
HAL Id: hal-01644568
https://hal.science/hal-01644568

Submitted on 22 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncovering Influence Cookbooks : Reverse Engineering
the Topological Impact in Peer Ranking Services

Erwan Le Merrer, Gilles Trédan

To cite this version:
Erwan Le Merrer, Gilles Trédan. Uncovering Influence Cookbooks : Reverse Engineering the Topo-
logical Impact in Peer Ranking Services. 20th ACM Conference on Computer-Supported Cooperative
Work and Social Computing CSCW 2017, Feb 2017, Portland, United States. 5p. �hal-01644568�

https://hal.science/hal-01644568
https://hal.archives-ouvertes.fr

Uncovering Influence Cookbooks : Reverse Engineering the
Topological Impact in Peer Ranking Services

Erwan Le Merrer
Technicolor, France

Gilles Trédan
LAAS/CNRS, France

ABSTRACT
Ensuring the early detection of important social network users
is a challenging task. Some peer ranking services are now
well established, such as PeerIndex, Klout, or Kred. Their
function is to rank users according to their influence. This
notion of influence is however abstract, and the algorithms
achieving this ranking are opaque. Following the rising de-
mand for a more transparent web, we explore the problem of
gaining knowledge by reverse engineering such peer ranking
services, with regards to the social network topology they get
as an input. Since these services exploit the online activity of
users (and therefore their connectivity in social networks), we
provide a method allowing a precise evaluation of the extent
to which given topological metrics regarding the social net-
work are involved in the assessment of the final user ranking.
Our approach is the following : we first model the ranking
service as a black-box with which we interact by creating
user profiles and by performing operations on them. Through
those profiles, we trigger some slight topological modifica-
tions. By monitoring the impact of these modifications on the
rankings of created users, we infer the weight of each topo-
logical metric in the black-box, thus reversing the service in-
fluence cookbook.

INTRODUCTION
The need for an increased transparency in the functioning of
web-services has recently arised, motivated by various use
cases such as privacy or copyright control. For example, work
such as [7] proposes to retrieve which piece of information of
a user-profile triggered advertisement to that user. Goal is thus
to infer the internals of black-box services provided by com-
panies on the web. Klout or PeerIndex propose to rank users
based on their behavior on social networks (using their so-
cial connectivity and activity). They nevertheless keep secret
the algorithms and parameters used for this ranking 1. This
motivated some users to try reversing their internals [4]. So-
metimes information leaks about some ingredients of those
hidden recipes ; CEO of PeerIndex admitted to use Pagerank 2

(and thus graph topological-metrics), as a part of the ranking
algorithm, to compute user intrinsic influence in a network.
Such an understanding of which metrics are involved is also
of a particular interest for information sharing and coordina-
tion, as it has been shown that some centrality metrics cor-
relate with the actual ability of network actors to coordinate
others [5, 3]. This knowledge can then serve to assess if the
centrality metric leveraged by the ranking function makes the

1. Those services may provide a score as an output. Clearly, re-
versing a ranking function is harder than reversing a score, as you
can obtain a ranking from scores, while the opposite is impossible.

2. blog post on https://www.quora.com/

ranking service relevant to dispatch roles for given tasks for
example [3].

Nevertheless, reverse engineering such black-boxes is a chal-
lenging task. Indeed, in this web-service paradigm, the user
only has access to the output of the algorithm, and cannot ex-
tract any side-information. Moreover, in many cases such as
in peer ranking services, the user can only take action on a li-
mited part of the algorithm input. Motivated by this challenge
for transparency, we ask the following question : can a user
infer, from the results returned by such peer ranking al-
gorithms, what are the topological metrics in use, and to
what extent ?

We first introduce the ranking service we consider and model
our actions, before warming-up on a toy example. We then
generalize the example and provide a construction to identify
the use of a single arbitrary centrality among a given set of
candidates. Then, we assume that the ranking can be produ-
ced by a linear combination of multiple centralities, and give
a generic reverse engineer approach. We conclude by illustra-
ting such a generic approach on a concrete scenario, before
giving perspectives.

