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INTRODUCTION

The problem of face alignment, also called facial landmark localization, has raised much interest and experienced rapid progress in recent years [START_REF] Tan | Face alignment in-the-wild: A survey[END_REF]. Given the position and size of a face, the alignment process, illustrated in Figure 1, consists in determining the geometry of the face components containing the most useful information (e.g., eyes, nose, mouth). This ability to model non-rigid facial structures is now used in various fields such as face analysis (e.g., identification, expression recognition) [START_REF] Sun | Deep learning face representation from predicting 10,000 classes[END_REF], human-computer interaction [START_REF] Akakin | Analysis of head and facial gestures using facial landmark trajectories[END_REF] or information retrieval [START_REF] Park | Face matching and retrieval using soft biometrics[END_REF]. However, despite the large number of methods available in the literature, the performance of face alignment under unconstrained conditions remains limited [START_REF] Sagonas | 300 faces in-the-wild challenge: Database and results[END_REF].

Even today, this problem continues to be studied using still images [START_REF] Tan | Face alignment in-the-wild: A survey[END_REF]). Yet, due to the ubiquity of video sensors, the vast majority of applications rely on image sequences. In addition, many tasks related to face analysis or, more broadly, human behavior analysis have leveraged temporal information [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF][START_REF] Fan | Video-based emotion recognition using CNN-RNN and C3D hybrid networks[END_REF]. The first survey on face alignment have already suggested to study the problem using image sequences, but without providing actual arguments (C ¸eliktutan et al., 2013). Our motivation in this paper is to show that taking temporal information into account for this problem could greatly contribute to improve performance under unconstrained conditions. This article is structured as follows: in Section 2, we describe the reasons that led us towards spatiotemporal approaches for face alignment. In particular, we review the existing solutions and put into perspective the performance of the most recent methods. Section 3 shows the benefits of temporal information under unconstrained conditions. Finally, we conclude with Section 4. 

Type

Datasets

#Images #Landmarks Static AFLW [START_REF] Köstinger | Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization[END_REF] 25,993 21 AFW [START_REF] Zhu | Face detection, pose estimation, and landmark localization in the wild[END_REF] 250 6 HELEN [START_REF] Le | Interactive facial feature localization[END_REF] 2,330 194 iBug [START_REF] Sagonas | A semi-automatic methodology for facial landmark annotation[END_REF] 135 68 LFPW [START_REF] Belhumeur | Localizing parts of faces using a consensus of exemplars[END_REF] 1,432 35 COFW [START_REF] Burgos-Artizzu | Robust face landmark estimation under occlusion[END_REF] 1,007 29 300W [START_REF] Sagonas | 300 faces in-the-wild challenge: Database and results[END_REF] 3,837 68 300W-LP [START_REF] Zhu | Face alignment across large poses: A 3D solution[END_REF] 61,225 68 MENPO [START_REF] Zafeiriou | The menpo facial landmark localisation challenge: A step towards the solution[END_REF] 7564 68/39 Dynamic 300VW [START_REF] Shen | The first facial landmark tracking in-the-wild challenge: Benchmark and results[END_REF] 218,595 68 

LITERATURE REVIEW

In this section, the datasets and evaluation metrics used for face alignment under unconstrained conditions are discussed. The main categories of methods from literature are reviewed and their performance is analyzed.

Datasets and Metrics

In recent years, many datasets for face alignment have been made available to the scientific community (cf. Table 1). The images included in these datasets are collected on social networks or image search services such as Google, Flickr, or Facebook, bringing more realism to the data. The annotation is performed either manually or semi-automatically, sometimes with the help of the Amazon Mechanical Turk platform. The quality of the annotations, however, may vary [START_REF] Sagonas | 300 faces in-the-wild challenge: Database and results[END_REF][START_REF] Bulat | How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks[END_REF][START_REF] C ¸eliktutan | A comparative study of face landmarking techniques[END_REF]. The annotation scheme used (i.e., position and number of landmarks) may also differ from one dataset to another. Currently, the scheme composed of 68 landmarks [START_REF] Gross | Multi-PIE[END_REF], illustrated in Figure 1, is the most widely used. Since this scheme does not fit at extreme poses, a 39-pointbased scheme has recently been proposed for profile faces [START_REF] Zafeiriou | The menpo facial landmark localisation challenge: A step towards the solution[END_REF] (see Figure 1).

