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1. Introduction. We consider in this paper the following constrained inclusion problem: let X be a finite dimensional vector space and A a subspace of X. Let us denote by B the orthogonal subspace of A, i.e., B = A.L. Let T be a maximal monotone operator on X and denote its graph by Gr(T), i.e., Gr(T) = {(x, y) E X x X l y E Tx }. Then, the problem is to find x E A and y E B such that y E Tx, which can be written:

(P) Find (x, y) EX x X such that (x, y) E A x B n Gr(T).

A typical situation, which is easily shown to give the form (P), is the problem of minimizing a convex lower semicontinuous function on a subspace. The particular applications we have in mind are the decomposition methods for separable convex programming. They have recently gained some new interest with the possibility of implementing them on massively parallel architectures to solve very large problems such as the ones that appear in network optimization or stochastic programming (see [START_REF] Dinh Tao | Parallel and Distributed Computation[END_REF]). There are many different ways to transform a separable convex program in the form (P), but the general idea is to represent the coupling between the subsystems by a subspace of the product space of the copies of the primal and dual variables.

We are aiming here at the application of the Proximal Point Algorithm (PPA) (cf. [START_REF] Rockafellar | Monotone operotors and the proximal point algorithm in convex progrom ming[END_REF]) to problem (P). In 1983, Spingarn [START_REF] Spingarn | Partial inverse of a monotone operotor[END_REF] proposed a generalization of PPA to solve (P) that was based on the notion of the Partial Inverse operator. If we denote by x A the orthogonal projection of x on a subspace A, the graph of the partial inverse operator T A is given by Gr(TA) = {(xA + YB . YA + XB) I y E Tx }.

Applying the PPA to this operator leads to the Partial Inverse Method (PIM) which we summarize here. ALGORITHM 1 (PIM). At iteration k, (xk,Yk) E A X B. Then, find (x�, y� ) such that Xk + Yk = x� + y� and � (YDA + (YDB E T((x�)A + � (x�)B).

Then, (xk+l , Yk+l ) = (( x� )A, (YD B ) .

The main problem that arises with this algorithm is the difficulty of performing the proximal step (1) when c =11 in most interesting situations including the decom position methods. When c = 1, then the proximal step is a proximal decomposition on the graph of T and the subspaces A and B only appear in the projection step. In §3 we present the resultant algorithm, indeed equivalent to PIM with c = 1. The convergence is proved without the need to consider the Partial Inverse operator. The iteration is now written in the following way. It appears that the modified proximal step is uniquely determined and corresponds to a proximal decomposition on the graph of .XT if .Xp, = 1. We recover then the scaled version of PIM proposed by Spingarn in [START_REF]Applications of the method of partial inverse to convex progromming: Decomposition[END_REF]. It is mentioned in [START_REF] Idrissi | Applications and numerical convergence of the partial inverse method[END_REF] that the performance of PIM is very sensitive to the scaling factor variations and we give an explanation of this fact, allowing its adjustment to an optimal value in the strongly monotone case.

In §4, we give some numerical results that confirm the accelerating properties of the scaling parameter.

2. The proximal decomposition on the graph of a maximal monotone operator. We recall here some known results on the "P rox" mapping (I + T)-1 associated to a maximal monotone operator T and focus on the properties of the decomposition on the graph of T. More details on that subject can be found in [START_REF] Brezis | Operateurs Maximaux Monotones[END_REF] and [START_REF] Goebel | Topics in Metric Fixed Point Theory[END_REF].

Let T be a maximal monotone operator on a Hilbert space X. The graph of T, denoted by Gr(T), is defined by Gr(T) = {(x,y ) EX x Xiy E Tx}.

Monotonicity implies that for all x, x' E X and for all y E Tx, for all y' E Tx', (y-y', x-x') 2: 0. As T is maximal, its graph is not properly contained in the graph of any other monotone operator.

If T is strongly monotone, then there exists a positive p such that Vx,x'EX and VyETx, Vy'ETx', (y-y',x-x')2: Pii x-x' ii2 .

