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Biomolecules are complex machines that are optimized by evolution to properly fulfill or con-
tribute to a variety of biochemical tasks in the cellular environment. Computer simulations based
on quantum mechanics and atomistic force fields have been proven to be a powerful microscope for
obtaining valuable insights into many biological, physical, and chemical processes. Many interesting
phenomena involve, however, a time scale and a number of degrees of freedom, notably if crowding
is considered, that cannot be explored at an atomistic resolution. To bridge the gap between
reality and simulation, many different advanced computational techniques and coarse-grained
(CG) models have been developed. Here, we report some applications of the CG OPEP protein
model to amyloid fibril formation, the response of catch bond proteins to two types of fluid flow,
and interactive simulations to fold peptides with well-defined 3D structures or with intrinsic disorder.

Keywords: coarse-grained model, amyloid and catch bond protein simulations, hydrodynamics,
interactive.

I. INTRODUCTION

Multiscale modeling frameworks have been elaborated
for biomolecular systems. They involve either the use of
successive simulations of the system with (i) increasing
granularities and flexibilities followed by atomistic rep-
resentations, (ii) on-fly conversion from simplified to all-
atom representations or (iii) with different Hamiltonians
(e.g., quantum-mechanics and empirical force fields)[1–
4].

Many methods for coarse-graining a system have been
developed with the aim of studying the physical prop-
erties of soluble proteins, transmembrane proteins, lipid
bilayers, nucleic acids (DNA/RNA), sugars, surfactants,
polymers, sugars, etc. in their ground states [5–26]. The
general idea of coarse-graining is to eliminate or average
out many degrees of freedom and consists in represent-
ing a configuration of the system in terms of beads at
lower resolution and developing effective potentials be-
tween the CG sites. The reduced number of degrees of
freedom and the smoother resulting potential allow for
systems of larger sizes to be explored for a much longer
time scale. The prize to pay is, however, (i) how to derive
effective potentials that maintain the all-atom physical
behavior in a water environment in terms of structure,
thermodynamics and dynamics[27], and (ii) how to ac-
count for the hydrodynamics effects if we use an implicit
solvent model[28, 29].

Among the various CG models developed for soluble
proteins, the six-bead OPEP protein model, which is ba-
sically an all-atom backbone with CG side-chains, except

∗Electronic address: Email:philippe.derreumaux@ibpc.fr

for Proline, and its effective potential have been opti-
mized over the years [30–33]. The main feature of OPEP
compared to most other CG force fields is that the for-
mation of backbone H-bonds results from two-body and
four-body terms, there are no explicit atomic charges,
and ion-bridge potentials between charged amino acids
are derived from all-atom potentials of mean force. A
flowchart depicting the OPEP force field parametriza-
tion scheme can be found in Ref. [27]. Another impor-
tant feature of OPEP due to the all-atom representation
of the peptide bond is that the integration time-step is
2 fs, vs. 10 fs or larger values for MARTINI and other
CGs[27]. OPEP has been coupled to many simulation
methods: diffusion-controlled Monte Carlo[30, 34, 35],
the Activation-Relaxation Technique[36–39], molecular
dynamics (MD) and Langevin dynamics[40, 41], replica
exchange molecular dynamics (REMD), and Hamilto-
nian REMD (H-REMD),[27, 42] metadynamics[43], sim-
ulated tempering (ST)[44, 45], a greedy approach (PEP-
FOLD)[46, 47], Lattice-Boltzmann MD[27, 28], and in-
teractive simulations. OPEP has been applied to a wide
range of applications. It has been used with success
on many soluble proteins of sizes varying between 10
and 200 amino acids[27, 48], and protein complexes[49].
Also OPEP was used as the starting point to generate
the flexible coarse-grained DNA and RNA models (Hire-
DNA/RNA)[50, 51].

