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PROXIMAL DECOMPOSITION ON THE GRAPH OF A MAXIMAL 
MONOTONE OPERATOR* 

PHILIPPE MAHEYt, SAID OUALIBOUCHt, AND PHAM DINH TAO§ 

Abstract. We present an algorithm to solve: Find (x,y) E A X A.L such that y E Tx, where
A is a subspace and T is a maximal monotone operator. The algorithm is based on the proximal
decomposition on the graph of a monotone operator and we show how to recover Spingarn's decom­
position method. We give a proof of convergence that does not use the concept of partial inverse and 
show how to choose a scaling factor to accelerate the convergence in the strongly monotone case. 
Numerical results performed on quadratic problems confirm the robust behaviour of the algorithm. 
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AMS subject classification. 90C25 

1. Introduction. We consider in this paper the following constrained inclusion
problem: let X be a finite dimensional vector space and A a subspace of X. Let 
us denote by B the orthogonal subspace of A, i.e. , B = A.L. Let T be a maximal 
monotone operator on X and denote its graph by Gr(T), i.e. , Gr(T) = { (x, y) E 
X x Xly E Tx }. Then, the problem is to find x E A and y E B such that y E Tx, 
which can be written: 

(P) Find (x, y) EX x X such that (x, y) E A x B n Gr(T). 

A typical situation, which is easily shown to give the form (P), is the problem 
of minimizing a convex lower semicontinuous function on a subspace. The particular 
applications we have in mind are the decomposition methods for separable convex 
programming. They have recently gained some new interest with the possibility of 
implementing them on massively parallel architectures to solve very large problems 
such as the ones that appear in network optimization or stochastic programming (see 
[1]). There are many different ways to transform a separable convex program in the 
form (P), but the general idea is to represent the coupling between the subsystems 
by a subspace of the product space of the copies of the primal and dual variables. 

We are aiming here at the application of the Proximal Point Algorithm (PPA) 
(cf. [11]) to problem (P). In 1983, Spingarn [12] proposed a generalization of PPA to 
solve (P) that was based on the notion of the Partial Inverse operator. If we denote 
by x A the orthogonal projection of x on a subspace A, the graph of the partial inverse 
operator T A is given by 

Gr(TA) = { (xA + YB. YA + XB) I y E Tx }. 

Applying the PPA to this operator leads to the Partial Inverse Method (PIM) which 
we summarize here. 

ALGORITHM 1 (PIM). At iteration k, (xk,Yk) E A X B. Then, find (x�,y� ) 
such that Xk + Yk = x� + y� and � (YDA + (YDB E T( (x�)A + � (x�)B). 
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Then, (xk+l , Yk+l ) = ((x�)A , (YDB ) .

The main problem that arises with this algorithm is the difficulty of performing 
the proximal step (1) when c =11 in most interesting situations including the decom­
position methods. When c = 1, then the proximal step is a proximal decomposition 
on the graph of T and the subspaces A and B only appear in the projection step. 
In §3 we present the resultant algorithm, indeed equivalent to PIM with c = 1. The 
convergence is proved without the need to consider the Partial Inverse operator. The 
iteration is now written in the following way. 

Proximal decomposition. Find the unique (x� , YD such that x� + y � = X k  + Yk 
and (x� , YD E Gr(T) If (x� , YD E A x B, then stop. 
Else (xk+t. Yk+1 ) = (( x�)A , (YDB) ·

The unique solution of the proximal decomposition step is given by 

(1) X�= (I + T ) -1(xk + Yk) ,

Y� =(I + T-1 )-1(xk + Yk) ·

Of course, only one proximal calculus is needed as (I + r-1 ) -1 = I- (I + T ) -1 . We
propose then a modified proximal decomposition algorithm by introducing scaling 
factors .X and p,. Indeed, problem (P) may be written in two ways : 

y E T x  � x + .Xy E (I + .XT ) x, 

x E T-1y � y + p,x  E (I + p,T-1 ) y ,

which induces the following fixed point iteration, a natural scaled version of (1). 

(2) 

Modified proximal decomposition. 