MODEL & WARM UP : REVERSING ONE CENTRALITY
Let us model a social web-service. Each user is represented
by a vertex v, together with a set of (possibly unknown to the
user) attributes a(v). To interact with the web-service, users
have access to a finite set of actions A. We consider two types
of actions : i) single actions that only involve a single user
(e.g., posting a message on a wall) and might change part of
the user profile a(v). And ii), pair actions that involve a pair of
users (e.g., following, declaring or deleting a “friendship” re-
lation). These actions impact the network of relations among
users, that we capture as a graph G∞(V, E).

Among the features of this web-service, a ranking of the users
is available. While the internals of the ranking methodology
are unknown, each user accesses its output, that is her own
ranking at any time. Let f be the ranking black-box function.
More specifically, f takes as input the graph G∞ along with
the attributes of its nodes (that is {a(v),∀v ∈ V}) and assigns
each node a score f (i, a(i)), i ∈ G∞ from which is derived
an observable ranking r of all graph nodes such that : ∀i, j ∈
V(G∞)2, i >r j iff f (i, a(i)) > f (j, a(j)), that is : “node i is
more important (or “influent”) than node j”.

The objective of this paper is to gain knowledge on f , and
more specifically to evaluate the impact of each action in A
on users rankings. For a given user, the two main difficulties
are that first, she witness only a limited part of the input of
f (typically her own friends in the social graph). Second, the
output of f is sparse, as it only provides nodes with a total

ar
X

iv
:1

60
8.

07
48

1v
1

 [
cs

.S
I]

 2
6

A
ug

 2
01

6

https://www.quora.com/

G∞

a1

a2 a3

a4 a5

Figure 1: A small query graph GQ, solving the single centra-
lity reverse engineering problem for plausible set Cbase.

order relation (e.g., user x is better ranked than her neighbor
y). In order to try reversing f , we assume the querying user
is able to create a set of profiles Va in the social service, and
have those profiles issue any single action of A. She is also
able to achieve any pair action between two profiles of Va,
therefore updating the subgraph of G∞ induced by nodes of
Va. Those two operations are conduced through API calls, as
it is e.g., observed in practice in Facebook [2].

As a warm up, let us assume that f leverages exactly
one of the following classic centralities Cbase = {degree,
eccentricity, betweenness, Pagerank, closeness} [6]. To de-
termine which one is in use, one user wants to build a small
query graph GQ, attached to G∞ (then G∞ ← G∞ ∪ GQ),
in order to reverse f . To start our analysis of f on a clean
basis, the user creates nodes ∈ GQ that are strictly identical
up to their connectivity (i.e., their attributes in a(v) regarding
single actions such as tweets or posted comments are empty).

LEMMA 1. The query graph GQ depicted on Figure 1, of
5 nodes, is sufficient to reverse engineer a function f that is
based on a single centrality ∈ Cbase, relatively to the other
centralities in the same set Cbase.

PROOF. The proof requires showing that such GQ is able
to discriminate the centralities considered in the set Cbase.
Consider graph G∞∪GQ on Figure 1. GQ nodes are given the
following ranking, for centralities in Cbase

3 : < degree, [a1 =r
a2 >r a3 =r a4 =r a5] >, < eccentricity, [a1 >r a2 =r
a3 >r a4 =r a5] >, < betweenness, [a1 >r a2 >r a3 =r
a4 =r a5] >, < Pagerank, [a2 >r a1 >r a4 =r a5 >r a3] >,
< closeness, [a1 >r a2 >r a3 >r a4 =r a5] >. All rankings are
indeed unique, thus allowing to designate the centrality used,
by user observing rankings produced by f at GQ nodes she
controls.

Note that GQ is not the unique graph solving this problem
instance.

