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Nonlinear Multicommodity Flow Problems
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d’Optimisation des Systemes, Université Blaise Pascal,
ISIMA, BP 125, 63173 Aubiére cedex, France.

Abstract

We propose a new method based on minimum mean cycles cancelling for multi-
commodity flow problems with separable convex cost ruling out saturated capacities.
This method is inspired by the cycles cancelling method first worked out by Gold-
berg and Tarjan for minimum cost circulations [9] . Convergence of the method is
formally proved and a variant with a more flexible selection of cycles is proposed.
Also, we report some computational experience on the message routing problem in
telecommunication networks using actual and randomly generated networks.

Key words: Network programming, multicommodity flows, cycles cancelling methods,

separable convex programming.

1 Introduction

Multicommodity Flow problems are among the most difficult and important problems in
Network Optimization. Most textbooks on network flows consider separately the convex
minimum cost flow problem and the multicommodity flow problem [1, 10], but scarcely the
nonlinear multicommodity flow problem. The first nonlinear multicommodity flow models
have been extensively studied in connection with the design and analysis of communications
systems and traffic assignment. For example, in a packet-switched communication network,
messages packets generated at sources connected to the network, have to be routed over the
network links to their destinations. The routing problem consists of determining an assign-
ment of routes in order to minimize some cost function. The most common performance
measure used in the literature is the average message delay and the problem then turns out
to be a multicommodity flow problems with a nonlinear separable convex cost [2]. Much of

the motivation for this work comes from this message routing problem. However the range



of applications of nonlinear multicommodity models also includes transportation networks,
energy transport systems, water distribution networks and many other areas.

In practice, the large scale of multicommodity flow problems makes a straightforward
application of mathematical programming tools computationally cumbersome. On the other
hand, the rich block-angular structure of the models makes attractive the design of specially
tailored algorithms such as decomposition algorithms. Early approaches were specializa-
tions of general nonlinear programming [15, 6, 2, 7]. Recently emphasis has been placed on
solution techniques such as interior point [22], analytic center cutting plane [8] and proxi-
mal algorithms [5, 16]. See [18] for a survey of convex multicommodity flow problems. In
this work, we focus on the convex multicommodity flow problem and we point out that
the proposed algorithms extend the mean cycle cancelling algorithm for convex cost flows
but do not apply to linear multicommodity flow problems. Our aim in this paper is to
show that the idea of minimum mean cycle cancelling originally worked out by Goldberg
and Tarjan [9] and extended later by Karzanov and McCormick [13] for separable convex
optimization in unimodular linear spaces, can be exploited to give a new method for multi-
commodity flow problems with separable convex costs. This method is a block-coordinate
class method which makes descent steps that involve altering of one commodity and the
vector of total flows around a cycle. We identify such a cycle using minimum mean directed
cycles algorithms in an auxiliary graph related to that commodity.

The rest of the paper is organized as follows. In the next section, we formulate the
nonlinear multicommodity flow problem. In section 3, we give an optimality criterion for the
problem based on the absolute mean value of a commodity. From this optimality criterion,
we derive a new method, cancelling minimum mean feasible cycles for each commodity,
and prove its convergence in section 4. In section 5, we give a variant of the method which
alternates between primal and dual steps: a step improving the primal variables and another
one for the dual variables. In section 6, we present some numerical experiments obtained
on the message routing problem with actual and randomly generated networks so as to

demonstrate the effectiveness of the proposed methods.

2 The Nonlinear Multicommodity Flow Problem

Let G = (V, E) be a directed network with m nodes and n arcs and K flow vectors zy, ...,z
of R" associated with K commodities to be transported through G. The flow of commodity
k on arc j is denoted w;. Let M be the m x n node-arc incidence matrix of G. We suppose
that each commodity has a single origin destination pair (sg,?;) and that we are given

the demand requirement 7, > 0 between s, and tz. Let by € R™ be the vector with all



components 0 except by, = —by, = 1. For each k = 1,..., K, we define the set (;, of

vectors x; > 0 which satisfy the network constraints Mx;, = rby:
Q= {LEk eR": Mz, = rpby, ) > O}

We define a multicommodity flow as a set of vectors x = (£, x1,%2,...,2Tx) with x; €
and £ =), z; (in words, £ is the vector of total flows).

To each arc j, we associate a real c¢; representing its capacity, and a nonlinear cost
function f; in order to take into account congestion effects in the network G. We assume
that for each j, f; is a proper convex continuously differentiable function which is everywhere
finite value and f;(¢;) increases radically as &; exceeds the capacity ¢;. This corresponds
to the existence of barriers that prevent the solution from approaching the capacity when
f; is minimized. These assumptions are justified for almost all functions one encounters in
practice for data networks. For instance, in data network routing problem, the cost function

is often based on a queueing model of average delay and f; has typically the form:

fi(&) = iv £ < ¢ (1)

¢j =&
Our hypotheses on the f; functions exclude the linear capacitated case. In that situation,
one way to use the idea of cancelling negative cycle, is to introduce a barrier function to
force an interior point convergence toward the optimal solution. Let d; be the linear cost

on arc j. Then we can use:

fi(&) = di& —nlog(e; — &), & <y,

with n > 0 sufficiently large. These developments are exposed in [19]. Here we shall be

concerned with the minimum cost multicommodity flow problem:

2

min  f(z) = ij(ﬁj)

K
S.t. §j:Zxkj, §j<cj,j:1,...,n,
k=1

M!L‘k:kak, (EkZO, kzl,...,K.