Of interest is that, by using OPEP, we were the first
to observe β-barrels during the assembly of amyloid
peptides)[52, 53], that were validated by X-ray micro
crystallography and all-atom simulations[54, 55]. We
also showed that hydrodynamics (i) change the aggre-
gation mechanisms of Aβ16−22 systems consisting of 100
and 1000 peptides[28, 56], and (ii) allow the calculated
translational diffusion constants of the 65-residue chy-
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Figure 1: The free energy landscape (in kBT
∗) of the Aβ37−42 40-mers as a function of the order parameter P2 and total

number of inter-chain H-bonds at T ∗ = 0.19 (folding temperature of the monomer). Representative structures corresponding
to the states Si are shown. The color used for the amino acids is G+ (red) - G (yellow) - V (grey) - V (grey) - I (green) - Ala−

(blue).

motrypsin inhibitor 2 (CI2) protein with crowding con-
ditions varying from 5% to 32% of volume fraction (by
tuning the volume of the cubic box containing 70 pro-
teins), to match the NMR observables[29]. In this ac-
count, we report new applications of the OPEP protein
model to amyloid fibril formation associated with neu-
rodegenerative diseases, catch bond proteins in fluid flow
and interactive simulations to fold soluble proteins with
well-defined 3D structures or intrinsic disorder.

II. COARSE-GRAINED PROTEIN
AGGREGATION LATTICE SIMULATIONS

The basic idea of protein lattice models is that a back-
bone residue is represented by a bead which is strictly
located on the sites of a lattice. A side-chain may
also be explicitly included by another bead that repre-
sents an amino acid. Different 2D and 3D lattice struc-
tures have been proposed, including the simple cubic,
face-centered-cubic, hexagonal, triangular and diamond,
among others[57]. One of the most studied lattice models
is the H-P cubic model, where each bead can be either
hydrophobic (H) or hydrophilic (P)[58]. Whereas H-P
models only have two residue types, other models with up
to twenty residue types have also been considered[59, 60],

with interaction energies given by the Miyazawa-Jernigan
matrix[61] derived from analysis of the structures of real
proteins.

Despite their simplicities, the lattice models have pro-
vided useful insights into fundamental questions rang-
ing from protein design, evolution to protein folding and
aggregation[62]. For example, they have been used to
study the folding pathways[63, 64], the relationships be-
tween kinetics, folding rates and thermodynamics[65–
67], folding cooperativity[68], the role of the aggregation-
prone monomeric conformation and the factors governing
fibrillogenesis [69, 70], and the free energy barriers during
amyloid fibril formation[71]. Among the models, Frenkel
and colleagues developed a sophisticated lattice model
including specific side-chain interactions, backbone hy-
drogen bonds and solvent effects[72–75]. Briefly, a side
chain is described by an unit vector di , which is not al-
lowed to point in the same direction as the backbone.
Thus, only four side-chain directions are allowed for a
central residue, and five side-chain directions are possi-
ble for the terminus residues. This model has been used
to study the fibril formation of a model amyloid pep-
tide with alternating polar and hydrophobic amino acids
[74], and the interplay between folding and assembly of
a silk-collagen fibril model[76].

Recently, we incorporated the OPEP force field[30, 32,
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33, 35, 77] into Frenkel’s model and defined a potential
energy function of the form[78]

E = Eaa(εaa) + Ehb2(εhb2) + Ehb4(εhb4)
+ Esteric(εs) + Estate(εss). (1)

Here, Eaa represents the total energy of the pairwise
interactions εaa between two residues which are sepa-
rated by a lattice constant a, and their side chain vec-
tors are oriented in the same direction or pointed toward
with each other. The interaction energies between 20
amino acids were taken from OPEP parameters[30, 32,
33, 35, 77], and the interaction energies, ε+−, between
two oppositely charged termini, ε++ and ε−− between
like-charged termini, ε+a and ε−a between charged ter-
mini and inner residues were determined. The second
and third terms are the sums of the two- and four-body
hydrogen bond (H-bond) OPEP energies εhb2 and εhb4,
respectively. A H-bond is formed if two residues are in
contact, side chains are oriented in the same direction
and both residues are in the strand state. The four-body
H-bond term takes the form of sum of weighted products
of Gaussian functions each monitoring the existence of
an H-bond on the basis of distance criteria. Esteric de-
scribes the total energy of the steric penalty εs to prevent
clashes between side-chain and backbone atoms. Finally,
the secondary structure is modeled by introducing two
possible states, coil and strand for each residue, each as-
signed to an energy value εss, with Estate being the total
state energy.