X�= (I + .XT ) -1( xk + AYk) ,

y �  =(I + J.LT-1 )-1(Yk + p,xk) .

If (x� , y �) E A x B, then stop. 
Else (xk+t.Yk+1 ) = ((x�)A ,(YDB) ·

It appears that the modified proximal step is uniquely determined and corresponds 
to a proximal decomposition on the graph of .XT if .Xp, = 1. We recover then the 
scaled version of PIM proposed by Spingarn in [13]. It is mentioned in [6] that the 
performance of PIM is very sensitive to the scaling factor variations and we give an 
explanation of this fact, allowing its adjustment to an optimal value in the strongly 
monotone case. 

In §4, we give some numerical results that confirm the accelerating properties of 
the scaling parameter. 

2. The proximal decomposition on the graph of a maximal monotone
operator. We recall here some known results on the " Prox" mapping (I + T ) -1

associated to a maximal monotone operator T and focus on the properties of the 
decomposition on the graph of T. More details on that subject can be found in (2] 
and [5]. 

Let T be a maximal monotone operator on a Hilbert space X. The graph of T, 
denoted by Gr(T), is defined by 

Gr(T) = {(x,y ) EX x Xiy E T x } .
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Monotonicity implies that for all x, x' E X and for all y E Tx, for all y' E Tx', 
(y-y', x-x') 2: 0. As T is maximal, its graph is not properly contained in the graph 
of any other monotone operator. 

If T is strongly monotone, then there exists a positive p such that 

Vx,x'EX and VyETx, Vy'ETx', (y-y',x-x')2:Piix-x'ii2. 

We say that the operator T is Lipschitz with constant L if 

Vx, x' EX and Vy E Tx, Vy' E Tx', iiY-y'il � Lilx-x'll· 

For monotone operators that share both properties, we get the following explicit 
bounds: 

(3) Piix-x'll � I IY-y'll � Lllx-x'ii· 

When T is a linear operator represented by a positive definite matrix T, the best 
estimates for p and L are, respectively, the smallest and the largest eigenvalues ofT.

Of course, if T is maximal monotone, then for any >. > 0, >.T is maximal monotone 
and if, moreover, T is strongly monotone with modulus p and Lipschitz with constant 
L, then >.T is strongly monotone with modulus >.p and Lipschitz with constant >.L. 

The resolvent associated with maximal monotone operator T is defined by (I + 
T)-1. It is single-valued, defined on the whole space, and firmly nonexpansive, which 
means that, if we let U = (I+ T)-1 and V = I-U, then,

(4) 

or equivalently 

(5) 

Vx,x' EX, !lUx-Ux'ii2 + I IVx-Vx'ii2 � llx-x'll2

I IUx-Ux'ii2 � (x-x', Ux-Ux') . 

Related interesting facts on this characteristic property of resolvents may be found 
in theses by Martinet [9] and Eckstein [3] (see also [5]). Indeed, resolvents and maximal 
firmly nonexpansive mappings coincide and, following [7], one-to-one correspondences 
among these operators, maximal monotone, and maximal nonexpansive operators, 
may be stated. This fact is explored further in the appendix. 

We introduce now the proximal decomposition on the graph of a maximal mono­
tone operator. 

Given a maximal monotone operator T and a vector (x,y) EX x X, there exists 
a unique pair (u, v) EX x X called the proximal decomposition of (x, y) on the graph
of T such that 

u+ v= x+ y  and (u , v)EGr(T).

The unicity is a direct consequence of the maximality of T and we get 

u = (I+ T)-1 (x + y), 
v = (I+ r-1 )-1 (x + y). 
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3. The proximal decomposition algorithm. We return now to problem (P),
which has been analyzed by Spingarn [13]. Let T be a maximal monotone operator 
on X. Let A be a subspace and B its orthogonal subspace. The problem is to find 

(x, y) EX x X such that (x, y) E A x  B n Gr(T). 

This problem is a particular case of the general problem of finding a zero of the sum 
of two maximal monotone operators. The algorithms we are aiming at are splitting 
methods that alternate computations on each operator separately (see [8]). Indeed, 
most large-scale optimization problems can be formulated as the problem of mini­
mizing a separable convex lower semicontinuous function on a very simple subspace 
which represents the coupling between the subsystems. 