\
The assumptions on f; force the solution of problem (P) to meet capacity constraints
and the problem then turns out to be formally uncapacitated. We suppose that there is a
feasible solution in the interior of the effective domain of f, dom(f) = {z : f(z) < 4o0}.
Hence the set of Kuhn-Tucker vectors is not empty [21].

3
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Figure 1: Example of Cost Function f;.

In the sequel, we denote by X the following set:

X:{(f,xl,...,xK) cxy € Q. VE, §:Zxk}.
k

For a multicommodity = = (£, x1,...,2k), we define for each commodity k, the sets

Ex(z)={j € E: x; >0} and E(z) = E\Ey(z) ={j € E: x; = 0}.

3 Optimality Criterion

In this section, we introduce a characterization of optimality for problem (P). We first state
some basic definitions and notations which will be used in the paper.

A chain in G is a sequence of nodes and arcs of G, i1, j1,%2,J2 - - -, Ip—1, Jp—1, Ip such that
for i =1,...,p—1either j; = (i1, 4141) or j; = (4141, %). A cycleis a chain iy, j1, 42,2 - - ., Ip_1,
Jp—1, i without any repetition of nodes together with the arc (i1, 1i,) or (ip,4;). In the sequel,
we will refer to a cycle as a set of arcs without any explicit mention of the nodes. Given a
cycle v, a forward arc j = (i1,142) is an arc such that the cycle visits node i; before node iy;
it is a backward arc otherwise. We denote by v the set of forward arcs of v and v~ the set

of its backward arcs. To any cycle v, we associate the vector I'(y) with components
1 ifjent,
Ti(v) =9 -1 ifjen,

0 otherwise.



Let x = (&, x1,...,0x) € X. For a single commodity flow x € Qf, a cycle v is k-feasible if
for any j € v~, z; > 0 (i.e v~ C Ei(x)). We denote by Ag(x) the set of k-feasible cycles.
Obviously, if v € Ag(x), zx + al'(y) € Q for all o € [O’jer%i?m) Tkj)-

Let f; be the first derivative of f; and |y| the number of arcs in cycle 7. For a multi-
commodity flow x = (§,z1,...,2x) € X, we define ¢(x,v) and &(z, ) to be respectively

the cost and the mean cost of v with respect to x:

C(‘Taf)/) = Zf]l(g])_ Zf;(fj)a E(J?,’)/) :C($a7)/|7|
jevt jev~
A cycle 7 is said to be negative if ¢(z,v) < 0.
Our characterization of the optimal solutions of problem (P) depends on the k-absolute

mean for each commodity £, which is defined to be

Ak (z) = max (0, — min E(x,fy)> .

YEAL ()

Note that A;(z) > 0 by definition. A k-feasible cycle ~ is said to be a k-minimum mean

cycle if ¢(x,v) = :/gl\ir(lx) ¢(x,7). To find a k-minimum mean cycle, we define an auxiliary
k

digraph G, with arcs cost with respect to z as follows: G}, contains all arcs in E and the
reverses of only arcs in Ej(x). Each arc j € E has the cost f;(¢;), and the reverse arc j of
j € Ex(x) has the cost —f;(§;). There exists many polynomial algorithms for computing
minimum mean directed cycles (see for instance [11, 12, 23]). A directed cycle 7 in Gy
corresponds to a k-feasible cycle v in G as follows: if j € 4, then j € v*; if 7 € 7 then
JEeT
In our study, we will use the following result on k-absolute means.

Proposition 1 Let x = (&, z1,...,2x) € X. For each commodity k, \ is an upper bound
of \i(z) if and only if there exists a vector py € R™ such that if we assign to each node i of G
the components py; and define the vector z, € R™ with components zi; = pri—prs, j = (4, 5),

we have

[i(&) = A < 2y < [i(&) + A for all j € Ey(x),
. (2)
Fi(&) = A —anj < 25 < fi(§5) + A, ag; >0, forall j € Ex(x).

If A= M(x) > 0 and v € Ag(x) is a k-minimum mean cycle, then

fi(&) — g = —Aforall je€~" and z; — fj(&§) = =X forall j ey .



Proof. We follow McCormick [17] for a similar statement in [13]. Consider a multicommodity
flow z = (&, 21,...,25) € X. A k-minimum mean cycle can be seen as a solution of the

linear program

s.t. Mzt —27) =0, (3)
.Z']_ < 07 .] S Ek(‘r)a

where e € R" with e; = 1 for all j and f' € R" is the vector of coordinates f}(§;).
Note that if (z*,z7) is optimal for this problem, so is a(xz*,27) for any o > 0. Then

we can require the denominator to be equal to one, so an equivalent problem is

min f'zt — flz
st. Mzt —27) =0,

ext +ex” =1, (4)
z; < 07 .7 € Ek(m)a
xtx” >0
The dual of (4) is
max o
st pri—prs +0 < fi(&), T=1,...,m,
—(Pri — Prs) +0 < —f1(&), J € Ex(z), (5)

—(Pri — Prs) +aw; +0 < —f1(&), J € Ey(x),
pkERm, (SGR, Of]cjgo.

We let zj, be the vector of coordinates zy; = pg; — pis for each arc j = (i, s). Then the dual

problem can be rewritten as

max ¢
s.t. ) < f],(f]) — Zkj, ] = 1, e, N,
0 < zk; — fi(&), J € Ex(w), (6)

0 < zp; — oy — f1(&), € Ex(x),
2z € R™, ) € R, (0791 <0.