Today, due in particular to the emergence of deep learning techniques, it may be necessary to have a large number of annotated images, which existing datasets do not necessarily provide. In the literature, various augmentation methods are used to circumvent this problem. Some operations (e.g., rotation, mirroring, disturbance of the detection window position and size) can be applied to images to generate new training samples. Other more complex processes such as the generation of synthetic images may also be used [START_REF] Zhu | Face alignment across large poses: A 3D solution[END_REF].

Moreover, it is crucial to have data that is representative of the problem in order to answer it. Static datasets do not cover all the difficulties encountered by applications. The constraints related to the movements of persons or cameras are not currently considered. A dataset composed of image sequences captured under unconstrained conditions has recently been published by [START_REF] Shen | The first facial landmark tracking in-the-wild challenge: Benchmark and results[END_REF] (cf. Figure 2). This data, in addition to being more realistic, provides some clues in favor of the use of temporal information for face alignment. To evaluate predictions on this data, the mean square error normalized by the interocular distance (NMSE) is generally used. Beyond an error value of 8%, landmarks are mostly not located correctly and the prediction is considered as a failure. Normalization by the interocular distance, although not very robust to extreme poses, is the most widespread. Other normalization factors are sometimes used, such as the diagonal of the detection window. On a set of images, average NMSE is the simplest and most intuitive evaluation metric. However, it can be strongly affected by a few outliers. A graphical representation of the error distribution function is therefore increasingly used. It corresponds to the proportion of images for which the error is less than or equal to a certain threshold (e.g., [START_REF] Cao | Face alignment by explicit shape regression[END_REF] 5.28 17.00 7.58 CFAN [START_REF] Zhang | Coarseto-fine auto-encoder networks for real-time face alignment[END_REF] 5.50 16.78 7.69 LBF [START_REF] Ren | Face alignment at 3,000 fps via regressing local binary features[END_REF] 4.95 11.98 6.32 CFSS [START_REF] Zhu | Face alignment by coarse-to-fine shape searching[END_REF] 4.73 9.98 5.76 RPPE (Yang et al., 2015a) 5.50 11.57 6.69 3DDFA [START_REF] Zhu | Face alignment across large poses: A 3D solution[END_REF] 6.15 10.59 7.01 TCDCN [START_REF] Zhang | Learning deep representation for face alignment with auxiliary attributes[END_REF] 4.80 8.60 5.54 RAR [START_REF] Xiao | Robust facial landmark detection via recurrent attentive-refinement networks[END_REF] 4.12 8.35 4.94 RCFA [START_REF] Wang | Recurrent convolutional face alignment[END_REF] 4.03 9.85 5.32 R-DSSD (Liu et al., 2017a) 4.16 9.20 5.59 8%). The area under the curve and the failure rate, that is, the percentage of images for which the error is greater than the threshold, are sometimes calculated from this representation.