We propose then a generic algorithm that alternates a proximal decomposition 
on the graph of T with a projection on A x  B. Before going on with the analysis of 
the method, we observe that the other alternatives that come to mind to find a point 
in the intersection of two sets are not suitable. 

1. We can use the classical successive projections method on the two sets. The
problem is that Gr(T) is generally not convex in X x X. 

2. We cannot use another proximal decomposition on A x B (which is indeed
the graph of the maximal monotone operator 8XA , the subdifferential of the indicator 
function of the set A), because it would lead back to the original point! Indeed, 
if (x,y) E A x  B and (u,v) is the proximal decomposition of x + yon Gr(T), then 
x = ( u + v) A and y = ( u + v) B, which means that ( x, y) is the proximal decomposition 
of u + von the graph of 8XA ·

The Algorithm PDG (proximal decomposition on the graph) is stated below. 

ALGORITHM 2 (PDG). Let (x0,yo) E A x  B. k = 0. 
If (xk, Yk) E Gr(T), then stop: (xk, Yk) is a solution of (P). 
Else compute the proximal decomposition (uk,vk) of Xk + Yk on the graph of T. If 
(uk,vk) E A x  B, stop: (uk,vk) is a solution of (P). 
Else, Xk+l = (uk)A and Yk+l = (vk)B· 
k= k+ l 

An iteration of the algorithm may be formally stated as 

(x,y) E A x B � C (x,y) = x+ y = z EX� (u,v) = :Fz � PAxs(u, v) E A x B, 

where L is isometric from X x X into X, :F is the proximal decomposition operator 
from X into X x X, and PAxB is the projection on A x  B. Let us denote the composed 
mapping by 

.J = PAxB o:FoC. 

We verify now that any fixed point (x, y) of Algorithm PDG is a solution of (P). 
Indeed, (x, y) = PAxs(u, v) and (u, v) = :Fz with z = x + y. If (u, v) E A x  B, then 
(x, y) is a solution of (P). Else, we have 

(u-x, v-y) E L = { (a, b) EX x Xia + b = 0}.

But, as (x,y) = PAxs(u, v), we can state 

(u-x, v-y)EB x A. 
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A and B being orthogonal subspace, the unique intersection of L and B x A is (0, 0). 
Thus, (x,y) = (u,v) and (x,y) solves (P). 

On the other hand, if (x, y) is a solution of (P), :F (x + y) = (x, y), and (x, y) E 
A x B, which means that (x,y) is a fixed point of Algorithm PDG. 

The PDG Algorithm is a particular instance of Spingarn's Partial Inverse Method 
(12]. Indeed, when c = 1, the proximal step on the Partial Inverse operator TA 
becomes: Find (x�, YD such that : Xk + Yk = x� + y� and (YDA + (YOB E T( (x�)A +
(xDB), which means, of course, that (x�, YD is the proximal decomposition of (xk, Yk) 
on the graph of T. Thus, the convergence has been established by Spingarn who has 
used the properties of the PPA applied to the partial inverse operator. However, here 
we give a direct proof of this fact that does not use the concept of the Partial Inverse. 
The main interest is that we shall obtain as a corollary the numerical analysis of the 
scaled version of PDG in the strongly monotone case. 

We prove first that the composed mapping :T associated with Algorithm PDG is 
firmly nonexpansive. It can easily be seen that the mapping U = C o:J o£-1 is indeed 
the proximal operator associated to the Partial Inverse of T, i.e. , U = (I + TA)-1. 
But, we do not use this fact to prove that :Tis firmly nonexpansive. 

THEOREM 3.1. The mapping :T associated to Algorithm PDG is firmly nonex­
pansive if and only if T is monotone. Moreover, it is defined on the whole space A x  B 
if and only if T is maximal monotone. 

Proof. Let (x,y) and (x',y') E A x  B, z, z' E C (x,y),C (x',y') respectively, i.e. ,  
z = x + y and z' = x' + y', (u,v) E :F(z) and (u', v') E :F(z'), i.e. , u + v = z, 
u = (I+ T)-1z and u' + v' = z', u' = (I + T)-1z'. Finally, let (uA,VB) and
( uA., vk) E A x B be the respective projections of ( u, v) and ( u', v') on A x B. 

