
HAL Id: hal-01644585
https://hal.science/hal-01644585v1

Submitted on 22 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Modal Intention Prediction With Probabilistic
Movement Primitives

Oriane Dermy, François Charpillet, Serena Ivaldi

To cite this version:
Oriane Dermy, François Charpillet, Serena Ivaldi. Multi-Modal Intention Prediction With Probabilis-
tic Movement Primitives. HFR 2017 - 10th International Workshop on Human-Friendly Robotics,
Nov 2017, Napoli, Italy. pp.1-15. �hal-01644585�

https://hal.science/hal-01644585v1
https://hal.archives-ouvertes.fr


Multi-Modal Intention Prediction With

Probabilistic Movement Primitives.

Oriane Dermy1, Francois Charpillet1, and Serena Ivaldi1

1 INRIA, 615 Rue du Jardin botanique, 54600 Villers-ls-Nancy
name.surname@inria.fr

Abstract. This paper proposes a method for multi-modal prediction of
intention based on a probabilistic description of movement primitives and
goals. We target dyadic interaction between a human and a robot in a
collaborative scenario. The robot acquires multi-modal models of collab-
orative action primitives containing gaze cues from the human partner
and kinetic information about the manipulation primitives of its arm. We
show that if the partner guides the robot with the gaze cue, the robot
recognizes the intended action primitive even in the case of ambiguous
actions. Furthermore, this prior knowledge acquired by gaze greatly im-
proves the prediction of the future intended trajectory during a physical
interaction. Results with the humanoid iCub are presented and discussed.

Keywords: multi-modality, probabilistic movement primitive, human
robot interaction, collaboration

1 Introduction

Humans are very good at mutually predicting and adapting their actions when col-

laborating with each other. In part due to the face that they use multi-modal cues

(acoustic, visual, etc) to predict the intention of their partner in a robust way [25].

To collaborate proficiently with humans exhibiting anticipatory skills, robots also

need to be able to predict the intention of human partners. Predicting the intention

from a motion implies legibility and predictability, i.e., the robot must be able to quickly

infer its goal and the future trajectory. Here, we advocate that the robot’s prediction

abilities can be improved by using multi-modal information ([8, 27]).

In our previous work [7], we addressed the problem of predicting the future intended

trajectory during a physical human-robot interaction when the human partner moves

the robot’s arm to start a movement. We proposed to use Probabilistic Movement

Primitives (ProMPs [21]) to learn the movement primitives from a set of demonstrations

and to compute the intended trajectory given early observations of the action, guided

by the human partner.

In this paper, both visual and kinetics cues are used to predict the human intent.

The intention is modeled as a goal location and a trajectory that the robot has to

perform with its arm. Both the robot’s arm manipulations and the partner’s gaze

motions are learned as a multi-modal ProMP, that captures the distributions over the

demonstrated trajectories.
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(a) Visual Guidance. (b) Physical Guidance.

Fig. 1: The humanoid robot iCub a) recognizes the intended movement primitive
using the partner’s directional gaze; b) predicts the movement to perform using
the partner’s physical guidance at the beginning of the movement.

From the physical inference, the robot is able to repeat movements and to continue

movements initiated by the partner, even with few early-observations. From the visual

inference the robot can predict and perform tasks that do not require the partner’s

guidance to refine the expected trajectory, but most importantly it can disambiguate

easily among similar primitives.

The paper is organized as follows. We briefly report on the literature about inten-

tion prediction and gaze as a conveyor of intention information in Section 2. Section 3

formulates the problem settled in this paper. Section 4.1 summarizes the theoretical

basis of the ProMP method to learn movement primitives, applied to learning multi-

modal information. Section 5 presents a multi-modal intention recognition application,

where results about the action recognition improve the prediction of the future tra-

jectory. Finally, section 6 discusses the proposed approach, its limitations and outlines

our future developments.