Method

Registration Solutions

In the literature, two main categories of methods to locate facial landmarks are proposed. First, there are generative methods which rely on joint parametric models of appearance and shape [START_REF] Cootes | Active appearance models[END_REF]. The alignment is formulated as an optimization problem with the objective of finding the parameters allowing the best possible instance of the model for a given face. The appearance can be represented holistically or locally, using regions of interest centered on the landmarks. Then, there are discriminative methods which infer the position of the landmarks directly from the appearance of the face. They either learn independent local detectors or regressors for each landmark associated with a shape model that regularizes the predictions [START_REF] Saragih | Deformable model fitting by regularized landmark meanshift[END_REF], or one or more vector regression functions able to infer all the landmarks and implicitly include a shape constraint [START_REF] Xiong | Supervised descent method and its applications to face alignment[END_REF][START_REF] Cao | Face alignment by explicit shape regression[END_REF][START_REF] Ren | Face alignment at 3,000 fps via regressing local binary features[END_REF][START_REF] Zhu | Face alignment by coarse-to-fine shape searching[END_REF]. In this category, methods based on deep learning (e.g., convolutional neural networks, autoencoders) have recently led to a significant improvement in performance under unconstrained conditions, notably through their ability to model non-linearity and learn problem-specific features [START_REF] Xiao | Robust facial landmark detection via recurrent attentive-refinement networks[END_REF][START_REF] Wang | Recurrent convolutional face alignment[END_REF]Liu et al., 2017a).

While most methods address the problem globally, some focus specifically on a single challenge [START_REF] Burgos-Artizzu | Robust face landmark estimation under occlusion[END_REF]Yang et al., 2015a;[START_REF] Zhu | Face alignment across large poses: A 3D solution[END_REF]. [START_REF] Burgos-Artizzu | Robust face landmark estimation under occlusion[END_REF] explicitly model the occlusions and show that this additional information helps to improve the estimation of landmarks positions under unconstrained conditions. Training, however, requires to annotate occlusions. [START_REF] Zhu | Face alignment across large poses: A 3D solution[END_REF] focus on extreme poses and propose to infer a 3D dense model rather than a sparse 2D model. Their method is able to handle horizontal variations ranging from -90 • to 90 • .

Others suggest that face alignment should not be treated as an independent problem and propose to jointly learn various related tasks in order to achieve individual performance gains [START_REF] Ranjan | Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition[END_REF][START_REF] Zhang | Learning deep representation for face alignment with auxiliary attributes[END_REF]. In the work of [START_REF] Zhang | Learning deep representation for face alignment with auxiliary attributes[END_REF], alignment is learned in conjunction with pose estimation, gender recognition, facial expressions recognition, and the appearance of facial attributes. However, this type of approach can make the training stage much more complex because the convergence rates may vary from one task to another.

The performance of current face alignment methods are referenced in Table 2. These methods were evaluated on the 300W dataset, composed of categories of variable difficulty. The 300-A category corresponds to images that do not include strong constraints. Category 300-B contains more complex images with large variations in pose and expression, as well as occlusions. We note that for category B the average error is more than twice the one obtained on category A.

Despite the quantity of methods proposed in the literature and the recent major advances, we can see from these results that the problems encountered under unconstrained conditions are still far from being solved. Because of their significant influence on facial appearance, variations in pose and occlusions are among the most difficult challenges [START_REF] Shen | The first facial landmark tracking in-the-wild challenge: Benchmark and results[END_REF][START_REF] Sagonas | 300 faces in-the-wild challenge: Database and results[END_REF]. We show in Section 3 how temporal approaches could help to address these problems.

Method Category 1

Category 2 Category 3 AUC FR(%) AUC FR(%) AUC FR(%) [START_REF] Uricár | Facial landmark tracking by tree-based deformable part model based detector[END_REF] 0.657 7.622 0.677 4.131 0.574 7.957 [START_REF] Xiao | Facial landmark detection via progressive initialization[END_REF] 0.760 5.899 0.782 3.845 0.695 7.379 [START_REF] Rajamanoharan | Multi-view constrained local models for large head angle facial tracking[END_REF] 0.735 6.557 0.717 3.906 0.659 8.289 [START_REF] Wu | Shape augmented regression method for face alignment[END_REF] 0.674 13.925 0.732 5.601 0.602 13.161 [START_REF] Zhu | Face alignment by coarse-to-fine shape searching[END_REF][START_REF] Danelljan | Learning spatially regularized correlation filters for visual tracking[END_REF] 0.729 6.849 0.777 0.167 0.684 8.242 [START_REF] Yang | Facial shape tracking via spatio-temporal cascade shape regression[END_REF] 0.791 2.400 0.788 0.322 0.710 4.461