We say that the operator T is Lipschitz with constant L if Vx, x' EX and Vy E Tx, Vy' E Tx', ii Y-y' il � L il x-x' ll•

For monotone operators that share both properties, we get the following explicit bounds:

(3) Pii x -x' ll � II Y-y' ll � L ll x-x' ii•
When T is a linear operator represented by a positive definite matrix T, the best estimates for p and L are, respectively, the smallest and the largest eigenvalues ofT. Of course, if T is maximal monotone, then for any >. > 0, >.T is maximal monotone and if, moreover, Tis strongly monotone with modulus p and Lipschitz with constant L, then >.T is strongly monotone with modulus >. p and Lipschitz with constant >.L.

The resolvent associated with maximal monotone operator T is defined by (I + T)-1. It is single-valued, defined on the whole space, and firmly nonexpansive, which means that, if we let U =( I+ T)-1 and V =I-U, then, [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operotors[END_REF] or equivalently

(5) Vx,x' EX, ! l Ux-Ux'ii2 + II V x-Vx' ii2 � ll x-x' ll2 II Ux-Ux' ii2 � (x-x', Ux-Ux').
Related interesting facts on this characteristic property of resolvents may be found in theses by Martinet [9] and Eckstein [START_REF] Eckstein | Splitting Methods for Monotone Operators with Applications to Parallel Opti mization[END_REF] (see also [START_REF] Goebel | Topics in Metric Fixed Point Theory[END_REF]). Indeed, resolvents and maximal firmly nonexpansive mappings coincide and, following [START_REF] Lawrence | On fixed points of nonexpansive piecewise isometric mappings[END_REF], one-to-one correspondences among these operators, maximal monotone, and maximal nonexpansive operators, may be stated. This fact is explored further in the appendix.

We introduce now the proximal decomposition on the graph of a maximal mono tone operator.

Given a maximal monotone operator T and a vector (x,y) EX x X, there exists a unique pair (u, v) EX x X called the proximal decomposition of (x, y) on the graph of T such that u+v=x+y and (u, v)EGr(T).

The unicity is a direct consequence of the maximality of T and we get u = (I+ T)-1 (x + y), v =( I+ r-1 )-1 (x + y).

3. The proximal decomposition algorithm. We return now to problem (P), which has been analyzed by Spingarn [START_REF]Applications of the method of partial inverse to convex progromming: Decomposition[END_REF]. Let T be a maximal monotone operator on X. Let A be a subspace and B its orthogonal subspace. The problem is to find

(x, y) EX x X such that (x, y) E Ax B n Gr(T).
This problem is a particular case of the general problem of finding a zero of the sum of two maximal monotone operators. The algorithms we are aiming at are splitting methods that alternate computations on each operator separately (see [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operotors[END_REF]). Indeed, most large-scale optimization problems can be formulated as the problem of mini mizing a separable convex lower semicontinuous function on a very simple subspace which represents the coupling between the subsystems.

We propose then a generic algorithm that alternates a proximal decomposition on the graph of T with a projection on Ax B. Before going on with the analysis of the method, we observe that the other alternatives that come to mind to find a point in the intersection of two sets are not suitable.

1. We can use the classical successive projections method on the two sets. The problem is that Gr(T) is generally not convex in X x X.

2. We cannot use another proximal decomposition on A x B (which is indeed the graph of the maximal monotone operator 8XA , the subdifferential of the indicator function of the set A), because it would lead back to the original point! Indeed, if (x,y) E Ax B and (u,v) is the proximal decomposition of x +yon Gr(T), then x = ( u + v) A and y = ( u + v) B, which means that ( x, y) is the proximal decomposition of u + von the graph of 8XA •

The Algorithm PDG (proximal decomposition on the graph) is stated below.

ALGORITHM 2 (PDG). Let (x0,yo) E Ax B. k = 0. If (xk, Yk) E Gr(T ), then stop: (xk, Yk) is a solution of (P). Else compute the proximal decomposition (uk,vk) of Xk + Yk on the graph of T. If (uk,vk) E Ax B, stop: (uk,vk) is a solution of (P). Else, Xk+ l = (uk)A and Yk+ l = (vk)B • k= k+ l An iteration of the algorithm may be formally stated as

(x,y) E A x B � C(x,y) = x+ y = z EX� (u,v) =:Fz � PAxs(u, v) E A x B,
where L is isometric from X x X into X, :F is the proximal decomposition operator from X into X xX, and PAxB is the projection on Ax B. Let us denote the composed mapping by .J = PAx B o:FoC.