2 Related Works

In order for the robot to predict the trajectory to be performed, it has to infer the

user intention. Here, we focus on the inference from physical and visual cues. The

paragraphs below provide a brief review of research literature on intention and gaze

prediction. For the state of the art on movement primitives and inference during pHRI,

we refer to [7].

Intention Predicting the intention of a human essentially means predicting the goal

of his/her current or upcoming action as well as the movement performed to reach this

goal. Intention prediction is not only relevant to understand the prediction of intent

between humans [19, 5], but also to allow robots to be understood by humans [16, 10],

or to allow robots to understand humans in diverse applications, like human-robot

collaboration [11, 26], and robot navigation [20]. Here, the gaze is used as a major cue

to determine the user intention, coupling the directed gaze of the human with their

associated actions.
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Gaze as a conveyor of intention information Directional gaze is the most funda-

mental cue for social interaction, as it enables mutual and joint attention. Hence many

studies consider the human face or gaze direction to interact with him. Some use this

direction to estimate the user engagement with a robot companion [6, 1, 15]; or the

user emotions to correct the robot’s behavior [4]. Others to improve the robot behavior

by ensuring the safety of the interaction [24]; by anticipating the action of their part-

ner [13]; or by adapting robot actions according to the intention of their partner [17].

This last case corresponds to our current objective.

To complete this objective, the facial orientation or the human’s gaze is first com-

puted. Different methods are used to answer this question such as, Neural Networks [3]

, gradients computation [23], or probability. Gaze is often used as an a priori to per-

form an intended task (e.g, our work with ProMPs) to detect the object of interest

(e.g., [12] with Neural Networks) , or to predict the goal location (e.g., [22] with dy-

namic models). The main differences between our study and [12, 22] is that these works

are interested in the human motion prediction while we associate human gaze to the

robot motions.

In some research studies, the human’s gaze direction is accurately measured using

eye tracker [14, 20]. In our case, we rely on visual processing of the robot’s cameras,

which is less invasive and it does not require to wear a device, even though it is less

accurate than eye tracker.

3 Problem Formulation

This paper proposes a method for multi-modal prediction of intention based on a prob-

abilistic description of movement primitives and goals. We target dyadic interaction

between a human and a robot, equipped with eyes and arms, in a pick and place col-

laborative scenario, shown in Fig. 1. In this scenario, different objects must be sorted

following different trajectories. The human partner chooses to use visual and/or phys-

ical guidance to communicate the intended movement to the robot, that should be

able at some point to continue the movement on its own. During the visual guidance,

the robot tracks the partner’s head orientation to predict his/her intention: the gaze

trajectory is recognized as belonging to one of the known action primitives. The robot

predicts then the current task and the future intended movement. It completes the

intended task by placing the object in the expected place, following the trajectory in-

tended by the partner. During physical guidance, the user starts to physically move

the robot to perform the action; after early observations, the robot predicts the future

movement to perform. If the human partner uses both modalities, the movement prim-

itive can be recognized from the visual guidance (prior) and physical guidance can be

used to refine the predicted trajectory (posterior). To realize this scenario, we make

several hypotheses. Tracking the gaze using the eyes direction is difficult because of

saccadic eye movement directed towards the goal, that could cause the gaze trajectory

to be inconsistent. Therefore, the partner’s head orientation is used to determine his

intent. We assume the user’s position with respect to the robot is almost fixed dur-

ing the learning and the recognition task, because the robot learning is dependent on

the partner’s head orientation. We assume that the partner’s head orientations when

he/she looks at a same goal follow a normal distribution.