There are obvious interests in minimizing the size of the
constructed query graph : first, constructing a bigger graph re-
quires a longer time, especially if actions on the service plat-
form are rate-limited on operations. Second, the bigger the
query, the easier it can be detected by the social service. Note
that the graph GQ \ n5, of size 4 is not a solution, as degree

3. we conducted numerical simulations using the networkx library :
https://networkx.github.io/

and betweenness produce the same [a1 >r a2 >r a3 =r a4]
ranking, as for both fringe nodes a3 and a4, betweenness is 0,
and degree is 1.

GENERAL DISCRETE CENTRALITY DISCRIMINATION
We now generalize the reversing logic used on the previous
example to a set C of arbitrary centralities, possibly in use
nowadays. Furthermore, we extend the notion of centrality
to the one presented in [1] : a centrality is any node-level
measure.

We first draw two observations : discrimination is made by the
ranking, therefore to distinguish between d different centrali-
ties one requires at least d different rankings. Thus |GQ|! ≥ d.
Second, the discrimination in this set of centralities is made
thanks to graphs we call delta-reversal graphs.

DEFINITION 1 (DELTA-REVERSAL GRAPHS). ∆XY is
the set of graphs such that ∀G ∈ ∆XY ,∃i, j ∈ V(G) s.t.
fX(G, i) < fX(G, j) ∧ fY (G, i) > fY (G, j).

A delta-reversal graph for two centralities X and Y is a graph
where the ranking r induced by using the ranking provided by
fX (i.e., by a function f only relying on centrality X) on the
nodes of G would be different than the ranking induced by
fY . Any such graph would thus allow to discriminate between
X and Y being used as f 4. The following property is a very
handy property for using delta-reversal graphs.

DEFINITION 2 (CENTRALITY k-LOCALITY). Let X a
centrality. X is said k-local if ∀G1,G2 graphs,∀i ∈ V(G1), j ∈
V(G2),Vk(i,G1) = Vk(j,G2) ⇒ fX(i,G1) = fX(j,G2), where
Vk(i,G) is the graph induced by the k-hop neighborhood of i
in G.

The intuition is the following : a k-local centrality only consi-
ders the k-hop neighborhood of a node when assessing it’s im-
portance. This can be seen as the “scope” of a centrality : any
topological modification beyond this scope leaves the node
importance unchanged. This can be exploited to join Delta-
reversal graphs into one single query graph while maintaining
their discriminating power. Following this intuition, the follo-
wing definition states an important property of those graphs.

DEFINITION 3. Let G a ∆XY graph, and dist(i, j) the hop-
distance between nodes i and j. If ∃i, j, k ∈ G s.t. dist(i, k) >
` ∧ dist(j, k) > ` ∧ fX(G, i) < fX(G, j) ∧ fY (G, i) > fY (G, j)
then G is `-discriminating. k is called an anchor.

Combining Delta-reversal graphs
We now explain how to combine pairwise discriminating
graphs into a single query graph.

LEMMA 2. Let X,Y,Z three centralities and let k their
maximum locality. Then ∀G1 ∈ ∆X,Y ,G2 ∈ ∆X,Z ,G3 ∈ ∆Y,Z , if
all these graphs are ` > k-discriminating, then GS = (V(G1∪

G2 ∪G3)∪ {a}, E(G1 ∪G2 ∪G3)∪ {(a,m1), (a,m2), (a,m3)}) ∈
∆XYZ .

4. Examples of discriminating graphs are known in the literature,
as they serve as motivation for introducing new centralities : see for
instance [8], where a graph is presented that discriminates random
walk betweenness from classic betweenness centrality.

https://networkx.github.io/

Data: G∞, a target node a ∈ V(G∞), the set C of suspected
centralities (|C| = d), D the set of pairwise
discriminating graphs for set C

Result: The centrality X in use in f
1 ∀GXY ∈ D, let iXY , jXY s.t.

fX(iXY) > fX(jXY) ∧ fY (iXY) < fY (jXY);
2 //Building and attaching the general query graph to G∞
3 for ∀G ∈ D do
4 V(G∞)← V(G∞) ∪ V(G);
5 E(G∞)← E(G∞) ∪ E(G) ∪ (a, anchor(G));
6 r ← r(f (G∞);
7 Let M be a d × d matrix initialized to false;
8 //Retrieving the centrality in use in f
9 for a = 1 . . . d do

10 for b = a + 1 . . . d do
11 Ma,b = iXaXb >r jXaXb ;

12 Let s be s.t. ∀k = 1 . . . d,Ms,k = true;
13 return Xs;

Algorithm 1: A reverse engineering algorithm, identifying
the centrality in use in arbitrary centrality set C.