The four-body H-bond term, which is ignored in all
current lattice models, plays a crucial role to obtain the
correct description of the end-to-end distances and the
secondary structures of the Aβ16−22 dimer in the lattice
representation, as compared to the results obtained from
all-atom replica exchange molecular dynamics (REMD)
simulations using CHARMM22*/TIP3P and AMBER-
f99SB-ILDN/TIP3P force fields[79]. Overall, we found
that the calibrated lattice OPEP force field is transfer-
able from the dimer to the trimer of Aβ16−22 and also to
the dimer and trimer of Aβ37−42 by comparing equilib-
rium structures to those obtained from all-atom REMD
simulations.

Using this set of parameters and extensive replica ex-
change Monte Carlo (REMC) simulations, the model
has been employed to determine the critical nucleus
size of the experimentally well-characterized Aβ16−22

and Aβ37−42 peptide segments of the full length Aβ1−42

Alzheimer’s peptide. At the folding temperature of the
monomer, which is defined as the ”room-temperature”
of the lattice model, we found that more than 90% of
the Aβ16−22 decamer structures display one 10-stranded
β-sheet or two 5-stranded β-sheets which match the mi-
crocrystal and solid-state NMR structures of the amyloid
fibril, indicating that the nucleus size for fibril forma-
tion of Aβ16−22 is 10 chains. In contrast, the Aβ37−42

decamer is quite disordered with only a 2% population
displaying two 5-stranded antiparallel β-sheets and par-
allel β-strands inside individual sheets[78] matching the

fibril structure[80, 81]. Simulations of Aβ37−42 15-mers
and 20-mers, starting from disordered states, show that
peptides are organized in layers of β-sheets composed of
β-strands. The 1-layer architecture is more populated
than the 2-layer counterpart and the 3-layer structure is
hardly formed. We found, however, that the populations
of the perfect fibril state are still low with 2% for the
15-mers and 4% for the 20-mers[82].

In this report, we carried out new REMC simulations
for aggregates of 25 and 40 Aβ37−42 peptides. A to-
tal of 120 replicas covering the temperature range 0.15 -
0.40 ( 0.19 is the folding temperature of the monomer)
were performed for 5 1010 MC steps. We found that the
population of ordered states with a nematic order pa-
rameter P2 ≥ 0.8 is 30% for 25-mers and increases to
47% for 40-mers at room temperature. The free energy
landscape of the 40-mers at this temperature is shown in
Fig.1. The 40-mer exhibits a disordered state S1, rep-
resenting ≈ 22 % of the conformational ensemble with
low P2 values (≤ 0.3) and a small number of intermolec-
ular H-bonds (NH−bond ≤ 30). Here, the peptides are
folded into β-hairpin-like conformations with turns at
residues 39-40 or 40-41, and packed in different architec-
tures. The intermediate state S2 state with a population
of 17%, (0.3 ≤ P2 ≤ 0.5, NH−bond ≥ 60) is characterized
by a very complex topology. The first antiparallel two-
layer beta-sheet consists of six fully extended antiparallel
chains in each layer. The second 2-layer consists of seven
less extended parallel chains in each layer. The rest of
the peptides are in the folded hairpin-like structures and
make end-to-end contacts with the first 2-layers.