We verify now that any fixed point (x, y) of Algorithm PDG is a solution of (P). Indeed, (x, y) = PAxs(u, v) and (u, v) = :Fz with z = x + y. If (u, v) E Ax B, then (x, y) is a solution of (P). Else, we have

(u-x, v-y) E L = {(a, b) EX x X i a + b = 0}.
But, as (x,y) = PAxs(u, v), we can state

(u -x,v-y)EB x A.
A and B being orthogonal subspace, the unique intersection of L and B x A is (0, 0). Thus, (x,y) = (u,v) and (x,y) solves (P).

On the other hand, if (x, y) is a solution of (P), :F(x + y) = (x, y), and (x, y) E A x B, which means that (x,y) is a fixed point of Algorithm PDG.

The PDG Algorithm is a particular instance of Spingarn's Partial Inverse Method [START_REF] Spingarn | Partial inverse of a monotone operotor[END_REF]. Indeed, when c = 1, the proximal step on the Partial Inverse operator TA becomes: Find (x�, YD such that : Xk + Yk = x� + y� and (YD A + (YOB E T( (x�) A + (xDB), which means, of course, that (x�, YD is the proximal decomposition of (xk, Yk) on the graph of T. Thus, the convergence has been established by Spingarn who has used the properties of the PPA applied to the partial inverse operator. However, here we give a direct proof of this fact that does not use the concept of the Partial Inverse. The main interest is that we shall obtain as a corollary the numerical analysis of the scaled version of PDG in the strongly monotone case.

We prove first that the composed mapping :T associated with Algorithm PDG is firmly nonexpansive. It can easily be seen that the mapping U = C o:J o£-1 is indeed the proximal operator associated to the Partial Inverse of T, i. e., U = (I+ TA)-1. But, we do not use this fact to prove that :Tis firmly nonexpansive.

THEOREM 3.1. The mapping :T associated to Algorithm PDG is firmly nonex pansive if and only if T is monotone. Moreover , it is defined on the whole space Ax B if and only if T is maximal monotone.

Proof. Let (x,y) and (x',y') E Ax B, z, z' E C(x,y),C (x',y') respectively, i.e., z = x + y and z' = x' + y', (u,v) E :F(z) and (u',v') E :F(z'), i. e., u + v = z, u = (I+ T)-1z and u' + v' = z', u' = (I + T)-1z'. Finally, let (uA, VB ) and ( uA., v k ) E A x B be the respective projections of ( u, v) and ( u', v') on A x B.

It is clear that, as z E (I+T)u, dom(:F) = R(I+T), and dom(.J) = c-1 (dom(:F)) = {(zA, ZB) E A X B i z E dom(:F)}. 

E B (x-x', (u -• u')A} = (z-z', (u-u')A} = ( (u + v-u'-v', (u-u') A} = ( (u-u') + (v-v'), (u-u')A} and (y-y', (v-v')B} = (z-z', (v-v')B} = ( (u-u') + (v-v'), (v-v')B}• Hence, inequality (6) becomes ((u-u') + (v-v'), (u-u')A} + ( (u-u') + (v-v'), (v-v')B} 2:: ll (u-u')A II 2 + ll (v-v')B II 2•
We can now use the orthogonal decomposition of u -u' and v -v' on the direct sum A$B to get

'v'(u, v), (u', v') E Gr(T), ( (u-u') A, (v-v') A) + ( (u-u')B, (v-v ')B) � 0.
Finally, remarking that

(u-u', v-v') = ( (u-u')A, (v -v')A) + ( (u-u')B, (v-v')B),
we can conclude that . [START_REF] Lawrence | On fixed points of nonexpansive piecewise isometric mappings[END_REF] 

