariant between acquisition instants tk and tk+l.
In our case, a speckle pattern is projected to help the stereo-correlation phase. Being

hand-held, our sensor imposes the light projector to be embedded on the sensor, and
therefore to move with it. It is consequently impossible to achieve a direct correlation
between images Ik and Ik+l since the lighting conditions have changed greatly.

4.1 Image-Based Pairing

Let us consider two pairs of stereo images
(
I left
k , Iright

k

)
and

(
I left
k+l , Iright

k+l

)
with

a rough estimate (R, t) of the sensor motion between tk and tk+l. Images are recti-
fied (distortion and epipolar rectification) and the transformation between left and right
camera is fixed and calibrated. The process of 3D reconstruction based on stereo vi-
sion [6], [5] has given two clouds of 3D points Vk and Vk+l. We need to feed the ICP
algorithm with a set of paired 3D points

(
pk

i , pk+l
i

)
.



Fig. 4. Matching using our method. The surface Sk (resp. Sk+l) is reconstructed from the image
pair acquired at time tk (resp. tk+l). The matching point pk+l of pk is the projection of pk+l on
Sk from the view point at time tk. The weighting function applied to this pair is related to the
distance from pk to the normal vector at point pk+l.

Our approach looks first for matchings between points selected in Vk, and pixels in
images acquired at time tk+l. Figure 4 illustrates this process.

Firstly a set of points {pk
i } of Vk is selected from a sampling grid applied on image

I left
k according to a given sampling rate. Using the estimated sensor motion, a point pk

i

can be expressed in the reference frame of the sensor in its position at time tk+l. Let us

note p̂k+l
i this estimated matched point of pk

i : p̂k+l
i = R−1

(
pk

i − t
)

The classical ICP algorithm selects in Vk+l the closer point of p̂k+l
i . Instead, a new

correlation step is performed between I left
k+l and Iright

k+l in order to improve this match-

ing. At first p̂k+l
i is projected in I left

k+l using the pinhole camera model:

(su sv s)T = K0 p̂k+l
i where K0 is the calibration matrix of the rectified left

camera, u and v are coordinates (with sub pixel accuracy) of a pixel in image I left
k+l .

Then the stereo corresponding point of (u, v) is found in Iright
k+l , using interpolation

for the correlation [18]. This operation gives a disparity d between matched pixels in
left and right images. A 3D point (x, y, z) is reconstructed from (u, v) and d:

⎡

⎣
dx
dy
dz

⎤

⎦ = Q

⎡

⎣
u
v
1

⎤

⎦



with Q the reconstruction matrix, which is a priori known from the stereo baseline
and the intrinsic parametres of the rectified stereo sensor. pk+l

i = (xyz)T will be used
for ICP, as the matched point of pk

i of Vk. If (R, t) is the exact transformation, then

pk+l
i = p̂k+l

i and the following equation should be verified: pk
i = Rpk+l

i + t

4.2 Transformation Estimation

Classical transformation estimation uses the minimisation of a SSD score based on
the paired points. To help filtering bad pairs and expand the convergence basin, some
additional constraints are taken into account by associating a weight to every pair.

ϵ =
∑N

i=1 φ (i) ∥pk
i −

(
R̂pk+l

i + t̂
)
∥2

Function φ (i) is the weighting function applied to each pair of points. The chosen
weighting in our method is inspired by the normal intersection search method of Chen
[3]. For each point pk+l

i , the distance from it to the normal vector of its matching point
pk

i (figure 4) is computed. φ (i) = 1 − di
dmax

, with di being the euclidean distance
between point pk+l

i and normal vector n⃗i of the matching point pk
i , dmax being the

maximal distance over all pairs
(
pk

i , pk+l
i

)
.

4.3 Pyramidal Approach

When the initial estimation of the transformation is not perfect, the selection method
described in section 4.1 will not give proper results. Figure 5(top) illustrates this error.
Sampled points from Vk are drawn with black circles, reconstructed points are drawn
with green circles, and exact theoretical corresponding points are drawn with empty
red circles. It is shown here that pairs are not matching exact corresponding points, and
sometimes leading to important mistakes.

To solve this problem we propose to reconstruct several candidates to be matched
with pk

i . They are obtained also by correlation between I left
k+l and Iright

k+l , in the neigh-

bourhood of the pixel (u, v), projection of p̂k+l
i (figure 6). The size and resolution of

the neighbourhood are adapted according to the convergence of the algorithm.

Fig. 5. (top) Errors with poor estimations, and (bottom) after our refinement



Fig. 6. During matching process, part of the neighbourhood of the considered image point is
reconstructed. Final matchings are determined using a point to point distance.