This problem can be interpreted as searching the largest least negative value of § that

satisfies (2). Hence it is easy to derive the results in the proposition. 0

The vectors p, € R™ and z; € R" associated with the multicommodity flow x € X in
proposition 1, can be seen as respectively the price and tension vectors associated to com-
modity &, and f]’-(fj) — 2k; as the reduced cost of arc j with respect to commodity k.

We now state optimality conditions for characterizing when a given feasible solution for

(P) is optimal:



Theorem 1 A feasible multicommodity flow x is an optimal solution for problem (P) if
and only if \p(z) =0 for all k.

Proof. We first show that if  is optimal for (P) then A\y(x) = 0 for each k.

We argue by contradiction. Suppose there exists a commodity & such that \g(z) > 0. Let
7 be a k-feasible cycle such that ¢(z,v) = —Ag(z). From the continuity of f}, there exists
an « > 0 such that

fj'(fj +a) — f]'(fj) < M(z) for j € v and fj'(f]) — f;(@ —a) < M(x) for j €.
Define ¢ = min(c, min x4;); then € > 0, and as f} is nondecreasing by convexity, we have
Jjen~

fi(& +e) — fi(&) < Mlx) if je~™ and  fi(&) — fi(&§ —e) < M(z) if jer.

Let y = (¢, %, .. .,yx) be the multicommodity flow obtained from z by the following k-

cancelling cycle step.

¢ =¢&+el(y),
Yr = x1, +el'(7), (7)

yp = x, for all p # k.
The k-cancelling step increases the total flows and the flows of the commodity k£ on forward
arcs in the k-feasible cycle v and decreases the total flows and the flows of the commodity
k on backward arcs in the cycle. It maintains the feasibility of the new commodity y (i.e

y € X). By convexity of the functions f;, we have
fi(& +e) = fi(&) <efi(§ +e) =efj(&) +e(fi(& +e) — £i(&)) if j €97,
fi(& —¢e) = fi(§5) < —efi(&§ —e) = —efj(&) +e(fi(&) — fi(&§—¢) ifjer.

Hence

Fy) = f@) = 1(G) = f[(&)] < ec(z,y) + ely[Ar(z) = 0.

J
Now let z € X such that \¢(z) = 0forall k =1,...,K and z, € R", k =1,..., K the

tension vectors associated with z in proposition 1. Then (2) yields
Zrj = f1(&) for all j € Ep(T), ZzZij < fj(€;) for all j € Ey(T) (8)

Consider now the vector Z; € R" which components are defined by Z,; = f]’(fj) if & >0
and zp; = max Zy; if & = 0. Then (2, 2, 2, k= 1,..., K) verify the following Kuhn-Tucker
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Figure 2: Tllustration of k-cancelling step.

conditions for problem (P).
Zoj < fjl(g])a if & =0,

205 = Zkj, ifikj>0jzl,...,n,kzl,...,K

L Zojzzkj if.’fkj:() jzl,...,n, kzl,...,K

implying the optimality of Z.

K

(We use the notations z, for the dual vector associated with the constraints £ = )
k=1

while the potential vectors py which define the z;’s in (2), are associated with the constraints

Ml‘k = kak-) 0

Example of k-cancelling step

To illustrate the k-cancelling step, we consider the multicommodity flow problem of figure
2 with two commodities: the source-destination pairs are (si,t;) and (s,t3) and the re-
quirements r; = ro = 4. We suppose that the functions f; are given by (1). The numbers
on arcs correspond to (&, z1j, Taj, ¢5).

Obviously the first multicommodity flow shown in figure 2 with cost f; = 8.0 is not
optimal (A;(z) = Ag(2) = 1.17). The k-cancelling step with £ = 1, ¢ = 0.14 and the

k-minimum mean cycle

(7+ = {(3170’)7 (a> b)? (b7 tl)}:’)ﬁ = {(sbtl)})

8
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Figure 3: Necessity of differentiability of cost functions.

leads to a better multicommodity flow with cost f, = 7.42.

Remark 1 Theorem 1 expresses that the set of optimal solutions for problem (P) is
S={rxeXx : \N(x)=0 forall k}

An alternative statement is that x € X is optimal for (P) if and only if there is no negative
k-feasible cycle for any commodity k.

Discussion

In the single commodity case [13], the differentiability of the cost function is not needed
and the cost of a cycle were defined as [13]:

c@,7) =) F &) - 1) (9)
jevt Jjev
where f;r and f; are respectively the right and the left derivative of f;.

It is instructive to point out why the differentiability of the cost functions is needed
in the multicommodity flow context. First, let’s illustrate the necessity of this assumption
with the following example with no capacities (see figure 3).

In the example, for horizontal links the cost functions are f;(§;) = &;, while for the
vertical links, the cost functions are given by

0 if § <1,
9(&) =
2 —1) ifg > 1.

9



There are two commodities sharing the network: commodity k& (= 1,2) send one unit of
flow from s, to tx. The optimal multicommodity flow sends both units on the vertical
links. Consider now the multicommodity flow x = (z1,23) that sends both units across
the horizontal links (z; uses the links —— > and x5 the links —. See figure 3). We have
A (z) = Ay(z) = 0 while 2 is not optimal. That is Ax(z) = 0 for all £ does not imply the
optimality in this case.

The reason relies on the following observation. Suppose the functions f; are not differ-
entiable. Then, the cost of a cycle is defined by (9), and one may easily show that (2) in

this case, is replaced by
J(&) =A< 2y < (&) + Afor all j € Ey(x),

B (10)
fi(€5) = A =gy < 235 < ff(fj) + A, g >0, for all j € Ey(z).