PROOF. Since G1 is discriminating, m1 exists. Let i1, j1
the corresponding anchor nodes. Let σX(G1), σY (G1) the
ranks of centralities X,Y . Assume w.l.o.g. that σX(G1, i1) >
σX(G1, j1) and yet σY (G1, i1) < σY (G1, j1). Consider i1 :
we have d(i1,m1) > k and thus Vk(i1,G1) = Vk(i1,GS).
Thus fX(i,G1) = fX(i,GS). As the same applies for j1 we
deduce that σX(GS , i1) > σX(GS , j1) and yet σY (GS , i1) <
σY (GS , j1).

Thus GS ∈ ∆XY . A similar reasoning holds for i2, j2 and i3, j3
thus GS ∈ ∆XZ ∩ ∆YZ ∩ ∆XZ = ∆XYZ .

This lemma is very useful, as it provides us with a way to
create discriminating graphs from pair of known ones. The
following lemma finally generalizes the construction :

LEMMA 3. Let C a set of d centralities and let k their
maximum locality. Let D = {GAB ∈ ∆AB,∀A, B , A ∈ C2}, a
set containing a pairwise discriminating graph for each pair
of centrality in C. If all these graphs are ` > k-differentiated,
then let GS = (V(∪G∈DG)∪{a}, E(∪G∈DG)∪{(a,mAB,∀A, B ,
A ∈ C}), where mXY is an anchor of GXY ∈ D. Then GS ∈ ∆C .

PROOF. (sketch) : identical to Lemma 2.

The GS construction therefore allows for any set of centra-
lities, given pairwise discriminating graphs, to construct one
general discriminating graph achieving the reverse enginee-
ring process. Note that the complexity is quadratic : a graph
to compare d centralities requires Ω(d2) pairwise discrimina-
ting graphs.

We are now ready to propose a general method to infer which
centrality is in use in f . It is shown in Algorithm 1.

THEOREM 1. Let G∞ a graph, and r an unknown ranking
function relying on centrality z. If z ∈ C then Algorithm 1
returns z.

PROOF. First, observe that in Algorithm 1, lines 1 − 5 im-
plement the construction of a combined Delta-reversal graph
as defined in Lemma 3. Line 6 collects the resulting ranking.
Consider M at line 12. For z to be correctly identified, two
conditions must hold : i) the line Mz,. contains only entries at
true, and ii) all other lines Mi,., i , z contain at least one false
entry.

Consider line Mz,.. By contradiction, assume that one entry,
say j is false. Then necessarily iz, j <r jz, j line 11. Since r is
obtained using z, we deduce fz(iz, j) < fz(jz, j). This contradicts
the definition of iz, j and jz, j that are chosen line 1 in the sub-
graph Gz j such that fz(iz, j) > fz(jz, j). We conclude that Mz,.
contains only true entries.

Now, assume there exists another line, say i, such that Mi,.
contains only true entries. Consider column z : we have
Mi,z =true. As in the previous step, we deduce fz(ii,z) >
fz(ji,z) ; this again contradicts the definition of ii,z and ji,z cho-
sen line 1 in Giz such that fz(ii,z) < fz(ji,z). Thus every other
line has at least a negative entry.

Therefore, we conclude that Xs = z line 13 : Algorithm 1 has
identified z.

The sketch presented in Algorithm 1 can be optimized in
many ways. First, one can build the query graph incremen-
tally and only test the relevant centralities : let Gab be the first
added Delta-reversal graph line 4 and 5. It is possible to test
directly the value of Mab. Assume Ma,b=False, then necessa-
rily centrality Xa is not used in f . There is therefore no need
to add any other Gac,∀c ∈ D graph.