In the more ordered intermediate state S3 (population
of 14%, 0.5 ≤ P2 ≤ 0.7, NH−bond ≥ 70), an antiparallel
2-layer beta-sheet structure is formed with 10 fully ex-
tended parallel chains in the first layer, and less extended
parallel/antiparallel chains in the second layer. The re-
maining chains are still in the unfolded or beta-hairpin
like states, stacked together and sit on the top of the
second layer. The topology of this layer is very similar,
though not identical to that of the fibril structure[80, 81],
thus, it can be considered as a template for fibril growth
within the context of a template-assisted self-assembly
mechanism. Finally, the FEL displays the almost perfect
fibril structure shown in the state S4 (with a population
of 47%, 0.8 ≤ P2 ≤ 1, NH−bond ≥ 100). S4 is formed
by four antiparallel 10-stranded β-sheets with parallel β-
strands within the individual sheets, except that a few
antiparallel chains are still disordered in the two outer
layers due to the finite-size effects. The population of
nearly 50% of the fibril state suggests that the nucleus
size for fibril formation of Aβ37−42 is on the order of 40
chains. We are currently using standard Monte Carlo
simulations to determine the aggregation mechanisms of
the Aβ37−42 40-mers.
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III. CATCH-BOND PROTEINS

Important biophysical phenomena involve the response
of proteins to mechanical stress generated by the sur-
rounding fluid, also referred to as tensile forces. For ex-
ample in the vascular system or in the urinary tract,
catch-bonds proteins granting cell adhesions are acti-
vated by shear flow [83]. Similarly, vessel injuries altering
the blood flow activate the response of the multimeric
von Willebrand factor (VWF) that favours the anchor of
platelets at the injured spots[84].

In this challenging application we have studied the re-
sponse to fluid flow of a catch-bond protein involved in
urinary tract infections by favoring the adhesion of bacte-
rial cells (E. coli) to the host. Piliated E.coli cells attach
to target cells via long pili, composed of up to 3,000 copies
of the protein FimA. The tip of the pilus is composed of
three subunits named FimF, FimG and FimH. The ter-
minal protein FimH (two domains named FimHL and
FimHP ) catches the receptor located at the target cell
therefore anchoring E. coli to it. It was proven that the
binding to the receptor is stronger under tensile force. It
was proposed that the elongation of the multi-domain tip
due to fluid flow reduces competitive inter-domain inter-
actions that would cause unbinding [85–87] . A schematic
representation of the system is given in the Figure 2.

E. coli pili adhesive tip

FimH
FimG

FimF

target cell membrane

FimHL

FimHP

T R

T R
shear effect

fluid flow 

a.

c. d.

b.

Figure 2: The E. coli’s pili (panel a) are essential for bacte-
rial adhesion via tip-receptor interaction. The tip of a pilus is
formed by a series of Fim domains (panel b). The interaction
with the membrane receptor occurs under physiological fluid
flow as depicted in panel c, which intensity strongly favour
the high-affinity conformation (or Tense state in allosteric ter-
minology) against the low-affinity conformation (or Relaxed
state) as represented in panel d.

Lattice Boltzmann Molecular Dynamics (LBMD) [28]

simulations were carried out to investigate the confor-
mational stretch of the three assembled subunits FimF,
FimG and FimH that constitute the adhesive tip of the
bacterial E.coli pilus, see Figure 2A. The subunits are
midsize proteins, composed by 154, 144, 279 amino acids,
respectively. Each subunit has been modelled by the
OPEP coarse-grained force-field [27, 88] but internal mo-
tion was restrained via an elastic network. The three
subunits interact with each other via standard OPEP
non-bonded interactions. This strategy allowed to in-
crease the integration time-step for the molecular dy-
namics, τ = 10 fs [29], and at the same time to retain
the relative subunit conformational flexibility. The sys-
tem was simulated in a large box of dimensions Lx =
Ly = Lz = 240 Å. Fluid dynamics was integrated syn-
chronously with the molecular dynamics with a friction
coupling γ = 0.1 fs−1, a value for the kinetic viscos-
ity matching that of water, and supported on a regular
mesh with spacing dx = dy = dz = 3 Å[28, 56]. The
system was simulated both in absence and presence of
fluid flow. For the latter scenario we have considered two
kinds of flow perturbations, the shear flow and Poiseuille
flow, and scanned various magnitude of the stress. In
order to mimic the effect of fluid flow on binding we have
linked the binding site of the adhesive domain FimHL to
the edge of the simulation box here representing the tar-
get cell membrane. The linking is achieved by freezing
the first residue of the FimH subunit. Each simulation
was extended up to 1 µs in the case of shear flow and
0.5µs for Poiseuille flow. To be noted that if transposed
to the explicit solvent all-atom representation our sys-
tem would correspond to about 1.3 million of particles.
This size makes clear the need of a multi-scale approach
as encoded in the LB technique coupled to an implicit
solvent CG model for proteins. Beside the unfeasibility
of an all-atom approach, it must also be stressed that
the out-of-equilibrium scheme to generate fluid patterns
is natural in LBMD, a feature that makes it a perfect
tool to model such processes for macromolecules in solu-
tion. Other groups have dealt with the problem of shear
flow effects on proteins, for instance trying to quantify
the minimal shear rate causing functional conformational
changes in vWf multi-domain proteins [89], or protein un-
folding [90] but all were based on oversimplified represen-
tations of the molecular component and used Brownian
dynamics that suffer of size scalability for large systems.