Hence, for & € X, \y(Z) = 0 for all k yields with 2, £k =1..., K the corresponding vectors
in (10)
2 € 0f;(&) forall j € Ey(2), 2iy < f7(&) for all j € Ey(2), (11)

which does not imply the Kuhn-Tucker conditions of problem (P) in the non differentiable

case:

(25 €0f;(&;) if & >0,

7 < f(g) g =0, 12
12

*

% : *
z; = 2k if ry; >0,

l 2] 2 2, ifx,’gj =0.

Indeed, a consequence of (12) is that if two commodities p and k share a link j, their
tensions on that arc must be equal. One cannot derive this fact from (11), as for an arc j
such that Z,; > 0 and Zj; > 0, Z; is not necessary equal to Z,;. On the other hand, (12)
implies (11). The only way to ensure that (11) implies (12) whenever K > 1, is to require

df;(&;) to be reduced to a singleton i.e. f; to be differentiable.

4 The Cancelling Cycles Method

The optimality criterion of the previous section suggests the following algorithmic approach
for solving problem (P), which we call the cancelling cycles method. We begin with a feasi-
ble multicommodity flow 2° € X. At each iteration, a commodity k£ with positive absolute

mean is chosen and a k-minimum mean cycle is found with the aim to improve the cost

10



function and decrease the k-absolute mean. The algorithm terminates when no negative
k-feasible cycle can be found for any k. Theorem 1 implies that when the algorithm ter-

minates, it has found an optimal solution for problem (P). The algorithm is sketched below:

Cancelling Cycles Method (CCM)
1. Find an initial feasible solution z° in X. Set t = 0.
2. If \p(z') = 0, for all k, stop : x' is optimal.

3. Choose a commodity k with A\g(z') > 0. Find a k-feasible cycle y, € Ay(z") such that
é(z', ve) = = (2") (as described in section 3). Compute
i +e) = [(&) + Mlah) ifjeny
g such that (13)
Fi(&G =) = [i(&§) = M(a') ifj €y
Set e = min[nelin €, min x’,fc]] and perform a k-cancelling cycle step to obtained z'*! as
VASHI™ je'ykj
indicated in equations (7).

4. Let t :==1+ 1 and repeat.

A black box is supposed to be available to compute ¢, in (13); in most applications, it is
easily computed. The current solution z! is improved by the k-cancelling step as shown in
the first part of proof of theorem 1. Observe that CCM is a primal method as it works on
the original problem (P) by searching through the feasible set X" for the optimal solution.
Each iterate is feasible and as it is shown in proposition 2 below, the objective function
monotically decreases in the procedure. The algorithm possesses some common features
with coordinate descent methods in the sense that at each iteration, a descent step with
respect to one commodity is performed in order to compute a new better multicommodity
flow.

There is a number of ways to choose the commodity to be changed at a given iteration.
We make the assumption that commodities are examined in a cyclic fashion, that is com-
modity x; is examined first, then x5 and so forth through x,. Then one repeats the process
starting with z; again. We also assume that every commodity k& can be chosen an infinite
number of times.

In order to obtain our convergence result, we must show that the algorithm produces a
sequence z' € X such that every limit point  belongs to S (see remark 1). We first show

some preliminary results.

11



Let k' and ;¢ be respectively the commodity chosen at iteration ¢ and the corresponding
cancelled cycle. For j € 7, we have & < & < & ¢; and f(& +¢5) = f1(E]) + e (2)

by (13). As f; is nondecreasing from convexity of f; we have

;&) < HET) < [E) +Me(a’) i 5 €l (14)
Similarly, one can show that

F&) > FEH) > F(&) — M) if j € (15)
We can then prove that the k!-absolute mean decreases after the k-cancelling step:
Proposition 2 After a k'-cancelling step, we have f(z'') < f(x') and Age (2T < Ape(2?).
Proof. Since £*' = ¢! outside the cycle 7, we have

fla™h) = faf) = Y& = L+ D_IHE™) — L)
]’E'Y,:;g T€Y e

By convexity of each f;, we have

Fi&H) = £i(&) < efj(&) < elfj(€) + A (a")] for j € % [ef. (14)]

Fi&™) = Fi(&) < —efj(E5F) < —elfj(€) — A ()] for j € v [cf. (15)]
Hence
F@h) = @'y <el D] FE) = D FEN + edne (@) lyie| = elela’, o) + e (@) el] = 0
JEN JE€V

To show that the k’-absolute mean does not increase, we show that (2) holds for fj(&;*")
and z: the tension vector associated with z! in (2). Since 2! and 2! coincide outside the

cycle e, it suffices to show this property only for j € .
e j €. Wehave fi(&7) > fi(&l) and f](€!) = zptj — Ae(2"). Thus
FiE) = 2hej > =g (')

Also, fH(E) < fH(ED) + Ae(a') by 14. As fi(E!) = zxej — Age(a") by proposition 1, we

have

&) = = (a')

é—t-+1) Z —Rktj + )\kt (It) - )\kt (.’Bt) Z —RZktj — /\kt ((L‘t) i.e. gty — fl( j

J J

—fi

12



® j € 7. We have fi(&™) < fi(¢) (first part of (15)), and —f(§;™) > —fi(&}) =
—2ktj — At (2') (proposition 1), that is

2ty — [T > =M ().