It is clear that, as z E (I+T)u, dom(:F) = R(I+T), and dom(.J) = c-1(dom(:F)) = 

{(z A, ZB) E A X Biz E dom(:F)}.

(6) 

Now, :Tis firmly nonexpansive if and only if 

't/ (x,y), (x',y') E dom(:T) and 't/ (uA,VB) E :T (x,y), (uA,,vk) E :T (x',y') 
( (x, y)- (x', y'), (uA, VB)- (uA,, vk)} 2:: ll (uA, VB)- (uA,, vk)ll2• 

But, we have 

( (x,y)- (x',y'),.(uA,VB)- (uA,,vk)} = (x-x', (u-u')A} + (y-y', (v-v')B} 

and, as x,x' E A and y,y' E B 

(x-x', (u - ·  u')A} = (z- z', (u-u')A} 
= ( (u + v-u'-v', (u-u')A} 
= ( (u-u') + (v-v'), (u-u')A} 

and 

(y-y', (v-v')B} = (z- z', (v-v')B} 
= ( (u-u') + (v-v'), (v-v')B}· 

Hence, inequality (6) becomes 

((u-u') + (v-v'), (u-u')A} 
+ ( (u-u') + (v-v'), (v-v')B} 2:: ll (u-u')AI I2 + ll (v-v')B I I2• 
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We can now use the orthogonal decomposition of u -u' and v -v' on the direct sum 
A$ B  to get 

'v'(u, v), (u', v') E Gr(T), 
( (u-u')A, (v-v')A) + ( (u-u')B, (v-v')B) � 0.

Finally, remarking that 

(u-u', v-v') = ( (u-u')A, (v-v')A) + ( (u-u')B, (v-v')B), 

we can conclude that .7 is firmly nonexpansive if and only if T is monotone. 
Moreover, as dom(.7) = { (x, y) E A x B lx + y E dom(F)}, we obtain 

.7firmly nonexpansive } { Tmonotone T . 1 t 
dom(.7) =A x B <===> 

dom(F) =X <===> maxtma mono one. D 

Assuming that (P) has a solution, the convergence of the algorithm follows directly 
from Opial's lemma (see [10]), which states that, if a fixed point exists, a firmly 
nonexpansive operator is asymptotically regular and generates a convergent sequence. 
This is the very same idea as used by Martinet in the original proof for the PPA [9] 
and developed further by Rockafellar who included approximate computations of the 
proximal steps [11] . 

4. A scaled decomposition on the graph of T. We introduce now a scaled
version of the decomposition on the graph of a maximal monotone operator. 

DEFINITION 4.1. Let (x,y) E X  x X, T be a maximal monotone operator and>. 
a positive number. Then, the scaled proximal decomposition of (x, y) on the graph of 
T is the unique ( u, v) such that 

u + >.v = x + >.y, 
(u, v) E Gr(T). 

Again, the existence and unicity of that new decomposition is a consequence of 
T being maximal monotone. Indeed, if v E Tu, we can write 

u + >.v E u + >.Tu 
=> u = (I+ >.T)-1 (u + >.v) 

= (I+ >.T)-1 (x + >.y) 
v = .x-1 (x + >.y-u). 

Observe that we can also write the following inclusions using the inverse operator r-1 
for a given positive J.L: 

u E T-1v, 
v+ J.Lu E v+ J.LT-1v, 
then v = (I+ J.LT-1 )-1 (v + J.LU). 

Now, if J.L satisfies J.L-l = >., we get v + J.LU = J.L(u + >.v) and, using the fact that
(J.LT)-1z = r-1 (J.L-1z), we obtain 

v = >. -lu + J.LT-1 )-1 (u + >.v)
=(I+ J.LT-1 )-1 (J.Lx + y). 
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Resuming, the scaled decomposition on the graph of T can be defined by 

(7) u = (I + >.T)-1(x + >.y ) ,
v = (I + J..t T-1 )-1 ( J..t X + y ) ,

which appears as a natural generalization of ( 1) .  But, in fact, only one scaling factor 
can be introduced to maintain the desired properties, this is why we must fix AJ..t = 1. 