Second, observe that we focus on pairwise Delta-reversal
graphs. Some Delta-reversal graphs allow to differentiate bet-
ween more than two centralities (for instance, the graph GQ
Figure 1 that allows to differentiate between 5 centralities at
once, while containing only 5 nodes). Using such graphs dras-
tically reduces the size of final the query graph.

REVERSE ENGINEERING A LINEAR COMBINATION OF
CENTRALITIES
In the previous section, we have seen how to identify which
centrality is used given a finite set of suspected centralities.
We now propose a method for extending to a f that is a li-
near combination of suspected centralities, for it allows more
complex and subtle ranking functions.

As the space of possible centralities is theoretically infinite,
we assume the user takes a bet on a possibly large list of d
centralities in a set C, that are potentially involved in f . We
will show that our approach also allows to infer the absence
of significant impact of a given centrality in set C, and thus
conclude that it is probably not used in f .

In a nutshell, the query proceeds as follows. The user leve-
rages an arbitrary node a, already present in G∞. She then
creates d identical nodes (i.e., profiles) and connects them to
a. The ranking of those d created nodes is thus the same, by
construction. She applies to each node a different serie of API
calls (i.e., topological operations, attaching them one node for
instance). After each serie, ranking of those nodes changes.

Data: G∞, a target node a ∈ V(G∞), operations {u1, . . . , ud}

Result: An estimate of h (i.e., the vector containing the
weight of each centrality in f)

1 Let k be a vector of size d − 1 initialized to 0;
2 for 1 ≤ i ≤ d do
3 //attach a query node to target node a, and conduce

operations over it
4 Create node ai : V(G∞)← V(G∞) ∪ {ai};
5 Add edge (ai, a) : E(G∞)← E(G∞) ∪ {(ai, a)};
6 Apply ui(ai);
7 W.l.o.g., ud is the operation with the highest impact (that is

at this step ∀ j < d, a j <r ad) ; Reorder otherwise;
8 for i = 1 to d − 1 do
9 //identify operation thresholds

10 ki ← maxx≥1(ux
i (ai) <r ud(ad));

11 //J is the matrix where each element (i, j) is the impact of ki

applications of ui on the jth centrality of node ai, minus the
impact of operation ud on ad;

12 Let Ji, j = c j(uki
i (ai)) − c j(ud(ad)) ;

13 Set Jd,. = 0d ;
14 return Ker(J) //find h s.t. J.h = 0, thus is solution to the

reverse engineering of f
Algorithm 2: A general reverse engineering algorithm, esti-
mating the linear weight combination of centralities in f .

Based on those observed changes, she is able to sort the im-
pact of those calls, and thus to describe the impact of one gi-
ven call by a composition of smaller effect calls. This allows
her to retrieve the weights assigned by f to the d centralities
in set C, by solving a linear equation system.

Lets consider the following image : imagine you have an old
weighing scale (that only answers “left is heavier than right”
or vice-versa) and a set of fruits (say berries, oranges, apples
and melons) you want to weigh. Since no “absolute” wei-
ghing system is available, the solution is to weighs the fruits
relatively to each other, for instance by expressing each fruit
as a fraction of the heaviest fruit, the melon. One straightfor-
ward approach is to directly test how many of each fruit weigh
one melon. This is the approach adopted here. However, the
problem here is that in general, we are not able to individually
weigh each fruit (centrality). Instead, we have a set of d dif-
ferent fruit salads. This is not a problem if the composition of
each salad is known (i.e., the impact of API calls) ; one has to
solve a linear system : there are d different combinations that
are equal, thus providing d equations.

A reverse engineering algorithm
Black-box function f relies on arbitrary centralities chosen
from a set we denote C of size |C| = d. Let ci ∈ R

d be the d
dimensional column vector representing each of the d com-
puted centrality values for a node i in G∞.