Again from (15), f1(&7) > f1(£]) — Ake(a") and from proposition 1, f}(&}) = zp; +
Akt (2. So

fjl(g;_'—l) Z Zkty — )\kt(l't) + )\kt(l't) Z Zkty — )\kt(l't) 1.e. fjl(é-;_'—l) — Zktj Z —)\kt (CCt)
Now, for any cycle v € Ape(2t"), we have

@™ y) =30 HET = Y0 HET 2 DY = D ae — (@)

JeY'T JEY'™ JEY'T JEY'~

As by construction (see proposition 1),

we have c(z!™1, ") > =M (2h)|y'| which imply A\ (2871) < Age () O

Note that because the commodities share the same network and as the k'-cancelling step
changes the total flows carried by arcs in the corresponding cycle, this change reflects itself
in a change of absolute means of all commodities. An absolute mean of a commodity p # k'
may decrease or increase after this k'-cancelling step, even if A, (z'*!) = A, (') for p # k.

We are now ready to show our main result.

Theorem 2 Let {z'} be a sequence of iterates generated by the algorithm CCM. Then, any

limit point T of {z'} is an optimal solution to (P).

Proof. Clearly, the sequence {z'} of multicommodity flows generated by CCM is bounded.
Let Z be any limit point of {z'} and let {z'},c7 be a subsequence of {2'} converging to .
As X is closed, z € X, and we have limyc7 f(2') = f(Z)) by continuity of f. If we can show
that A\x(Z) = 0 for all k, theorem 1 implies that {2’} converges to an optimal solution of
problem (P).

Recall that each commodity is examined cyclically (every K iterations). Then, we can
consider a subsequence Ty associated with a certain k£ and assume that the k-minimum mean
cycle, say g, is the same for ¢t € T, (indeed, each commodity is treated an infinite number

of times and the number of cycles is finite). From proposition 2, the k-absolute mean is

13



reduced an infinite number of times (but may increase between these steps) and is always
> 0. By possibly restricting to a subsequence of Ty, we may assume that {\;(z%)} is a
decreasing sequence and bounded below by 0 (for all k). Suppose now that A\g(z') > ap > 0
for each ¢t > ¢, ¢t € T;. We then have for ¢ > ¢ (using the convexity of f;),

f(flftH) - f(xt) < 5t[z f;(f;“) - Z f}(é“;“)] = _)\k(xt+1)5t|’7k|-
i€ J€n
(The equality comes from the fact that the A-minimum mean cycle is the same for ¢ > ¢.)
Since || > 2,
f@™) — f(2) < =206, < 0

Fort >t and t ¢ Tz, we have f(z'™') — f(2') < 0 (proposition 2). These relations imply
that f(z') — —oo, contradicting the hypothesis that f is bounded from below on X (the
optimal value is assumed to be finite; see section 2). Hence, A\i(z') — 0 as t — oo for all k.

Fix any k and let y be a k-feasible cycle at . We have for each ¢ € T (see proposition
1 and also the proof of the second part of proposition 2)

DORET =Y HET = Y A= D Ay |~ M@l = =l

jevt Jey~ jevt JEYT

Taking the limit as ¢ — oo, we have

jevt jer~

Jim {Z FEN = f;(fﬁ“)} >0

And since f] is continuous by assumption,

S OHE) =D &) >0

jevyt JEYT

or equivalently, A\x(z) = 0, which proves that z is an optimal solution by theorem 1. 0

All operations involved in CCM iterations are just addition, subtraction, comparison of
rationals, and division of a rational by an integer not exceeding the number of arcs n while
computing A, (z) for a given commodity k (see [11] for example). Hence, one can ask the
question of whether there is a polynomial bound in the size of input for all computations in
CCM. Monotonic decrease of all absolute means at each iteration is not observed as in [13].
Hence it is not a trivial task to quantify the decrease obtained after some given number of

iterations and bound the complexity of the algorithm.
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5 A Cancel and Tighten Method (CTM)

We propose in this section a variant of the minimum mean cycle cancelling method which is
based on two steps: a cancel one which intends to improve the primal variables by a more
flexible selection of cycles for cancelling and another step for improving the dual variables.
The idea of the Fast Cancel and Tighten algorithm of [13] (see also [9]) is extended here to
derive this method for nonlinear multicommodity flow problems of section 2. Most of the
definitions and proofs are inspired from [13].

Consider a multicommodity flow z = (£, 21, ...,2x) € X and let z;, € R” be any tension

vector. For each commodity k, we define the k-distance between x and z; as
)\k(.’li', Zk) = Il’l%lX )\kj(x, Zk),
]:

where

(2kj — fi(&5) if 25 > fi(&)),

f;(f]) — Zkj if 2k < fjl(f]) and j € Ek(:c),

Mej(z,26) =< 0 if 25 < fj(§;) and j € Ei(z),
0 if f]l(fj) = ij andj € Ek(x),
L 0 if f]’(fj) > Zkj and j € Ek(l‘)

By definition \,(x,2,) > 0 for all k. We set A\, = A(z,2;). An arc j is k-positively far
from z if fi(§) — z1; < —/2, and k-negatively far if z; — fi(€) < —\/2. Otherwise,
the arc is be said to be k-positively close (respectively k-negatively close) to z,. Note that
an arc cannot be k-positively and k-negatively far at the same time. We denote Py(z, zi)
(respectively Ni(z, zx)) the set of k-positively far arcs (respectively k-negatively far arcs)
from zj,. A cycle v is k-far from z if v© C Pg(z, ;) and v~ C Ny (z, z¢) N Ex(z). We have

[i(&) = zrg = = A forall j and zy — fi(&) > =X, forall j € Ex(x) (16)

Hence by proposition 1, A > A\x(z). Note that, if Ay = 0 for all k, then z is optimal for
(P) by theorem 1.