D

Assuming that (P) has a solution, the convergence of the algorithm follows directly from Opial's lemma (see [START_REF] Opial | Weak convergence of the J'Uccessive approximations for nonexpansive mappings in Banach spaces[END_REF]), which states that, if a fixed point exists, a firmly nonexpansive operator is asymptotically regular and generates a convergent sequence. This is the very same idea as used by Martinet in the original proof for the PPA [START_REF] Martinet | Algorithmes pour la Resolution de Problemes d' Optimisation et de Minimax[END_REF] and developed further by Rockafellar who included approximate computations of the proximal steps [START_REF] Rockafellar | Monotone operotors and the proximal point algorithm in convex progrom ming[END_REF] .

4. A scaled decomposition on the graph of T. We introduce now a scaled version of the decomposition on the graph of a maximal monotone operator.

DEFINITION 4.1. Let (x, y) EX x X, T be a maximal monotone operator and>. a positive number . Then, the scaled proximal decomposition of (x, y) on the graph of T is the unique ( u, v) such that u + >.v = x + >.y, (u, v) E Gr(T).

Again, the existence and unicity of that new decomposition is a consequence of T being maximal monotone. Indeed, if v E Tu, we can write

u + >.v E u + >.Tu => u = (I+ >.T)-1 (u + >.v ) = (I+ >.T)-1 (x + >.y) v = .x-1 (x + >.y-u).
Observe that we can also write the following inclusions using the inverse operator r-1 for a given positive J.L:

u E T-1v, v+ J.Lu E v+ J.LT-1v, then v =(I+ J.LT-1 )-1 (v + J.LU).
Now, if J.L satisfies J.L-l = >. , we get v + J.LU = J.L(u + >.v) and, using the fact that (J.LT)-1z = r-1(J.L-1z), we obtain v = >. -l u + J.LT-1 )-1 (u + >.v) =(I+ J.LT-1 )-1 (J.L x + y).

Resuming, the scaled decomposition on the graph of T can be defined by (7) u = (I + >.T) -1 (x + >.y) , v = (I + J. .t T-1 )-1 ( J. .t X + y) , which appears as a natural generalization of (1 ). But, in fact, only one scaling factor can be introduced to maintain the desired properties, this is why we must fix AJ. .t = 1.

We can now describe the iteration of a scaled version of Algorithm PDG .

ALGORITHM 3 (SPDG) . (xk,Yk) E Ax B. Compute the scaled decomposition of (xk, Yk) on the graph of T.

U k = (I + >.T)-1 (xk + >.y k) , V k = >.-l (Xk + AYk -U k) • If (uk, vk) E Ax B, then stop. Else, Xk+l = (uk)A and Yk +l = (vk)B •
Observe that the scaled proximal decomposition can be stated in the following way.

Let w = >.v and r = >.y . Then, if ( u, v) is the scaled proximal decomposition of (x, y) on the graph of T, (u, w) is the proximal decomposition of (x, r ) on the graph of >.T. Hence, from the preceding section, we know that the sequence {(xk, rk)} converges to a point in Ax B nG r(>. T) . This fact implies that the sequence {(xk, Yk) } converges to a solution of (P ) .

On the other hand, we can see that SPDG is equivalent to the scaled version of the Partial Inverse Method (with c = 1) described by Spingarn in [13, Algorithm 2, p. 208 ) for the minimization of a convex function on a subspace. It reduces, of course, to PDG, i.e., to PIM, when>.= 1. Again, as the decomposition on the graph of T is a proximal step, approximate rules for computations can be added as in [START_REF] Rockafellar | Monotone operotors and the proximal point algorithm in convex progrom ming[END_REF] to get an implementable algorithm. We prefer to omit these details to focus on the accelerating properties of the scaling parameter, which constitute the main contribution of the present work.