We have scanned several shear rates in the range
γ̇ ∈ [106, 109]s−1. For too high values of shear, γ̇ ≥
109s−1, the three subunits disassemble quite quickly,
in the nanoseconds time scales. On the contrary for
γ̇ ≤ 108s−1 the oligomers remain assembled and respond
to the fluid velocity gradient. The response clearly de-
pends on the magnitude of the stress. For the highest
tolerable value γ̇ = 108s−1 both the extremities of the
protein, the FimH and the FimF units, feel the velocity
gradient and bend accordingly, sampling a curved confor-
mation. At the intermediate stress γ̇ ∼ 107s−1 the three
subunits align along the velocity gradient and stretch.



5

z

x

z

x

z

x
No Flow Couette Flow Poiseuille Flow

a. b. c.

t=0

t=0

t=0

Figure 3: Conformations sampled along the LBMD trajectories. Panel a on the left refers to the simulation in absence of fluid
flow. The central panel b represents the trajectory generated in presence of a Couette flow (γ̇ = 107s−1). The right panel c
represents the trajectory generated with a Poiseuille flow (γ̇ = 105s−1). The color code for the protein domains is as in Figure
2, the anchoring of the adhesive domain FimHL to the membrane wall is represented by a black circle.

This regime seems to correspond to what is expected,
with the tensile force pushing apart the two domains
of the FimH unit. Interestingly, for the lowest sampled
shear rate, γ̇ ∼ 106s−1, the orientation of the protein
chains seems insensitive to the fluid flow, and the con-
formations acquired resemble that sampled in absence of
the fluid flow. An overview of the results is represented
in the central panel of Figure 3 where the evolution of
the protein conformation during the microsecond trajec-
tory is represented by overlapping representative states
separated in time.

Other than shear (Couette) flow, the fluid stress sensed
by the FimFGH units could be modeled as a Poiseuille’s
flow. Again, we have performed a scan of the associated
flow rate measured as the derivative of the fluid velocity
profile at the wall of the simulation box, Z = Lz. For
value of the γ̇ ≥ 106s−1 the three subunits disassemble,
as already observed for high shear rates. At the maximal
tolerable value, γ̇ ∼ 105s−1, the protein bends according
to the velocity parabolic profile, with the FimF unit ex-
periencing the maximal velocity drag, see the Figure 3,
right panel. This result shows again that under fluid flow
the conformation of the three subunits is dramatically al-
tered and that the chain stretches according to the fluid
velocity drag.