A conceptual representation of the problem is shown in Fig. 2. To learn the move-

ment primitives (top), two partners run several demonstrations: one moves the robot’s
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Fig. 2: Conceptual use of ProMP for predicting the desired trajectory to be per-
formed by the robot. In the training phase (top), ProMPs are learned from
several human demonstrations. In the inference phase (bottom), the robot rec-
ognizes the current ProMP using visual and/or physical information.

arm while another moves his head, following the trajectories to learn. From these

demonstrations, the robot collects the Cartesian position of its arm and the partner’s

gaze (head orientation). The trajectories make the base for learning the primitives

(prior distribution). The bottom of the figure represents the inference step. The partner

follows with his/her head the robot’s movement and/or he/she physically initiates the

robot’s hand movement. When the prediction is done, the robot finishes autonomously

the movement (i.e., drop the hand-held object). To show the improvement with respect

to our previous work, the learned trajectories of the dropping phase have identical ini-

tial and final positions (making the prediction from early observations harder, and

possible here only thanks to the multimodal primitive).

4 Methods

This section presents the ProMP method used to learn the motion primitives and to

predict the trajectory of the ProMP given one modality. See [7] for further information.

4.1 Learning Motion Primitives With ProMP

A ProMP is a Bayesian parametric model of demonstrated trajectories in the form:

ξ(t) = Φtω + εξ (1)
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where ξ(t) is the vector containing all the multi-modal variables to be learned at time

t (e.g., A(t) for visual modality or X(t) for physical modality); ω ∈ RM is a time-

independent parameter vector weighting the Φ matrix; εξ ∼ N (0, β) is the trajectory

noise; and Φt is a matrix of M Radial Basis Functions (RBFs) evaluated at time t:

Φt = [ψ1(t), ψ2(t), . . . ., ψM (t)]. Note that all the ψ functions are scattered across time.

The robot first records a set of n1 trajectories {Ξ1, . . . , Ξn1}, where the i-th trajectory

is Ξi = {ξ(1), . . . , ξ(tfi)}. The duration tfi of each recorded trajectory varies, following

the user demonstrations. To find a common representation (in terms of primitives), a

time modulation is applied to all trajectories, such that they have the same number

of samples s̄. To do so, we consider “Φαt” instead of “Φt”, to rescale the RBFs to

each trajectory, with the time modulation parameter “α = s̄
tfi

” . Such modulated

trajectories are then used to learn a ProMP.

For each Ξi trajectory, we compute the ωi parameter vector that minimizes the

error between the observed ξi(t) trajectory and its model Φαtωi+εξ. This is done using

the Regularized Least Mean Square algorithm.

Thus, we obtain a set of parameters upon which a normal distribution is computed:

p(ω) ∼ N (µω, Σω) (2)

with µω =
1

n

n∑
i=1

ωi (3)

and Σω =
1

n− 1

n∑
i=1

(ωi − µω)>(ωi − µω) (4)

4.2 Predicting the Trajectory of the ProMP

The learned ProMPs corresponds to several skills or action primitives. They are used as

a prior knowledge by the robot to predict the current action and its future trajectory,

so that it can continue the movement autonomously. Here, early observations of the

trajectory are a subset of the variables to learn:

Ξo = [Ξ1 . . . Ξno ]> = {Xo||Ao||
[
Xo

Ao

]
} (5)

Where Xo is the haptic measurement and Ao, the visual measurement.

The first step of the recognition process is to recognize the current ProMP k̂ ∈ [1 : 2]

, and the temporal modulation parameter α̂ from this partial observation Ξo. This is

done by computing the most likely couple of temporal modulation parameter and

ProMP type (α̂
k̂
, k̂) corresponding to the early trajectory. We use two methods to

perform this computation.

– The first called “maximum likelihood” (ML) is computed by:

(α̂
k̂
, k̂) = argmax

(α∈Sα
k̂
,k̂∈[1:2])

{loglikelihood(Ξo, µωk̂ , σωk̂ , αk̂)}. (6)

, where Sαk̂ = {α
k̂1
, . . . , α

k̂n
} is the set of all the α parameters computed during

the learning for each observation of the ProMP k̂.
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– The second called “model” is based on the assumption there is a correlation be-

tween the time modulation α and the variation of the trajectory δno from the

beginning until the instant no. Indeed, we assume that the time modulation pa-

rameter α is linked to the movement speed, which can be roughly approximated

by “Ξ̇ = δΞ
tf

”. For the physical inference, the “variation” of the hand position is

computed by “δno = X(no)−X(1)”, whereas for the visual inference, the variation

of the partner’s head orientation is computed by “δno = A(no)−A(1)”. We model

the mapping between δno and α by:

α = Ψ(δno)>ωα + εα, (7)

where Ψ are RBFs, and εα is a zero-mean Gaussian noise. During learning, we

compute the ωα parameter, using the same method as in Equation 1 and during

the inference, we compute α̂ = Ψ(δno)>ωα. Finally, we compute the maximum

likelihood in the set of {α̂1, α̂2}

Once identified the (α̂
k̂
, k̂) couple, the recognized distribution (called the “prior”) can

be updated by:
µ̂ωk̂ = µωk̂ +K(Ξo − Φα̂k̂[1:no]µωk̂ )

Σ̂ωk̂ = Σωk̂ −K(Φα̂k̂[1:no]Σωk̂ )

K = Σωk̂ Φ
>
α̂k̂[1:no] (Σξo + Φα̂k̂[1:no]Σωk̂Φ

>
α̂k̂[1:no])

−1
(8)

with α̂
k̂
[1 : no] = α̂

k̂
t (in matrix form), with t ∈ [1 : no].

Finally, the inferred trajectory is given by:

∀t ∈ [1 : t̂f ], ξ̂(t) = Φt µ̂ωk̂

with the expected duration of the trajectory t̂f = s̄
α̂k

. The robot is now able to finish

the movement executing the most-likely “future” trajectory X̂ = [X̂no+1 . . . X̂t̂f ]>.

5 Experiments

5.1 Experimental Setup

We carried out experiments with the humanoid robot iCub. To retrieve the approxi-

mated gaze direction, we use the roll/pitch/yaw angles of the user’s head orientation,

extracted from the camera image of the iCubs eyes by Intraface [28], To retrieve the

Cartesian information, we use an iCub module that computes the Cartesian posi-

tion and orientation (iKinCartesianSolver). The experimental procedure is outlined in

Fig. 2. The training phase requires a robot operator (performing kinesthetic teaching)

and a human partner (guiding the robot via gaze), for a total of two people. In the

inference phase, only the partner interacts with the robot.

5.2 Teaching iCub the Action Primitives

We taught the robot two multi-modal movement primitives that make it drop an ob-

ject inside a target bin (roughly at the same position) but following two different
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Fig. 3: Demonstrations (trajectories) and primitives. In red (ProMP A) the
“curved” trajectory, and in blue (ProMP B) the “direct” trajectory.

type of trajectories coupled with the corresponding trajectories of the human partner.

These primitives contain the Cartesian position and orientation of the robot’s left hand

(guided by the robot operator), and the head orientation of the human partner that

visually guides the robot: ξ(t) = [X(t), A(t)]>, with X(t) ∈ <6 the Cartesian pose and

A(t) the roll-pitch-yaw orientation angles of the partner’s head.

We performed 20 trajectory demonstrations per primitive action. Fig. 3 shows the

demonstrations and the learned-distribution for the two ProMPs.

5.3 Activating Primitives With Gaze

The gaze cue is used to identify the current action. This procedure has two advantages.

First, it does not require physical interaction, which could ease interacting with the

robot for some people. Second, it enables to improve the prediction of intended trajec-

tory, especially in case of ambiguous primitives that overlap and could make it difficult

to obtain a good prediction with few early observations. An intuitive case is shown in

Fig. 5.

start

prim1

prim2
50-50 
guess

without vision
(only physical
interaction)

start

gaze primitive
predicts motion
primitive before
updating it with
observations

with vision
(gaze+physical
interaction)

prim1

prim2

Fig. 5: Gaze helps disambiguate two
overlapping primitives.

From [7], we retain two methods to

compute the time modulation: “max-

imum likelihood” (ML) and “model”,

where the latter consists on estimating

the trajectory duration according to the

global partner’s head orientation varia-

tion: “δno = A(no)−A(1)”.