To analyze the influence of the scaling parameter on the speed ratio of convergence of SPDG , we consider now the case where Tis both strongly monotone and Lipschitz. From the composed nature of .:1>.. and using the relations (8 ) and ( 9), we deduce the following bounds: Observe that, as

ll (uA,WB)-(u A ,w � )ll2 � ll u-u' ll2 + llw-w'll2 �li z-z'll2-2(u-u',w-w'} � li z-z'll2 -2p ll u-u'll2 � ( 1 -(1 � ).. : £ ) 2 ) li z-z'll2 � (1-(1 ��£ ) 2 ) li (x,
L � p,r(>.. ) = 2>-.p 1 -(1 + ).. £ ) 2 < 1.
We easily deduce the theoretical optimal value for >.. : [START_REF] Opial | Weak convergence of the J'Uccessive approximations for nonexpansive mappings in Banach spaces[END_REF] "X= 1/L and r("X) = J 1 -; L .

When Tis a linear positive definite operator, we observe that bad conditioning implies a slowdown of the algorithm. The optimal value of the scaling parameter must be chosen very small if L = J.Lmax, the largest eigenvalue of the associated matrix, is very large. We may observe that the speed ratio obtained in Theorem 4. 2 is the same as the one given in [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operotors[END_REF] for the Douglas-Rachford splitting algorithm. Indeed, the connection between that algorithm and the Partial Inverse Method has been established by Eckstein [3 ] and we give its precise meaning in the Appendix.

The influence of the Lipschitz constant on the number of iterations has been analyzed for quadratic convex functions that were minimized on a simple subspace. The sensitivity to that parameter is shown on the five graphics of Fig. 1 and2 for different values of L, p, and the dimension of the space. These results are shown in Table 1. The influence of the scaling parameter on the number of iterations is illustrated by comparing columns iter(":\) ( number of iterations when ).. = "X) and iter (1) (number of iterations when ).. = 1). The number of iterations corresponds to the implementation of Algorithm PDG associated with the graph of >.. T. We show below why it is faster than the straightforward application of SPDG even if the primal sequences {xk} coincide in both algorithms.

It is also interesting to analyze the behaviour of the sequence {(xk,Yk)} and to look for some values of the scaling parameter such that, that sequence is mapped by a contraction. To be more precise, let .1>.. and 1-l>.. be the maps associated with the sequences {(xk, rk)} and {(xk, Yk)}, respectively. Then, if D>.. is the mapping defined by D>.. (x, y) = (x, >.. y), t I I � : --------T--------------�- ---------------------�-- As (xk, Yk) = D;.1 (xk, rk), we already know that the sequence {(xk, Yk)} converges when {(xk, rk)} converges. Note that a direct proof of this fact seems rather hard to state. The reason is that 1i>. is not necessarily a contractive map for any >.. We study below the conditions on >. to get a contraction in the strongly monotone case. In the strongly monotone and Lipschitz cases, we already know that 1i>. is a contraction for >. = 1 . The next theorem shows that this remains true if >. lies in a specific interval containing one. 
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THEOREM 4.3. Suppose that T is strongly monotone with modulus p and Lipschitz with constant L. Then, if A E (1, p + y'1 + p 2 ), the mapping 'H>.. is a contraction.

Proof Again let u =( I+ AT)-1 (x + AY) and u' =(I+ AT)-1(x' + Ay'). We use successively the nonexpansiveness of the projection and the firmly nonexpansiveness of the resolvent to write II'H>.. ( x, y ) -'H>.. (x',y') ll k $\\ (u-u 1 ,A-1 (x-x' + A(y-y')-u + u')) ll k $ A-211X -x'll2 + IIY-y'll2 + A 2-� p -1 11u-u'll2• Using the Lipschitz property, we obtain Hence, a sufficient condition that ensures that 'H.>.. is a contraction is A � 1 and O(A) = A 2-2Ap-1 < 0. That condition does not depend on the Lipschitz constant (indeed, this happens because 0 < p < L). We observe now that 0(1) = -2 p < 0 and the desired interval must be : A E (1, p + y'1 + p 2 ).

0

The different behaviour of both sequences {(xk, Zk)} and {(xk, Yk)} is illustrated in Fig. 3. For a small A, the second sequence (which is the one that will yield a solution for the original problem (P )) converges much slower even if it presents a monotonic decrease toward the fixed point. We conclude with the following observations on the choice of the scaling pa rameter: if bad conditioning is due to a too-small p, then we must accelerate the convergence by choosing .X close to the optimal value 1/ L (if it is not too far from 1!). If bad conditioning is due to a too-large L, then we may choose >. close to 1 in [ l, p+ Jl + p 2 ).