In conclusion we have demonstrated that the LBMD
machinery is a powerful method in order to model out-of-
equilibrium biological processes where the perturbation
comes from fluid flow. Our simulations showed that when
the appropriate range of shear or flow rate is considered
the assembly of the three Fim subunits stretches as effect
of the tensile force. According to hypotheses put forward
in the literature, as effect of this stretch the binding to the
target receptor is reinforced because of conformational
changes occurring at the level of the FimH domains. In
order to explore this effect, the present work should be ex-
tended. Namely, a multi-level representation of the pro-
tein should be constructed, with FimH domains modelled

by the full flexible OPEP force-field and reserving the
elastic network only to the extra units, FimF and FimG.
In such away we could explore the inter-domain reorgani-
sation occurring between FimHL and FimHP . Moreover,
because of complex organisation of the three subunits,
the shear and flow directions could be generated also
along the Y, or the X-Y directions, so to explore how
directionality influences the inter-domain stretching.

IV. INTERACTIVE EXPLORATION OF
PROTEIN FOLD SPACE WITH OPEP

We have recently shown that human-guided simula-
tions and standard computational approaches sample
RNA conformational space differently[91]. Here we ex-
tend our investigations by folding proteins interactively
using the OPEP representation. User generated forces
enable the system to overcome all energy barriers, and
explore very quickly any conformational region of the
systems that might be logical to the user based on his
knowledge of protein structures, or on the basis of hy-
potheses, providing therefore an alternative approach to
the potential energy surface exploration problem.

Here, we report on interactive simulations of two pep-
tides starting from fully extended states. The first
system is the well-studied fragment 41-56 of the B1
immunoglobulin-binding domain of streptoccocal protein
G known to form a beta-hairpin in solution and the full
protein (PDB entry 1PGB) and has been studied by
many standard simulations [27, 36]. The second system is
the amyloid-β peptide fragment (Aβ1-34), which in con-
trast to the two main Aβ1-40 and Aβ1-42 components of
amyloid plaques in the brain of patients with Alzheimer’s
disease, has never been studied experimentally or theo-
retically [92]. Yet, it has been argued that Aβ1-34 pro-
duction could contribute to protect against Aβ-mediated
toxicity at early stages of the pathology [93].
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In order to carry out interactive folding simulations
with OPEP, we integrated into the molecular simulation
engine interactive molecular dynamics (IMD) features as
described in [94–96] with dedicated visualization software
allowing the user to apply forces on any specific atoms
taken into account by the simulation engine. In our tests,
we used UnityMol on the client side [97] with the ability
to natively represent coarse-grained OPEP models.

For both peptide systems, we used a pre-defined proto-
col for the interactive exploration. Starting from full ex-
tended states, an initial configuration was obtained after
minimization, thermalization and 1 nanosecond of pro-
duction run at 300 K. The user then applied, from time
to time during the second nanosecond interval, forces by
means of the computer mouse, inducing an intentional
bias on the peptide conformation. Finally, during the 2
- 10 ns interval, the system evolved by means of pure
MD simulations. A total of five interactive trajectories
(T1 to T5) was performed and differed in the selected
atoms subject to the user’s forces, and in the orienta-
tions of the forces. An additional non-interactive run
of 10 nanoseconds was also performed as a control. To
illustrate and summarize our interactive exploration in
a synthetic manner, we analyzed the generated trajec-
tories by clustering the conformations according to geo-
metric properties. After testing the RMSD as a metric,
we settled on φ and ψ angles. Details about simulation
parameters, software version and the clustering method
are given in the supplementary material. Fig. S1 shows
a scatter plot of MD-generated configurations along two
collective coordinates for each peptide system.

In the interactive simulation of 1PGB41-56, we ob-
served that a configuration with a coil at the N-terminus
and a helix spanning Y45-T55 was formed after 1
nanosecond (Fig. S3). We interactively manipulated this
structure by pulling the amino acids in the middle of the
chain. User forces did not exceed 1211 pN. In the T1
trajectory, the release of the forces led to a β-hairpin,
approximately between nanoseconds 1.5 and 2.9, shown
as cluster C4 in Figure 4. Afterwards, the peptide folded
back to an helix, close to the state we started with, from
4.4 nanoseconds to the end at 10 nanoseconds, corre-
sponding to cluster C8. The mean potential energy along
the trajectory is of the order of 10 kcal/mol. These qual-
itative observations are illustrated in Figure 4. Heavy
links between clusters 4 and 8 are mostly explained by the
unstable nature of the hairpin with a flexible C-terminus.
The same phenomenon is observed in the T4 trajectory
where the pulling manipulation was very punctual. This
time though, sampling mainly involves clusters 5 and 6.