We can now describe the iteration of a scaled version of Algorithm PDG. 

ALGORITHM 3 ( SPDG) . (xk,Yk) E A x  B. 
Compute the scaled decomposition of (xk, Yk) on the graph of T. 

Uk = (I + >.T) -1(xk + >.y k) , 

Vk = >. -l(Xk + AYk- Uk) ·

If (uk, vk) E A x  B, then stop. Else, Xk+l = (uk)A and Yk+l = (vk)B· 

Observe that the scaled proximal decomposition can be stated in the following 
way. 

Let w = >.v and r = >.y . Then, if ( u, v) is the scaled proximal decomposition 
of (x, y )  on the graph of T, (u, w) is the proximal decomposition of (x, r) on the
graph of >.T. Hence, from the preceding section, we know that the sequence {(xk, rk) }
converges to a point in A x  B nGr(>.T) . This fact implies that the sequence {(xk, Yk) } 
converges to a solution of ( P) . 

On the other hand, we can see that SPDG is equivalent to the scaled version of 
the Partial Inverse Method (with c = 1) described by Spingarn in [13, Algorithm 2, p. 
208)for the minimization of a convex function on a subspace. It reduces, of course, 
to PDG, i.e., to PIM, when>.= 1. Again, as the decomposition on the graph of T is 
a proximal step, approximate rules for computations can be added as in (11) to get an 
implementable algorithm. We prefer to omit these details to focus on the accelerating 
properties of the scaling parameter, which constitute the main contribution of the 
present work. 

To analyze the influence of the scaling parameter on the speed ratio of convergence 
of SPDG, we consider now the case where T is both strongly monotone and Lipschitz. 

THEOREM 4.2 . When Tis strongly monotone with modulus p and Lipschitz with 
constant L, then the convergence of the sequence {(xk, rk) } genemted by SPDG with 
rk = >.y k is linear with speed mtio 

2..\p 
1 - ( 1 + >. L )2 .

Proof. If .J>.. is the composed operator associated to the monotone operator >.T, we 
define as in Theorem 3.1 (x, r) , (x ', r ') E A x  B, z = x+r, z' = x '  + r ', (u, w), (u', w') E
Gr(>.T) . Then, (uA,WB) E .J>..(x,r) and (u�,wB) E .J>..(x ',r ') . 

The strong monotonicity of >.T implies that 

{8) Vw E Tu, w' E Tu', (w- w', u- u') ;::: >.piiu-u'll2 

and, as z E (I + >.T)u and z '  E {I + >.T)u' 

(9) liz- z'll $ ( 1  + L)iiu-u'll· 
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From the composed nature of .:1>.. and using the relations ( 8) and (9), we deduce the 
following bounds: 

ll (uA,WB)- (uA,w�)ll2 � llu-u'll2 + llw-w'll2 
�l iz-z'll2-2(u-u',w-w'}
� l iz-z'll2 -2pllu-u'll2 

� ( 1- (1 �)..:£)2) l iz-z'll2

� (1- (1��£)2 ) l i (x,r)- (x',r') ll2·

Let (x*, r*) be the limit point of the sequence { (xk, rk) }. It is therefore a fixed point of 
the mapping :1> ... Applying the above inequality to the pairs (xk+l. rk+l) and (x*, r*), 
we obtain the desired result: 

ll (xk+l>rk+l)- (x*,r*)ll2 � (1- (1 
�)..:£)2) ll (xk,rk)- (x*,r*) ll2. D 

Observe that, as 

L � p,r(>..) = 2>-.p 
1- (1 + )..£)2 < 1.

We easily deduce the theoretical optimal value for >..: 

(10) "X= 1/L and r("X) = J1- ;
L

. 