We assume that f is linear in all directions (i.e., f is a weigh-
ted mean of all centralities) : ∃h ∈ Rd s.t. f (i) = ci.h. Re-
verse engineering the topological impact over the final ran-
king thus boils down to find h (and therefore directly obtain
f).h is then the vector of coefficients corresponding to centra-


j1,1 j1, j · · · j1,n−1
j2,1 j2, j · · · j2,n−1
.
.
. ji, j = c j(uki

i (ai)) − c j(ud(ad))
. . .

.

.

.
0 0 · · · 0

︸ ︷︷ ︸
J


h0
h1
.
.
.

hd−1

︸ ︷︷ ︸
h

= 0

Figure 2: Solution to reverse engineer f , uncovering h.

lities listed in C. The user performs operations on G∞ through
API calls, starting from an existing node a. We assume she is
able to find d different operations denoted {u1, . . . , ud}. Consi-
der for instance one operation of that set, noted u1(i), and
that simply adds a neighbor to node i : G∞(V, E), i →u1(i)

(V ∪ {a}, E ∪ {(i, a)}). Such an operation has an impact on
i’s topological role in f , let u ∈ Rd be this impact on all cen-
tralities in set C : ci ← ci + u.

Regarding those operations, we assume that : i) the user is
able to determine the result of each ui’s impact on her created
node’s centrality values (i.e., she computes uk

i (i),∀i ≤ d, and
where k > 0 is the number of applications of the operation),
and ii) they are linearly independent : each operation has a
unique impact on computed centralities from set C.

The query proceeds as shown on Algorithm 2, where
notations are defined. First, observe that by construction
rank(J) ≤ d − 1. The last operation ud is the reference
against which we compare other operations. Line 12 records
the maximum number of same ui operation applications that
lead to the same rank (or close) than a single ud operation on
another node.

Consider a line i of J (L.12 Algorithm 2, also represented on
Figure 2). Since at the end ai =r ad (or close), we have (cai +

uki
i (ai))h = (cad + ud(ad))h ± ui(ai).h. Since by construction

cai = cad , therefore we seek h s.t. uki
i (ai)h − ud(ad)h = 0. Or

matrix notation : J.h = 0 : h is in the kernel of J.

Intuitively, the fact that we get infinitely many solutions
(α.h,∀α ∈ R+) comes from our observation method : we are
never able to observe actual scores, but rather rankings. Since
multiplying h by a constant does not change the final ranking,
any vector co-linear to, e.g., h/||h|| is a solution.

One important remark is that one cannot formally claim that
one centrality metric is not in use in C with this algorithm. As-
sume for instance that one centrality, e.g., number of tweets of
the considered node, is 103 times less important than another
centrality, e.g., degree. Then we will not be able to witness its
effect unless we produce 103 tweets. And after 102 tweets, we
will only be able to conclude : number of tweets is at least 102

times less important that degree. One can reasonably assume
that such an imbalance in practice means that one service ope-
rator will not compute a possibly costly centrality to use it to
such a low extent in f ; this thus makes our algorithm able to
discard barely or not used centralities in C. Finally, we note
that with cost(ui) the number of calls issued by operation ui,
the total number of operations for weighting two centralities
in C is at most cost(ud) +

∑d−1
i=1 ki.cost(ui).

G∞

a

a1 a2

a11 a12 a13 a21 a22 a23

u1 u2

Figure 3: Querying G∞ : conducing two sequences of opera-
tions u1 and u2, attaching them to a.

Exploiting local centralities : an illustration
We demonstrated how to reverse engineer a linear combina-
tion of centralities. The difficulty for the user is to compute
the impact of u operations on the suspected centralities. In
the easiest case, suspected centralities behave linearly (such
as e.g., degree, betweenness), and it is therefore easy to com-
pute the impact of an update. The case of non-linearity can
be solved using the locality of centralities : if c is k-local, the
observation of the k-hop neighborhood of a node is required
to reverse engineer f . We illustrate this on a simple example.