Table 3: Comparison of methods from [START_REF] Shen | The first facial landmark tracking in-the-wild challenge: Benchmark and results[END_REF][START_REF] Chrysos | A comprehensive performance evaluation of deformable face tracking "in-the-wild[END_REF], on the 3 categories of 300VW. Area under the curve (AUC) and failure rate (FR) are reported.

THE BENEFITS OF TEMPORAL INFORMATION

In this section, we show how temporal information can be beneficial to the problem of face alignment under unconstrained conditions. Issues raised by the dependence to face detection are first discussed. Constraints including the trajectories of the landmarks are then pointed out as solutions to enhance the robustness and quality of face alignment.

Rigid and Non-rigid Tracking

Face detection under unconstrained conditions is a complex problem to solve [START_REF] Zafeiriou | A survey on face detection in the wild: past, present and future[END_REF]. Given its role in face alignment, [START_REF] Yang | An empirical study of recent face alignment methods[END_REF] studied the dependence between these two tasks. They showed a high sensitivity of alignment to detection quality. Thus, besides detection failures, factors such as variations in the scale and position of the detection window may disrupt the alignment.

A solution to avoid the dependence on face detection is to perform non-rigid face tracking. [START_REF] Shen | The first facial landmark tracking in-the-wild challenge: Benchmark and results[END_REF] recently proposed a comparative analysis of current non-rigid face tracking methods. The results are referenced in Table 3. The most popular strategy is tracking by detection, that is, face detection and alignment on each image independently, without making use of adjacent frames. An alternative to tracking by detection is to use a substitute for the detection such as a generic (i.e., rigid) tracking algorithm [START_REF] Danelljan | Learning spatially regularized correlation filters for visual tracking[END_REF]. One of the advantages of generic tracking algorithms is that they are able to take into account some variations in the appearance of the target object during tracking [START_REF] Kristan | The visual object tracking vot2016 challenge results[END_REF]. [START_REF] Chrysos | A comprehensive performance evaluation of deformable face tracking "in-the-wild[END_REF] evaluate this strategy and compare it to tracking by detection. In general, generic tracking makes it possible to be more robust to the challenges encountered under unconstrained conditions. It is, however, probable that, as with detection, alignment is sensitive to changes in the tracking window. [START_REF] Yang | Facial shape tracking via spatio-temporal cascade shape regression[END_REF] avoid face detection at each frame or rigid tracking by proposing a spatiotemporal cascade regression. They initialize the shape at the current frame from the similarity parameters at the previous frame. They incorporate a reinitialization mechanism based on the quality of the prediction in order to avoid any drift in the alignment. Their method can greatly reduce the failure rate while improving overall performance (cf. Table 3). [START_REF] Sánchez-Lozano | Cascaded continuous regression for real-time incremental face tracking[END_REF] propose an incremental cascaded continuous regression. In contrast to [START_REF] Yang | Facial shape tracking via spatio-temporal cascade shape regression[END_REF] which retains a generic model after learning, here a pre-trained model is updated online to become specific to each person during tracking. This type of approach yields better results than a generic model. In the end, non-rigid tracking produces more accurate fitting than tracking by detection. It takes advantage of adjacent frames to improve initialization and variations in appearance to increasingly become person-specific. Yet, other information such as the trajectories of the landmarks through the image sequence seems relevant to consider [START_REF] Hamarneh | Deformable spatio-temporal shape models: Extending ASM to 2D+ time[END_REF]). This will be discussed in detail in the next subsection.