When T is a linear positive definite operator, we observe that bad conditioning implies 
a slowdown of the algorithm. The optimal value of the scaling parameter must be 
chosen very small if L = J.Lmax, the largest eigenvalue of the associated matrix, is 
very large. We may observe that the speed ratio obtained in Theorem 4.2 is the 
same as the one given in [8] for the Douglas-Rachford splitting algorithm. Indeed, 
the connection between that algorithm and the Partial Inverse Method has been 
established by Eckstein [3] and we give its precise meaning in the Appendix. 

The influence of the Lipschitz constant on the number of iterations has been 
analyzed for quadratic convex functions that were minimized on a simple subspace. 
The sensitivity to that parameter is shown on the five graphics of Fig. 1 and 2 for 
different values of L, p, and the dimension of the space. These results are shown 
in Table 1. The influence of the scaling parameter on the number of iterations is 
illustrated by comparing columns iter(":\) ( number of iterations when ).. = "X) and 
iter(1) (number of iterations when ).. = 1) . The number of iterations corresponds to 
the implementation of Algorithm PDG associated with the graph of >..T. We show 
below why it is faster than the straightforward application of SPDG even if the primal 
sequences {xk} coincide in both algorithms. 

It is also interesting to analyze the behaviour of the sequence { (xk,Yk)} and to 
look for some values of the scaling parameter such that, that sequence is mapped by 
a contraction. To be more precise, let .1>.. and 1-l>.. be the maps associated with the 
sequences { (xk, rk)} and { (xk, Yk)}, respectively. Then, if D>.. is the mapping defined 
by 

D>.. (x, y) = (x, >..y), 
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FIG. 1. Number of iterations for dim=lO. 

we can write the following correspondence: 

rt>. = n;.1 o :1>. o D>.. 

As (xk, Yk) = D;.1 (xk, rk), we already know that the sequence { (xk, Yk)} converges 
when { (xk, rk)} converges. Note that a direct proof of this fact seems rather hard to 
state. The reason is that 1i>. is not necessarily a contractive map for any >.. We study 
below the conditions on >. to get a contraction in the strongly monotone case. In the 
strongly monotone and Lipschitz cases, we already know that 1i>. is a contraction for 

>. = 1. The next theorem shows that this remains true if >. lies in a specific interval 
containing one. 
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THEOREM 4.3. Suppose that T is strongly monotone with modulus p and Lipschitz 
with constant L. Then, if A E ( 1, p + y' 1  + p2), the mapping 'H>.. is a contraction.

Proof Again let u = (I+ AT)-1 (x + AY) and u' = (I+ AT)-1 (x' + Ay') .  We use 
successively the nonexpansiveness of the projection and the firmly nonexpansiveness 
of the resolvent to write 

II'H>.. (x,y) -'H>.. (x',y')llk $\\ (u-u1,A-1 (x-x' + A (y-y')-u + u') )llk 

$ A-211X-x'll2 + IIY-y'll2 + 
A2-�p - 1

11u-u'll2•

Using the Lipschitz property, we obtain 

Hence, a sufficient condition that ensures that 'H.>.. is a contraction is A � 1 and 
O (A )  = A2- 2Ap- 1 < 0. That condition does not depend on the Lipschitz constant
(indeed, this happens because 0 < p < L). We observe now that 0 (1) = -2p < 0 and 
the desired interval must be : A E ( 1, p + y' 1  + p2). 0 

The different behaviour of both sequences { (xk, Zk)} and { (xk, Yk)} is illustrated 
in Fig. 3. For a small A,  the second sequence (which is the one that will yield a solution 
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p 

0.1 

1 

0.1 

1 

L 
0.584 
1.068 
4.940 
9.781 

19.461 
29.142 
96.907 

1.968 
5.840 

10.681 
20.361 
30.042 
49.404 
97.807 

0.584 
1.068 
4.940 
9.781 

19.461 
29.142 
96.907 

1.968 
5.840 

10.681 
20.361 
30.042 
49.404 
97.807 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 

TABLE 1 
Numerical tests for quadmtic problems. 