Let us assume a ranking function f whose internals use a
combination of c1 : clustering centrality 5 and c2 : degree
(i.e., C = [c1, c2]). Without loss of generality, we assume that
the coefficient for degree in h is h1 = 1, so that we seek the
corresponding coefficient h2 = h. Let us consider the follo-
wing two operations in {u1, u2}. Operation u2 simply attach a
node to one initial query node (a1 or a2). u1 starts by atta-
ching queryS ize − 1 nodes to query node a1. At each call, an
edge between two randomly selected attached nodes is added,
to increase clustering. u1 and u2 are represented on Figure 3,
for a queryS ize = 4. User can compute the value of uk−1

1 (a1)
and uk−1

2 (a2) at any time, since she controls those nodes.

We simulated the query with a G∞ being a 1, 000 nodes Ba-
rabási-Albert graph with an average degree of 5, estimating
h using u1 and u2 operations with Algorithm 1. Figure 4 pre-
sents the obtained results : a point (x, y) means the real value
of h is x and was estimated by Algorithm 1 as y. Black dots
plot the real coefficient values of h. Each colored area repre-
sents the estimated (reverse engineered) coefficients, while
each color represents a query size, i.e., the number of nodes
created by the user to reverse f . The larger the query, the
more precise the reverse engineered results. We note that if
the real values of coefficients to be estimated are bigger (e.g.,
4 or 5 on the x-axis), estimations show lower precision (larger
areas). Despite this remark, estimations appear unbiased.

DISCUSSION
The will for web-services transparency starts to trigger new
research works. XRay [7] for instance proposes a correlation
algorithm, that aims at inferring to which data input is asso-
ciated a personalized output to the user. This Bayesian-based

5. this centrality has no linear behavior, but is 1−local.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

1 2 3 4 5
Real Coeff.

E
st

im
at

ed
 C

oe
ff.

querySize
●

●

●

●

●

20
30
40
50
60

Figure 4: Reversing a f with unknown coefficients from 1 to
5, with various query sizes (node creations.)

algorithm returns data that are the cause of received ads, while
we seek in this paper to retrieve the internals of a black-box
ranking function, in order to assess what is the effect of user
actions on the output peer ranking. We have presented a gene-
ral framework. Based on the centralities that might be used by
the ranking function, there remain work for a user, for buil-
ding discriminating graphs, and for finding small topological
operations that will make the reverse engineering possible.
For a ranking service operator, the countermeasure is the op-
posite : she must find ranking metrics that are computatio-
nally hard to distinguish, typically ones that would ensure the
detection of the querying user by the internal security system.
We find this to be an interesting challenge for futureworks.

REFERENCES
1. S. P. Borgatti and M. G. Everett. A graph-theoretic

perspective on centrality. Social networks, 2006.
2. Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding

the detection of fake accounts in large scale social online
services. NSDI, 2012.

3. S. Feczak and L. Hossain. Exploring computer supported
collaborative coordination through social networks. The
Journal of High Technology Management Research,
22(2) :121 – 140, 2011.

4. S. Golliher. How i reverse engineered klout score to an
r2 = 0.94. blog post, 2011.

5. L. Hossain, A. Wu, and K. K. S. Chung. Actor centrality
correlates to project based coordination. CSCW, pages
363–372, 2006.

6. D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter,
D. Tenfelde-Podehl, and O. Zlotowski. Network
Analysis : Methodological Foundations, chapter
Centrality Indices. Springer, 2005.

7. M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios,
R. Spahn, A. Chaintreau, and R. Geambasu. Xray :
Enhancing the web’s transparency with differential
correlation. USENIX Security Symposium, 2014.

8. Newman. A measure of betweenness centrality based on
random walks. Social Networks, 27(1) :39–54, 2005.

	Introduction
	Model & Warm Up: Reversing One Centrality
	General Discrete centrality discrimination
	Combining Delta-reversal graphs

	Reverse Engineering a Linear Combination of Centralities
	Discussion
	REFERENCES