Appendix. The relation between the partial inverse and the Douglas-Rachford splitting operator may be explained in the following way which is directly inspired by the work of Lawrence and Spingarn [START_REF] Lawrence | On fixed points of nonexpansive piecewise isometric mappings[END_REF]. It was later derived by Eckstein and Bertsekas [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operotors[END_REF].

We recall the one-to-one correspondences among maximal monotone operators, maximal nonexpansive, and proximal operators as described in [START_REF] Lawrence | On fixed points of nonexpansive piecewise isometric mappings[END_REF].

Let a : (x, y) �---> (x, 2y-x) be the one-to-one correspondence of the class of proximal operators onto the class of nonexpansive operators and let f3 : (x, y) �---> (x + y,x-y) be the one-to-one correspondence of the class of monotone operators onto the class of nonexpansive operators. Following [START_REF] Lawrence | On fixed points of nonexpansive piecewise isometric mappings[END_REF], let us define two types of composition operations.

Let p 1 *P2 = a-1 (a(p 1 ) oa(p2 )) be the proximal operator obtained by composing two proximal operators p1 and p2 through their associated respective nonexpansive images (which give indeed another nonexpansive operator when composed). Likewise, let T1 8 T2 = /3-1 (/3(T1) o /3(T2 )) be the monotone operator obtained by composing two monotone operators in the same way. A straightforward calculus shows that, if p1 and P2 are the resolvents of T1 and T2, respectively, then p = Pl * P 2 is the resolvent of T = T1 8 T2 . As observed in [START_REF] Lawrence | On fixed points of nonexpansive piecewise isometric mappings[END_REF], we have the following interpretation of the * operation :

P1 * P 2 = P1 ° (2 p2 -I) +I -P 2, which is the operator associated to the fixed point iteration of the Douglas-Rachford splitting method (see [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operotors[END_REF]). Observe that the nonexpansive operator a(p 1 ) o a(p2 )) is the operator associated with the Peaceman-Rachford iteration.

On the other side, it is shown in [START_REF] Lawrence | On fixed points of nonexpansive piecewise isometric mappings[END_REF] that, when T1 is the subdifferential mapping of the indicator function of a subspace A, i.e., Gr(T1 ) = A x Al., then T1 8 T = TA, the Partial Inverse of T. Resuming these facts, we have the following proposition.

PROPOSITION. Let T1 and T2 be two maximal monotone operators on X. The Douglas-Rachford splitting operator p = p1 o ( 2p 2 -I) +I-p2 , where p 1 = (I + >.T 1 ) -1 and p2 = (I+ >.T2 )-1 , is a proximal operator, indeed p = (I+ T)-1 , where T = >.T1 8 >.T2. Moreover, if Gr(T 1 ) =A x Al. and T2 = T, then p = (I + (>.T ) A)-1 , the resolvent of the partial inverse of >.T. Then, the Douglas-Rachford iteration applied to problem (P) is the partial inverse method associated to >.T. SPDG is the corresponding algorithm defined in the product space X x X.

Observation . Clearly (I+ (>.T )A)-1 f. (I+ >.TA)-1 • This point is crucial because the computation can only be performed in the first expression (this is then the SPDG Algorithm) or in the second expression with >. = 1.

2 )

 2 Proximal decomposition. Find the unique (x� , YD such that x� + y � = Xk +Yk and (x� , YD E Gr(T) If (x� , YD E A x B, then stop. Else (xk+t. Yk+ 1 ) = (( x�) A , (YD B ) • The unique solution of the proximal decomposition step is given by (1) X�= (I + T)-1 (xk + Yk) , Y� =(I + T-1 )-1 (xk + Yk) • Of course, only one proximal calculus is needed as (I + r-1 )-1 = I-(I + T)-1 . We propose then a modified proximal decomposition algorithm by introducing scaling factors .X and p,. Indeed, problem (P) may be written in two ways : y E Tx � x + .Xy E (I + .XT )x, x E T-1 y � y + p,x E (I + p,T -1 )y , which induces the following fixed point iteration, a natural scaled version of (1). (Modified proximal decomposition. X�= (I + .XT ) -1 (xk + AYk), y� =(I + J.L T-1 ) -1 (Yk + p,xk). If (x� , y�) E A x B, then stop. Else (xk+t.Yk+ 1 ) = (( x� ) A ,(YD B ) •