1/L .A Iter( .A) Iter(1) dim 
1.712 2.05 17 34 
0.936 1.05 17 20 
0.202 0.26 18 29 
0.102 0.13 18 42 
0.051 0.07 18 60 
0.034 0.05 18 70 
0.010 0.02 18 92 100 
0.508 0.58 17 19 
0.171 0.12 18 35 
0.094 0.12 17 44 
0.049 0.06 18 60 
0.033 0.05 18 70 
0.020 0.03 18 82 
0.010 0.02 19 92 
1.712 2.04 16 32 
0.936 1.21 16 18 
0.202 0.241 17 27 
0.102 0.121 17 39 
0.051 0.061 17 54 
0.034 0.041 17 63 
0.010 0.021 17 75 10 
0.508 0.58 15 16 
0.171 0.211 16 29 
0.094 0.121 16 40 
0.049 0.061 17 54 
0.033 0.041 17 63 
0.020 0.031 17 72 
0.010 0.021 17 75 

' 

Iteration 

FIG. 3. Comparison of both sequences 

tolerance 

0.01 

0.001 

p=O,l 
L=12 
l=O,OS 

for the original problem ( P) )  converges much slower even if it presents a monotonic 
decrease toward the fixed point. 

We conclude with the following observations on the choice of the scaling pa­
rameter: if bad conditioning is due to a too-small p, then we must accelerate the 
convergence by choosing .X close to the optimal value 1/ L (if it is not too far from 
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1!). If bad conditioning is due to a too-large L, then we may choose >. close to 1 in 
[l,p+ Jl + p2 ) .

Appendix. The relation between the partial inverse and the Douglas-Rachford 
splitting operator may be explained in the following way which is directly inspired by 
the work of Lawrence and Spingarn [7]. It was later derived by Eckstein and Bertsekas 
[4]. 

We recall the one-to-one correspondences among maximal monotone operators, 
maximal nonexpansive, and proximal operators as described in [7]. 

Let a : (x, y) �---> (x, 2y-x) be the one-to-one correspondence of the class of
proximal operators onto the class of nonexpansive operators and let f3 : (x, y) �---> 

(x + y,x-y) be the one-to-one correspondence of the class of monotone operators 
onto the class of nonexpansive operators. Following [7], let us define two types of 
composition operations. 

Let p1 *P2 = a-1(a(p1 ) oa(p2 ) )  be the proximal operator obtained by composing
two proximal operators p1 and p2 through their associated respective nonexpansive 
images (which give indeed another nonexpansive operator when composed). Likewise, 
let T1 8 T2 = /3-1(/3(T1 )  o /3(T2 ) )  be the monotone operator obtained by composing
two monotone operators in the same way. A straightforward calculus shows that, if p1 
and P2 are the resolvents of T1 and T2, respectively, then p = Pl * P2 is the resolvent 
of T = T1 8 T2. As observed in [7], we have the following interpretation of the * 
operation : 

P1 * P2 = P1 ° (2p2 - I) + I- P2,

which is the operator associated to the fixed point iteration of the Douglas-Rachford 
splitting method (see [8]) .  Observe that the nonexpansive operator a(p1 ) o a(p2 ) )  is
the operator associated with the Peaceman-Rachford iteration. 

On the other side, it is shown in [7] that, when T1 is the subdifferential mapping 
of the indicator function of a subspace A, i.e. , Gr(T1 ) = A x Al., then T1 8 T = TA, 
the Partial Inverse of T. Resuming these facts, we have the following proposition. 

PROPOSITION. Let T1 and T2 be two maximal monotone operators on X. The 
Douglas-Rachford splitting operator p = p1 o ( 2p2 - I) + I- p2 , where p1 = (I + >.T1 ) -1

and p2 = (I+ >.T2 ) -1, is a proximal operator, indeed p = (I+ T)-1 , where T =
>.T1 8 >.T2.  Moreover, if Gr(T1 ) =A x Al. and T2 = T, then p = (I + (>.T )A) -1, the
resolvent of the partial inverse of >.T. Then, the Douglas-Rachford iteration applied to 
problem (P) is the partial inverse method associated to >.T. SPDG is the corresponding 
algorithm defined in the product space X x X. 

Observation . Clearly (I+ (>.T )A )-1 f. (I+ >.TA) -1• This point is crucial because
the computation can only be performed in the first expression (this is then the SPDG 
Algorithm) or in the second expression with >. = 1. 
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