Additional Constraints

Whether explicit or implicit, the shape constraints present in most alignment methods are crucial to obtain good performance in unconstrained conditions. In image sequences, an additional constraint may be applied to the trajectories of the landmarks. Bayesian filters such as Kalman filters or particle filters can be used for this purpose. However, [START_REF] De | Dynamic facial analysis: From bayesian filtering to recurrent neural network[END_REF] highlighted the marginal gain provided by these approaches and showed the superiority of recurrent neural networks for dynamic face analysis. [START_REF] Peng | A recurrent encoder-decoder network for sequential face alignment[END_REF][START_REF] Hou | Face alignment recurrent network[END_REF]) also use recurrent neural networks to exploit the dynamic features of the face. They compare a recurrent and a nonrecurrent version of their network and show that recurrent learning improves the stability of predictions and the robustness to occlusions, variations in pose and expressions. The performances of their methods are referenced in Table 4. Taking into account temporal information results in a decrease of the average error of more than 1% compared to state-of-the art static methods.

Approach Method 300VW Static [START_REF] Zhang | Learning deep representation for face alignment with auxiliary attributes[END_REF] 7.59 Dynamic [START_REF] Peng | A recurrent encoder-decoder network for sequential face alignment[END_REF] 6.25 [START_REF] De | Dynamic facial analysis: From bayesian filtering to recurrent neural network[END_REF] 6.16 [START_REF] Liu | Two-stream transformer networks for video-based face alignment[END_REF] 5.59

Table 4: Comparison of a static multi-task method [START_REF] Zhang | Learning deep representation for face alignment with auxiliary attributes[END_REF], with three dynamic methods based on recurrent neural networks [START_REF] Peng | A recurrent encoder-decoder network for sequential face alignment[END_REF][START_REF] De | Dynamic facial analysis: From bayesian filtering to recurrent neural network[END_REF][START_REF] Liu | Two-stream transformer networks for video-based face alignment[END_REF]. Normalized mean squared error is reported.

More recently, [START_REF] Liu | Two-stream transformer networks for video-based face alignment[END_REF] propose a two-stream recurrent network composed of a spatial stream that preserve the holistic facial shape structure and a temporal stream that discover shape-sensitive and spatio-temporal features. Their method outperforms those based on a single stream (see Table 4). These are only the beginnings of the use of temporal information for the problem of face alignment. Recurrent neural networks, although advantageous, are capable of characterizing only the global motion. In other related tasks, local motion (i.e., over a few frames) sometimes associated with global motion has led to interesting results [START_REF] Hasani | Facial expression recognition using enhanced deep 3D convolutional neural networks[END_REF][START_REF] Fan | Video-based emotion recognition using CNN-RNN and C3D hybrid networks[END_REF] and could be equally beneficial to face alignment.

CONCLUSION

In this paper we presented a review of current work on face alignment under unconstrained conditions. This problem has been studied on still images for several decades, despite applications being mainly based on image sequences. Moreover, many tasks related to face analysis or, more broadly, human behavior analysis have leveraged temporal information. To the best of our knowledge, this is one of the first surveys to quantify the difference between static and dynamic face alignment methods. Especially, we have shown that taking into consideration the temporal information greatly contribute to overcome unconstrained conditions challenges. Recent work that exploit the dynamic features of the face are able to improve initialization and stability of predictions leading to more accurate fitting. Nevertheless, there is still much to be done.
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 1 Figure 1: Face alignment process: (a) original image, (b) face detection, (c) face alignment. Images from Menpo (Zafeiriou et al., 2017).

Figure 2 :

 2 Figure 2: Challenges encountered under unconstrained conditions: occlusions (b), (d), (f), pose (a), (e), illumination (a), (b), expressions (c). Images from 300VW[START_REF] Shen | The first facial landmark tracking in-the-wild challenge: Benchmark and results[END_REF].

Table 1 :

 1 Datasets captured under unconstrained conditions.

Table 2 :

 2 Performances of recent literature methods. Normalized mean squared error is reported.