T2 also reached a β-hairpin secondary structure by us-
ing similar manipulations with forces not exceeding 718
pN. This time, however, the hairpin shown as cluster
C6 remained stable until the end of the simulation. T2
exhibits a mean potential energy of -10 kcal/mol, much
lower than in T1. Similar features are observed in the
trajectories T3 and T5.

Analysis of the cluster centers of the five interactive

trajectories, each of 10 ns duration, shows that the clus-
ters 1, 2, 3, 4, 5 and 7 share a beta-hairpin arrangement
with some variations. Cluster 2 has a more pronounced
twist than cluster 1. Clusters 3, 4 and 5 have the same
dangling ends and form non-native beta-hairpins, but
cluster 5 has a more marked twist. Cluster 7 matches
more closely the native experimental beta-hairpin con-
formation shown in Figure S2. In contrast, clusters 6
and 8 display alpha-helices in the middle of the peptide,
spanning residues 46-51 in C6 and 47-53 in C8. As it
can be seen from per-cluster potential energy histograms,
only clusters 1, 2 and 7 exhibit a mean potential energy
below zero. In comparison, the non-interactive control
trajectory leads to a full alpha-helix at 10 ns.

We now analyze the result of the simulations for the
Aβ1-34 peptide. Without any applied forces, this peptide
displays a high number of turns after 1 nanosecond (Fig-
ure S4). This feature explains the connection of cluster 1
to all other clusters, as well as the low number of transi-
tions from or to this state. During the T1 trajectory, the
peptide attains a structure with two well-formed alpha-
helices spanning residues H6-H14 and A21-K28, depicted
as cluster C3 in Figure 5.

In T2, the system evolves between two conformational
clusters: C6, characterized by an helix between residues
E22 and S26 and a beta-hairpin involving the segments
E3-R5 and E11-H13, and the cluster C5 with the same
hairpin at the N-terminus end and a flexible C-terminus.
Analyses of the T3, T4 and T5 trajectories point to the
high diversity of structures that can be attained. The
cluster C4 is structured as a three-stranded beta-sheet
involving the segments V12-Q15, A21-V24 and I32-G33.
The clusters C4, C8 and C9 are highly connected, in-
dicating that this double beta-hairpin is a metastable
state and easily converts to random coil states (with no
secondary structure in C9, and only 15% of alpha-helix
in C8). The highly intrinsic disordered property is also
demonstrated by the other clusters, with an alpha he-
lix spanning residues H6 to Q15 in C7 and C3, and the
C2 cluster free of secondary structure content, and by
the similarity of the potential energy histograms between
all clusters. Interestingly, the control trajectory of 10 ns
leads to a structure reminding an hairpin from D1 to V12
with no hydrogen bond formed yet. This fold is reached
after the unfolding of an helix mainly bound by S6:H14
which occured from 6.4 ns to 7 ns, then later between 7.5
ns and 8.5 ns. We find a high propensity of turns from
H13 to L34 all along this trajectory.

Overall, the present interactive simulations give inter-
esting insights into the conformational ensembles of both
peptides. The peptide 1PGB41-56 has a high propen-
sity to form multiple beta-hairpins and this is consistent
with the free energy surfaces obtained by many extensive
and computer-demanding simulations.[36]. The forma-
tion of an alpha-helix from the non-interactive simula-
tion is not a surprise because the conformational entropy
is not taken into account. In addition, a wide explo-
ration of the OPEP 1PGB41-56 energy landscape using
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Figure 4: 1PGB 41-56 cluster transition graph. In the large panel, vertices are circles representing clusters colored to match per
trajectory barcodes of cluster membership shown on the bottom. For each cluster, we render a representative conformation close
to its center with the C-terminus oriented upward. We indicate α-helix and β-sheet ratios obtained from STRIDE assignments
performed by VMD and the Timeline plugin visual representation. Vertex circle sizes are proportional to cluster population
sizes. Edge widths are proportional to the number of transitions from one cluster to an other that is indicated by a number.
The triangles on top of each barcode in the fourth row indicate frames during which the user applied a force. For each cluster,
we show the potential energy distribution from all trajectories, with negative energies filled by cluster color.
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Figure 5: Aβ1-34 cluster transition graph. Same analysis as for 1PGB, except that the N- and C-termini are explicitly shown.