The cancel step of CTM consists of cancelling all k-far cycles for each k as in CCM!.
For that purpose, we build for each commodity k, an auxiliary graph G}, containing arcs

in Py(x, z;) and reverse arcs in Ny(z, 2,) N Ex(z). The graph G}, is acyclic if and only if it

INote that a k-far cycle is a negative k-feasible cycle if A\, > 0
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possesses a topological ordering of its nodes [1]. Algorithms for detecting directed cycle or
producing a topological ordering of nodes in a linear time, can be found in the literature (see
[1] for example). If a topological ordering exists for Gy, there is no k-far cycle. Otherwise
there is a directed cycle in G, which corresponds to a k-far cycle in G.
The computation of ¢; is somewhat different here :

fi(& +ep) =25 i€,

g, is such that (17)

fi(§—¢ej) =25 ifj€y.

The dual step is based on the following proposition (recall that m denotes the number of

nodes in the graph G)

Proposition 3 Let hy € R" be a vector with integral components that satisfies

|hiil <m —1 forallj (18)
hgj > 1 for all j € Py (19)
hej < =1 for all j € Ny (20)

Then replacing zp by z), = 2z, — (M\x/2m)hy, reduces Ny, to N, = (1 — 1/2m) ), and (16)
holds for z}, and X,

Proof. The proof is similar to the proof of proposition 4.2 in [13]. We analyse each case for

an arc j. Suppose j is k-positively close to z;. Then

fi(&) — 2 Fi(&5) = 2rj + (N /2m) by
fi(&) — zkg — (m — 1)A\/2m by (18) (21)

v Il

As fi(&) — aj > —Ag/2 for an arc k-positively close to z;, we have fi(&) — 2 = —\,. We
may assume zg; — f;(§;) > 0 else we would deal this in k-negatively close or far from z

case. Hence,

2 — fi(&) (2kj — (Me/2m)hig) — F7(&5)
zej = [j(&) = (m = 1)Ae/2m Dby (18)
—(m —1)Ag/2m > =\,

v

For an arc k-negatively close to z;, (21) holds and we may assume that f;(£;) — z; > 0 else

we deal this in k-positively close or far from z;, case. Hence
F1(&) = 21y = —(m = 1)\ /2m > N}
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Now, as zx; — f;(&;) > — /2, we have

2; — Fi(&) (2kj — (Ae/2m)hyg) — F1(&5)
2k — [i(§5) — (m — 1)Ag/2m by (18)
_)\k/2 - (m — l)Ak/Qm = —)\;~C

VIV I

Consider an arc j k-positively far from z;

fi(&) — 214 Fi(&5) = 2rj + (Ae/2m) by
fi(&) — 2k + Ak /2m by (19)
—Xe(1 = /2m) by (16)

AVARAVANI

Also, we may assume that z;; — f7(§;) > 0, else we deal this in k-negatively close case.

2; — fi(&) (2kj — (Ae/2m)hig) — Fi(&5)

> zrj — f(§) — (m —1)Ax/2m by (18)
> —(m—1)A/2m > =\
The proof for an arc j k-negatively far from z; is similar. 0

To find the vector hg, we adapt the trick used in [9]: When all k-far cycles have been
cancelled, G}, is acyclic, so a topological ordering O of nodes exists. The label differences
hg;j = O; — Oy, j = (i, s) provide a vector hy, that satisfies conditions of proposition 3. The

convergence of CTM is proved as in theorem 2.

6 Numerical Experiments

In this section, we report some computational results with the algorithms developed in the
previous sections.

One of the most important performance measure of a data network is the average delay
required to transmit a packet from origin to destination. We thus consider routing problems
in data networks where the delay function associated with a link j is typically of the form
[14),[2]: 5
_ J
ie) =

The network shown in figure 4 is an actual network with 19 nodes and 68 arcs: for each

& < ¢y (22)

pair of nodes, there are two arcs, one in each direction. It is issued from a real world traffic
situation which was given by the Centre National d’Etudes des Télécommunications with
30 commodities.
The first derivative function of (22) is given by
¢

fi(&) = (CEYAE & <
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Figure 4: The 19 nodes-68 arcs Network.
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In the present application, it is easy to compute £; in (13) and (17). We used Karp’s
algorithm [11] mainly because of it is very simple to implement, even if its average behaviour
(known to be close to its worst case bound) is likely to be worse than more recent methods
like [12, 23].

Following some preliminary experiments, we found that it is beneficial to perform a line
search between &' and &' + e'(7) (indeed eT'(7) is a search direction). After a cancelling
step, the cycle may stay negative (see example on figure 2). One may look for a step length
that maintains feasibility and make the cost of the cycle nonnegative. A way to achieve
that is to repeat the process above (with the new multicommodity flow) until the cost of
the cycle becomes nonnegative. With this trick, we found that the number of iterations and
the running time are reduced significantly.

In the routing problem, the paths flows are not unique although the total link flows
are unique because of the strict convexity of the cost function (22) with respect to &;. If
individual routes used by each commodity are needed, a flow decomposition algorithm [1]
can be used to recover them.

Implementation of our algorithms with the above basic ideas have been written in the
C programming language. The algorithms were compiled with the compiler x1c with the
default code optimization “-0”. All testing was performed on an IBM RISC/System 6000
machine.