We tested off-line the gaze prediction

of the trajectories on the acquired data

set using cross-validation. Fig. 4 shows a

prediction example after having observed

50% of the trajectory. The inferred tra-

jectory is the mean trajectory of the red posterior distribution. Note that this posterior

distribution is included in the prior distribution and pass by the observed data with
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Fig. 4: Example of position inference from 50% of the head orientation trajec-
tory. The dots represent the trajectory the robot has to perform (ground truth).
The black curves represent the measurements done by the robot. The blue dis-
tribution represents the recognized ProMP and the green distribution the other
ProMP. The red distribution represents the posterior of the blue distribution,
computed from the measured data.

some flexibility, that correspond to the expected measurement noise fixed a-priori. Even

though the partner’s head orientation observations are not accurate, the prediction is

good enough to allow the robot to complete the task correctly.

Fig. 6a represents the error of ProMP recognition according to the percentage of

observations of the test trajectory. The longer the head trajectory is observed, the

smaller is the prediction error, for both methods for computing the time modulation.

This figure also shows that the model is less accurate than the ML method when the

robot observes less than 70% of the whole trajectory, while with more observation the

model method is a slightly more accurate. Since head movements are fast, the robot

can use the whole head movement trajectory and still react quickly. So, we can use the

model method to allow the robot to recognize which ProMP to follow for the visual

guidance. With 70% observation of a trajectory, there is no ProMP type recognition

error, thus, the robot can roughly infer the trajectory to perform (which corresponds

to 3 seconds).

We represent in Fig. 6b the average error of the Cartesian position of the inferred

trajectory. It shows that the error of the predicted trajectory goes from 4cm (10%

of the trajectory) to 2cm (from 80%). Thus, the more the robot observes its partner’s

head trajectory, the more it is able to achieve it own movement intended by its partner.

However, we can wonder if the posterior distribution is more accurate than the

prior. It would be the case if the partner’s head orientation was totally correlated to

the robot’s hand position and the measurement accurate enough to infer exactly the

end-trajectory. Fig. 6c represents the difference of the Normalized Root Mean Square

Error (NRMSE) between the prior and the posterior distribution. From 40% of the

trajectory observation, this difference is inferior to zero, meaning that by updating the

distribution, the robot improves the trajectory inference. Thus, the visual guidance

can be used to determine which ProMP the robot has to follow, but also to adapt the

ProMP distribution from the user’s head guidance in an accurate way.
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To achieve a better accuracy, we assume the physical interaction will more in-

dicated. To verify this assumption, the next session presents the physical guidance

experiment.
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Fig. 6: Visual guidance analysis.

5.4 Inference of Intended Trajectories With Physical Guidance

The same prediction experiment from early-demonstrations than the previous section

is presented here with haptic signals. Fig. 7 presents an example of such prediction. If

we compare to the visual experiment, we can note that the inferred trajectory (mean

of the red posterior distribution) is closer to the ground truth. Fig. 8a verifies this

idea. It represents the average distance between the inferred trajectory (X̂) and the

ground truth (Xdes), and the results show that the trajectory prediction using physical
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estimation is more accurate than the visual estimation, whether with the model or the

ML method, with an average of less than 1cm of distance error for the model and from

3cm (40% of known data) to 1cm (80%) for the ML. Moreover, Fig. 8b shows that the

posterior distribution of the ProMP improves the accuracy of the trajectory, mainly

for the model method which explains why the distance error using this method is short

in the previous figure.

Now, we can wonder if using the two modalities could improve the performance

of this inference ability. Thus, the next section is the multi-modal experiment on the

same data set.

5.5 Inference of Intended Trajectories With Multi-modal guidance
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Fig. 9: Example of position inference from 50% of the head orientation and the
Cartesian position trajectories.