9

advanced Monte Carlo methods showed a difference of
1 kcal/mol between the minimized energies of the na-
tive hairpin and the full alpha-helix [98]. In contrast,
the peptide Aβ1-34 is shown very quickly to be highly
disordered as expected from the behavior of all amyloid
monomeric peptides, giving interest to interactive simula-
tions for testing hypotheses. For 1PGB41-56, each trajec-
tory required around 40 minutes to generate 10 nanosec-
onds on a high-end workstation against 90 minutes for
Aβ 1-34. User interactions with simulations lasted only
a couple of minutes. Many simulations were executed in
a row. Hence, such an approach represents a fast and
easy-to-implement exploration of peptide systems gener-
ating a diversity of plausible structures that may guide
more extensive and lengthy subsequent runs.

V. CONCLUSIONS AND PERSPECTIVES

We have presented new applications of the OPEP CG
model to (i) amyloid fibril formation on a lattice, (ii) the
response of catch bond proteins to mechanical stress gen-
erated by the surrounding fluid using Lattice Boltzmann
MD (LBMD) simulations under Couette and Poiseuille
flows, and (iii) the folding of two proteins by interactive
simulations guided by humans. While these OPEP simu-
lations provided important insights into three biological
systems, we are still improving OPEP-based simulations
in three directions.

The first aspect is to optimize the coupling between
OPEP and LBMD so as to explore much longer time
scales. This can be achieved by a multi-grid approach for

the lattice Boltzmann approach, a multiple time step for
the integration of the MD equations of motion according
to the degree of granularity and flexibility of the system
components and porting the code to GPU.

The second aspect is to couple OPEP to a lipid CG
model with implicit solvent so as to study the fold-
ing and aggregation of proteins at the surface of a
membrane or within the membrane, and the interac-
tions of the early formed amyloid-β 40/42 (comprising
of 40/42 amino acids) oligomers (e.g. dimers, tetramers,
dodecamers), known to be pathological and cytotoxic
species in Alzheimer’s disease, with well-defined trans-
membrane protein receptors so as to generate more effi-
cient drugs[99–101].

The third direction is related to improved interactive
simulations, starting from plausible models by homology,
rather than an a random state, or integrating SAXS, EM
and NMR data to provide on-the-fly feedback to the in-
vestigator.
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M. Baaden, N. Férey, S. Limet, B. Raffin, and S. Robert,
Procedia Computer Science 18, 20 (2013), ISSN 1877-
0509.

[97] Z. Lv, A. Tek, F. Da Silva, C. Empereur-mot,
M. Chavent, and M. Baaden, PloS one 8, e57990 (2013),
ISSN 1932-6203.

[98] T. Cragnolini, K. H. Sutherland-Cash, D. Wales,
S. Pasquali, and P. Derreumaux, Biophysical Journal
106, 256a (2014), ISSN 0006-3495.

[99] P. H. Nguyen and P. Derreumaux, Acc Chem Res. 47,
603 (2014).

[100] A. J. Doig and P. Derreumaux, Curr Opin Struct Biol.
30, 50 (2015).

[101] A. J. Doig, M. P. Del Castillo-Frias, O. Berthoumieu,
B. Tarus, J. Nasica-Labouze, F. Sterpone, P. H. Nguyen,
N. M. Hooper, P. Faller, and Derreumaux, ACS Chem
Neurosci. 8, 1435 (2017).