An iterative pyramidal approach is applied. Starting the algorithm, we choose a large
window for neighbourhood, but with a sparse resolution, e.g. one can choose to recon-
struct one pixel out of three in a 21 × 21 window around the projected pixel (u, v)
(Figure 5(bottom)). These parameters are adapted during the algorithm to help conver-
gence following a given strategy. When a set of parameters leads to convergence of the
estimated motion, one can reduce the neighbourhood window (from 21 × 21 to 3 × 3)
and increase the resolution (from one out of three, to one out of 0.5).

The key point of the method is that reducing the density to subpixel resolution allows
to find more precise pairs of points. Theorically, with infinitesimal resolution, exact
corresponding points will be found. Practically, the results are limited by the precision
of the interpolation method used for subpixel correlation.

We show in section 5 results of our experiments using this method in comparison
with classical geometric approaches.

5 Results

Results presented here are based on two data sets. The first one is made with scans of
a mechanical object. The second set is a sequence acquired on a standard cylinder with
an known internal diameter of 70.004mm. Rectified pairs of images from the mechan-
ical object sequence are shown on figure 7 and those from the cylinder sequence are
presented on figure 8. Key features of our method are illustrated through these experi-
ments. The mechanical object sequence is used to show the convergence of the method
when registering two 3D views with a reduced number of points. The cylinder sequence



(a) (b) (c) (d)

Fig. 7. Stereo acquisitions of a mechanical object

(a) (b) (c) (d)

Fig. 8. Stereo acquisitions of a standard cylinder

is used to illustrate the precision gain brought by the method. More experimental results
are available in [4].

5.1 Mechanical Object

For this evaluation we registered the point clouds from the mechanical object sequence
using three methods : the original ICP [2], the Park method [11] and our approach.

Figure 9 shows the evolution of the ICP error on 50 iterations for the three methods.
Park method proposes a fast convergence, like it was shown in [13], and a better result
compared to the original ICP. Our method, in the first strategy also converges fastly.
First strategy change (iteration 14) allows to reach a similar precision than Park method.
Second strategy change (iteration 40) reaches subpixel precision and allows a better
matching, reducing the final error.

Point clouds registered with each method are shown in figure 10. The initial position
is also given in the figure. Classical ICP and Park methods allow to reach a good regis-
tration but a bias can be observed. Indeed, these methods tend to converge using areas
where the point density is more important, or more uniform. Here, they favor the align-
ment of dominant planes. Our method allows to reach a more homogeneous registration
due to our weighting constraints and because it can converge using less points (Table 1)
and is, consequently less sensitive to dominant areas.



Fig. 9. RMS registration error for the mechanical test object

(a) (b) (c) (d)

Fig. 10. Registration results. (a) Initial estimate (b) ICP (c) Park method (d) Our method.

Registered models have been compared to the CAD model of the object. Table 1
summarizes principal error measurements extracted from this comparison.

5.2 Cylinder Sequence

We present in figure 11 a comparison of results on a standard cylinder between a clas-
sical geometric method and ours. Registered sequence of twenty-five acquisitions has
been fitted to the exact CAD model of the cylinder; the projection error map based
on point-to-surface distance between the built cloud of points and the theoretical CAD
model, is built using the Geomagic Qualify v12 software. First constatation is that the
error span is narrowed with our method. More than 99% of the points are included in a
[−154µm, 154µm] with a large majority being included in a [−50µm, 50µm]. With a
classical approach a large amount of points are out of this range and are mostly included
in the [−100µm, 100µm].

One can note that with a classical geometric approach, due to the error propagation,
points on the border are not of good quality. With our approach, due to the precision
gain, error still propagates (since we only do pair registrations series) but the divergence
effect is smoothed over the cloud.



Table 1. Registration evaluation. (a) ICP (b) Park method (c) Our method.

A B C

Nb points 119906 119906 21378

Mean (mm) −0.017 −0.027 0.024

Std dev. (mm) 0.277 0.213 0.208

Max error (mm) 1.922 1.315 1.264

Min error(mm) −1.645 −1.724 −1.864

(a) (b)

Fig. 11. Image-based registration: (left) classical ICP, (right) our refined approach

6 Conclusion

We presented in this article an approach for precise registration of 3D images acquired
from a hand-held sensor, based on a moving speckle pattern projector. We illustrated
the weakness of classical geometric methods when exploiting highly-sampled data sets.
A combination of geometric and image processing solutions has been proposed for a
precise refinement step after a coarse initial estimate has been provided. Accuracies
given by our method are complient with requirements of most industrial applications.

The method still needs to be improved to reduce the total number of iterations by
adapting strategies efficiently. The method has been only validated to perform the reg-
istration between two successive acquisitions; future works will focus on adaptation of
this method to multiple views registration.
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