We recall that m, n and K denote respectively the numbers of nodes, arcs and com-

modities.

6.1 Comparison of CCM and CTM

First we compare the two proposed algorithms using the following termination criterion for
both of the algorithms CCM and CTM

max \y(2') < (23)

where g is a positive tolerance parameter. For the results of table 1, the tolerance p is set
to 1073, then to 10~*. The computational results on table 1 are obtained using the network
shown in figure 4. We vary the number of commodities to have the six test problems on
table 1.

An iteration count for a cyclic examination of commodities (i.e in the order of their
numbering) so that the number of iterations in the tables means the number of times we
cycle through all commodities. The column headed “Path Dispersion” on the tables gives

the maximum number of paths used by a commodity to route its corresponding demand
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Table 1: CCM and CTM

=103
K Cost CPU Time (in sec.) | # iterations | Path dispersion
5 CCM | 2.812025 0.01 1 2
CTM | 2.812048 0.14 Y 2
10 CCM | 5.017776 0.01 1 2
CTM | 5.017816 0.27 Y 2
15 CCM | 8.704390 0.03 2 2
CTM | 8.704455 0.46 4 2
20 CCM | 12.747241 0.06 Y 3
CTM | 12.747290 0.95 8 3
95 CCM | 18.436107 0.23 14 4
CTM | 18.436083 2.16 27 4
30 CCM | 23.493523 0.51 29 3
CTM | 23.493511 3.77 72 4
u=10""*
K Cost CPU Time (in sec.) | # iterations | Path dispersion
5 CCM | 2.812025 0.01 1 2
CTM | 2.812026 0.22 8 2
10 CCM | 5.017776 0.01 1 2
CTM | 5.017776 0.48 8 2
15 CCM | 8.704385 0.04 3 2
CTM | 8.704385 0.88 9 2
20 CCM | 12.747178 0.1 8 3
CTM | 12.747178 1.94 15 3
95 CCM | 18.435911 0.43 27 4
CTM | 18.435913 2.0 40 4
30 CCM | 23.493456 0.72 37 3
CTM | 23.493459 10.47 90 3
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while the column “Cost” corresponds to the objective function values computed for the
solutions given by the algorithms. The time units reported on all the table are seconds.

As CTM uses a more flexible selection of negative cycles, it is expected to be faster than
CCM as in [13] but computational experiments has shown that it is more sensitive to the
interaction of commodities as one can observe on tables 1. A modification of the current
multicommodity by the way of a given commodity £ has an influence on p-distance of the
other commodities. Hence even if some p-distance has been cancelled at an iteration, it
may increase and the commodity p must be treated again.

As CCM seems to perform better, we consider it for the following experiments.

6.2 Effect of Problem Size and Accuracy parameter

We first examine in this section the performance of CCM for various problem sizes. The
three factors m = the number of nodes, n = the number of arcs and K = the number of
commodities determine the problem size. To this aim, we use a network generator to have
some randomly test generated problems which are listed in increasing order of the number
of arcs in table 2. The network generator has been used in [8] and is described in that
paper. The results of these runs with i = 10~* are reported in table 2. We collect in this
table the number of iterations, the CPU time in seconds (to reach the 10™* accuracy) and

the maximum number of paths used by a commodity.

Table 2: CCM on Randomly Generated Test Problems with p = 1074

Problem | m n K | # iterations | CPU Time | Path Dispersion
1 60 | 280 | 100 22 10.67 4
2 60 | 280 | 500 11 24.7 3
3 60 | 280 | 2000 4 40.87 3
4 100 | 300 | 120 5 6.63 3
5 100 | 600 | 200 22 61.84 4
6 200 | 800 | 200 17 175.44 5
7 200 | 800 | 500 17 417.83 4
8 200 | 1000 | 3000 10 1862.38 3
9 300 | 1200 | 1000 16 2263.78 4
10 300 | 1600 | 1000 17 2965.43 4
11 300 | 2000 | 1000 31 6645.32 8
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Recall that the number of iterations is the time we cycle through the commodities.
For example for problems 1 and 2 which have the same numbers of nodes and arcs, the
k-cancelling step has been made at most 2200 = 22 x 100 for the former and at most
5500 = 11 x 500 for the latter. As indicated by the CPU times, the routing problem
becomes difficult as its size increases. Table 2 shows that the CPU time increases as the
number of arcs increases (see problems 9, 10 and 11) and the same observation holds for
the number of commodities (problem 1, 2 and 3). On the other hand, the number of nodes
does not seem to affect the CPU time (see problems 1 and 5). The time per iteration is of
course dominated by the minimum mean cycles computations which depend more on the
number of arcs and commodities.

The analysis of these computational results shows promise for CCM to become a com-
petitive algorithm for large-scale routing problems. For example, problem 8 involves 3000 x
200 + 1000 = 601000 constraints and about 3000 x 1000 = 3000000 variables.

We next examine the effect on efficiency of a tighter accuracy requirement in the final
stopping criterion. We use the same basic topology of figure 4 with 30 commodities and the
randomly generated problem 1 and 2 (see table 2), and p = 101, 1072, 1073, 107%, 10°°,
107°. In table 3 we report the numbers of iterations and the CPU time required to reach
the accuracy u. These results show that tightening the convergence tolerance lead to much

higher time. Note that practitioners are normally satisfied with “near” optimal solutions.