Fig. 9 represents the inference of the Cartesian position trajectory when the robot

knows 50% of the trajectory data to achieve and when it uses both visual and physical

measurements (black curves). In this example, the inferred trajectory (mean of the

red posterior distribution) is close to the trajectory expected by the partner (black

dots). To compare this multi-modal prediction with visual or physical prediction only,

Fig. 10 and 11 represent all the statistics for each prediction type. Fig. 10 represents

the distance error between the Cartesian position of the expected and the inferred

trajectory. Whether with the model (in Fig. 10a) or the ML method (in Fig 10b), the

inference using the Cartesian position measurement only is more accurate than using

the multi-modal or the visual-only measurement. The performance of this physical

guidance is mainly visible with the model method, where the distance error is really

short. Thus, the multi-modality guidance did not improve the inference ability of the

robot.

From Fig. 11, we can see the number of ProMP recognition error according to the

type of modality used to perform the inference. An interesting result is that by using

the model method (in Fig. 11a), the robot is entirely able to recognize the initiated
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movement from 70% of know data, and with the ML method, the robot has only done

one error from the 38 trials (which corresponds to 2%). Thus, the multi-modal clearly

improves the ProMP recognition step of the inference, even though it did not improve

the final inferred trajectory precision.
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Fig. 10: Inference error of the Cartesian position: average|Xdes − X̂|
according to modality used.

6 Conclusions

This paper presents a multi-modal method for robots to predict the partner’s intended

trajectory during HRI using haptic and/or gaze cues. We tested our system with the

humanoid iCub collaborating with a human partner in a task where the robot has to

grasp an object using different trajectories. The human physically interacts with the

robot’s arm to start an action and/or uses his directional gaze to guide the robot. We

build on our previous work [7], where elementary actions are represented by Proba-

bilistic Movement Primitives that enable prediction of goals from early observations.

During physical guidance, the robot uses the haptic information to recognize the cur-

rent action, then it is able to accurately predict the goal, the future intended trajectory

and its duration. A limitation of previous inference method is that the robot is not

able to determine which movement primitive to follow when the early-observations are

ambiguous, i.e., identical to more than one primitive. In that case, the visual guidance

is used to identify the correct movement primitive. While during the visual guidance,

the same prediction is done using the directional gaze, approximated here by the head

orientation. The association between gaze cues and robot primitives is done by a multi-

modal learning phase. The visual modality has two main advantages: first, it does not

require the partner to physically touch the robot to start his intended movement; sec-

ond, it provides a faster recognition of the action primitive if compared with physical

signals. However, results show that by using the visual instead of the physical guid-

ance, the performance of the inference decreases slightly (around 1.5cm). A limit of
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Fig. 11: Prediction error according to modality used.

this modality is the accuracy of the gaze estimation. To improve it, we have many

possibilities: use the Kinect to have more relevant data; use another head recognition

software instead of Intraface; or use the Xsens 3D tracking. It is also possible to add

another ”no-human” modality to even surpass human inference skills, by guiding the

robot from a watch that contains sensors to detect the human partner’s arm pose and

to use this pose to learn and recognize ProMPs.

Regarding the inference using multi-modal measurements, results show that by

adding the visual recognition in addition to the physical recognition, it did not im-

prove the accuracy of the inferred trajectory (i.e., it did not improve the posterior

distribution computation), but it improves the ProMP recognition (i.e., it improves

the first step of the inference that consists on recognizing which movement the robot

has to execute among the one it has learned). Thus, to have the better inference

skills, we should use the multi-modal guidance to allow robots to recognize the move-

ment/action to perform, and then we should use the haptic guidance to improve the

movement precision according to the early measurements. However, the multi-modal

guidance currently requires to use two human partners (one in front of the robot to

guide it with his/her head and the other one to guide it physically) or to perform

the guidance type one after the other. The utilization of the Xsens is a good way to

improve this study because one partner will be able to guide physically and visually

the partner at the same time, hence in a more natural way.

In future work, we will also study the human preference for the use between the

haptic and visual guidance modes.
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