( 6 )

 6 Now, :Tis firmly nonexpansive if and only if 't/ (x,y), (x',y') E dom(:T ) and 't/ (uA, VB ) E :T (x,y), (u A, ,v k ) E :T (x',y') ( (x, y)-(x', y'), (uA, VB )-(u A, , v k )} 2:: ll (uA, VB )-(u A, , v k ) ll2• But, we have ( (x,y)-(x',y'), .( uA,VB)-(u A, ,v k)} = (x-x', (u-u')A} + (y-y', ( v-v')B} and, as x, x' E A and y,y '

THEOREM 4 . 2 .

 42 When Tis strongly monotone with modulus p and Lipschitz with constant L, then the convergence of the sequence {(xk, rk) } genemted by SPDG with rk = >.y k is linear with speed mtio 2..\p 1 -( 1 + >. L ) 2 . Proof. If .J>.. is the composed operator associated to the monotone operator >.T, we define as in Theorem 3.1 (x, r) , (x ', r' ) E Ax B, z = x+ r, z' = x' +r', (u , w), (u', w') E G r (>.T) . Then, (uA,WB) E .J>.. (x,r) and (u�,wB) E .J>.. (x ' , r' ) . The strong monotonicity of >.T implies that {8) Vw E Tu, w' E Tu', (w-w', u-u') ;::: >.p ii u-u'll2 and, as z E (I + >.T)u and z' E {I + >.T)u' (9) liz-z'll $ (1 + L) ii u-u' ll•

  r)-(x',r')ll2 • Let (x*, r*) be the limit point of the sequence { (xk, rk) }. It is therefore a fixed point of the mapping :1> ... Applying the above inequality to the pairs (xk+ l . rk+ l ) and (x*, r*), we obtain the desired result: ll (xk +l> rk+ l )-(x*,r*) ll2 � ( 1 -(1 � ).. : £ ) 2 ) ll (xk,rk)-(x*,r*) ll2 .D

�FIG. 1 .

 1 FIG. 1. Number of iterations for dim=lO.
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  is firmly nonexpansive if and only if T is monotone. Moreover, as dom(.7) = { (x, y) E A x Bl x + y E dom(F)}, we obtain .7firmly nonexpansive } { Tmonotone T . 1 t

	dom(.7) =A x B	<===>	dom(F) =X

<===>

max t ma mono one.

TABLE 1

 1 Numerical tests for quadmtic problems. Comparison of both sequences

	1/L	.A Iter( .A) Iter(1) dim	tolerance
	1.712	2.05	17	34		
	0.936	1.05	17	20		
	0.202	0.26	18	29		
	0.102	0.13	18	42		
	0.051	0.07	18	60		
	0.034	0.05	18	70		
	0.010	0.02	18	92	100	0.01
	0.508	0.58	17	19		
	0.171	0.12	18	35		
	0.094	0.12	17	44		
	0.049	0.06	18	60		
	0.033	0.05	18	70		
	0.020	0.03	18	82		
	0.010	0.02	19	92		
	1.712	2.04	16	32		
	0.936	1.21	16	18		
	0.202 0.241	17	27		
	0.102 0.121	17	39		
	0.051 0.061	17	54		
	0.034 0.041	17	63		
	0.010 0.021	17	75	10	0.001
	0.508	0.58	15	16		
	0.171 0.211	16	29		
	0.094 0.121	16	40		
	0.049 0.061	17	54		
	0.033 0.041	17	63		
	0.020 0.031	17	72		
	0.010 0.021	17	75		
						p=O ,l L=12 l=O,OS

' Iteration FIG. 3.