6.3 Comparison with the Flow Deviation Method (FD)

To examine CCM further, we conduct a limited experimentation to compare it with the
Flow Deviation method (FD)? [6, 15] which is known as one of the most effective methods
for routing problems in data networks. The Flow Deviation method is a special case of
the so-called Frank-Wolfe method for solving nonlinear optimization problems with linear
constraints. A single iteration of the Flow Deviation method consists of solving shortest
path problems between each origin-destination pair (sy,t;) to find a search direction and
performing a line search procedure. It is then comparable to a single iteration of CCM. We
use the same initialization procedure for both algorithms. We have chosen to stop the two
algorithms on their proper optimality test. For CCM, as in all the results above, we use the
stopping test (23). In the Flow Deviation algorithm, a lower bound on the optimal value
is computed at each iteration, and the procedure is stopped when the current objective
function value f(z') is within some ppp > 0 of the best lower bound LB found at any

iteration:
f(a')— LB

LB
2The code of FD was originally written in FORTRAN.

< prp. (24)
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We use the same test problems as in section 6.1 on network of figure 4 in the experiments
of this section. The convergence tolerance prp is set to 1072 for FD and we use pu = 1074
for CCM. We have found that with these choices, the objective function values given by the
two algorithms differs only slightly.

One can observe from the results on table 4, that the convergence of CCM is quite rapid.
We cannot, however draw some definitive conclusions from these limited experiments. The
results are encouraging for CCM to investigate a more complete comparison with other
efficient algorithms for nonlinear multicommodity flow problems of section 2. Figure 5 shows
the monotonic decrease of the objective function, as shown in proposition 2. This behaviour
is also observed with the Flow deviation algorithm on the same figure. It is obtained
using the network of figure 4 with K = 30 and semilogarithmic scales from MATLAB
(the semilogx command). In table 5, we show successive objective function values for the
two algorithms. Once the two algorithms come near a solution, they tend to slow down
as shown on figure 5 and table 5. This behaviour suggests that both algorithms may be
used as part of hybrid solution procedure to initialize some methods using more complex
search directions. For the routing problems in data networks that motivates this study, an

adequate approximation to an optimal solution is enough in practice.

Figure 5: Objective function values vs number of iterations.

26.5

objective function values

CCM

23 L L L
10 10 10° 10 10
number of iterations

Recall that, in the routing problem, the paths flows are not unique although the total

link flows are unique: two different set of paths might yield to the same total flow. FD is
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likely to use a large number of paths (the reason is explained in [16] and confirmed by some
numerical experiments in [18]). We observe on table 4 that CCM is likely to involve a small
number of paths between a source-destination pair in general, increasing the reliability of
the system.

CCM needs to store all individual flow vectors; in our code, we use a K X n array to
store them. The memory storage requirement of CCM is then substantial than for FD if
the optimal total flow is the only quantity of interest. In this case, FD requires a small
amount of storage and thus may be preferable over CCM for very large network problems.
When detailed information about the optimal path flows is required, FD needs to store the
shortest paths generated at each iteration, and then its storage requirement depends on the

number of iterations.
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Table 3: Behaviour of CCM w.r.t. p

i | # iterations | CPU Time i | # iterations | CPU Time
10! 1 0.03 107! 1 0.83
1072 17 0.28 1072 9 4.24
1073 29 0.51 103 18 8.21
1074 37 0.72 1074 22 10.67
107° 49 0.96 107° 29 13.88
1076 74 1.34 1076 42 19.69

network of figure 4 with K = 30

randomly generated problem 1

i | # iterations | CPU Time
107! 1 2.11
1072 3 8.11
1073 8 18.4
104 11 24.7
10°° 12 26.94
1076 17 37.31

randomly generated problem 2
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Table 4: CCM and FD

K Cost CPU Time (in sec.) | # iterations | Path dispersion
5 CCM | 2.812025 0.01 1 2
FD 2.812142 0.53 589 2
10 CCM | 5.017776 0.01 1 2
FD 5.018010 0.41 465 2
15 CCM | 8.704385 0.04 3 2
FD | 8.705045 0.14 155 2
20 CCM | 12.747178 0.1 8 3
FD | 12.747975 0.48 925 4
95 CCM | 18.435911 0.43 27 4
FD | 18.437096 1.05 1129 5)
30 CCM | 23.493456 0.72 37 3
FD | 23.495117 1.72 1822 9

Table 5: Successive iterations of CCM and FD

CCM FD
# iterations Cost # iterations Cost
0 26.166667 0 26.166667
10 23.539396 72 23.539316
20 23.496063 1155 23.496065
25 23.493951 1800 23.495135
30 23.493482 1815 23.495123
31 23.493471 1816 23.495122
32 23.493465 1817 23.495121
33 23.493461 1818 23.495120
34 23.493459 1819 23.495120
35 23.4934567 1820 23.4951184
36 23.4934563 1821 23.4951175
37 23.4934561 1822 23.4951166
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7 Conclusion

We have presented a new method for nonlinear multicommodity flow problems with convex
costs. Our computational experiences quite limited indicate that the proposed method is
effective and competitive with one of the best known methods for routing problem in data
networks. For our numerical experimentation, due to its simplicity, we use Karp algorithm
[11] to find minimum mean cycles. It is well known that the best case of this algorithm is
the same as its worst case. Therefore, we may expect the proposed method to be able to
solve larger problems using minimum mean cycles algorithms with a better average case be-
haviour than Karp’s one, such as algorithms proposed in [12, 23]. The question of whether
there is a polynomial bound (as in [13] for single commodity) in the size of input for all

computations is left for further research.
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