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Abstract—Reliable and highly available computer networks
must implement resilient fast rerouting mechanisms: upon a
link or node failure, an alternative route is determined quickly,
without involving the network control plane. Designing such fast
failover mechanisms capable of dealing with multiple concurrent
failures however is challenging, as failover rules need to be
installed proactively, i.e., ahead of time, without knowledge of
the actual failures happening at runtime. Indeed, only little is
known today about the design of resilient routing algorithms.

This paper presents a deterministic local failover mechanism
which we prove to result in a minimum network load for a wide
range of communication patterns, solving an open problem. Our
mechanism relies on the key insight that resilient routing es-
sentially constitutes a distributed algorithm without coordination.
Accordingly, we build upon the theory of combinatorial designs
and develop a novel deterministic failover mechanism based on
symmetric block design theory which tolerates a maximal number
of Ω(n) link failures in an n-node network and in the worst-
case, while always ensuring routing connectivity. In particular,
we show that at least Ω(φ2) link failures are needed to generate a
maximum link load of at least φ, which matches an existing bound
on the number of link failures needed for an optimal failover
scheme. We complement our formal analysis with simulations,
showing that our approach outperforms prior schemes not only
in the worst-case.

I. INTRODUCTION

Computer networks, including enterprise, datacenter, and
carrier networks, have become a critical infrastructure of
our information society. Accordingly, there are increasingly
stringent requirements on such networks, especially regarding
dependability (availability and fault-tolerance).

A. The Context: The Need for Fast Failover

The ability to quickly recover from failures is a key
requirement for dependable computer networks. Especially
link failures are common and frequent today [19], and link
failures do happen concurrently [1], [6], [8]. Even without
physically disconnecting the underlying topology, these link
failures can cause routing failures disrupting communications
between some hosts.

B. The Problem: Slow Coordination

The reconvergence times in traditional routing systems after
failures are known to be high. In a nutshell, in these traditional
routing systems, whenever a link or node fails, routing tables
are recomputed by executing the (distributed) routing protocol
again. These recomputations result in relatively long outages
after failures, sometimes in the order of seconds, leading to
high packet loss rates [30].

While recent advances in routers have reduced reconvergence
times to under a second for carefully configured networks using
link state IGPs, this is still too high for critical Internet services
which are sensitive to periods of traffic loss that are orders of
magnitude shorter than this.

The problem is particularly cumbersome in the Wide-Area
Network (WAN) which needs to be operated near capacity for
efficiency [14], [15]. In case of an uninformed or slow failover,
a single link failure can have a severe impact, in terms of
buffer overflows and packet drops. Indeed, a more predictable
and fast failover was also one of the key reasons for Google’s
move to SDN [28].

C. The Solution: No Coordination

Modern computer networks hence include pre-computed
backup routes and rules for fast failover, allowing for very fast
failure detection and re-routing. These local inband re-routing
mechanisms are often meant as a first line of defense, and the
resulting fast but simple rerouting is just a temporary solution,
before the control plane rigorously optimizes the flow allocation
for the new network topology. A most well-known example is
Fast Reroute in MPLS where, upon a link failure, packets are
sent along a precomputed alternate path without waiting for
the global recomputation of routes. These mechanisms avoid
the complexities involved in distributed coordination among
switches or routers, but are completely local approaches: the
reaction of a router only depends on the status of its incident
links, and a router does not inform other routers about failures.
In this case, the disruption time can be limited to the small
time taken to detect the adjacent failure and invoke the backup
routes.

D. The Challenge: Multiple Failures

The challenge of designing resilient local fast rerouting
mechanisms is that these mechanisms need to rely on local
knowledge only: In contrast to dynamic routing tables which
may change in response to link failures (e.g., using link
reversals [11]), failover routing tables are usually statically
preconfigured. However, rerouting traffic along efficient paths
based on local decisions only is challenging in the presence
of multiple failures.

Things become even more difficult if packet tagging (i.e.,
keeping information about observed failures along the packet
trajectory in the packet header itself) is unavailable or undesired:
while including information in the packet header can be used
to keep track of observed failures along the path of the specific



packet, tagging comes with overheads (in terms of header space,
additional rules, and time) and can also cause problems in the
presence of middleboxes [21].

Indeed, in this paper we are interested in most simple routing
algorithms, which do not require any dynamic state in the
packet header nor at the routers themselves. In particular,
we consider the well-established oblivious (i.e., non-adaptive)
routing model [23].

The fundamental question is then [6]: how resilient can
static forwarding tables be? That is, how many link failures
can failover routing tolerate before connectivity is interrupted
(i.e., packets are trapped in a forwarding loop, or hit a dead
end) without invoking the control plane or using tagging? At
first sight, it seems difficult to implement a high degree of
fault-tolerance in a setting where routers are restricted to pre-
configured failover rules, have a local view, and cannot resort
to packet tagging. Moreover, it has recently been shown that
there is an inherent tradeoff between the robustness and the
resulting worst-case network load [3].

E. Our Contributions

This paper presents the design of a very resilient fast
failover scheme, tolerating multiple link and node failures,
while keeping the network load low (asymptotically matching
an existing lower bound [3]). Our re-routing algorithms are
oblivious, and do not require packet tagging.

We formally prove that our failover scheme provides an
optimal resilience while minimizing link loads for many
important traffic models, including the frequently studied
permutation routing model [23], [29] or all-to-one routing [3],
[5].

Our approach is based on the insight that resilient local
failover mechanisms can essentially be seen as distributed
algorithms without coordination: a subfield of distributed
computing where devices solve a problem in parallel without
exchanging information among them. In particular, we establish
a connection to combinatorial design theory [26] and present
a novel failover mechanism building upon symmetric block
designs.

We focus on oblivious routing, where all packets of the same
TCP flow will be forwarded the same way (namely based on
source and destination only). However, we conjecture that our
techniques are relevant or even optimal in many other scenarios
as well (in particular for adaptive routing).

F. Background & Preliminaries

Our approach is very general, and relevant for any resilient
routing mechanism based on a static failover technology. In
particular, it applies to Software-Defined Networks (SDNs)
and their standard protocol, OpenFlow. In a nutshell, an SDN
outsources and consolidates the control over a set of network
switches to a logically centralized controller. As this controller
is decoupled from the data plane, interactions with the controller
introduce non-trivial latencies and overheads. Accordingly,
OpenFlow offers a local fast failover mechanism which could
potentially provide high-throughput forwarding in the face of

multiple simultaneous failures without communication with
the controller: an OpenFlow switch can be pre-configured with
a set of failover rules for each flow. Different flows can be
defined e.g., based on layer-2, layer-3 and layer-4 header fields.
The failover rules become active based on the status of the links
incident to the given switch, without contacting the controller.

If a local fast failover scheme is implemented at the hardware
level, it can react near-instantaneously to link failures. Our
mechanism can be implemented in OpenFlow based on failover
group tables designed specifically to detect and overcome port
failures. A group has a list of action buckets and each bucket
has a watch port as a special parameter. The switch monitors
liveness of the indicated port. If it is down, this bucket will
not be used and the group quickly selects the next bucket (i.e.,
the backup tunnel) in the list with a watch port that is up.

The failover mechanism presented in this paper is based
on combinatorial design theory [26]. In a nutshell, combina-
torial mathematics deal with the existence, construction and
properties of systems of finite sets whose arrangements satisfy
generalized concepts of balance and/or symmetry. Traditionally,
combinatorial designs are built around Balanced Incomplete
Block Designs (BIBDs), Hadamard matrices and Hadamard
designs, symmetric BIBDs, Latin squares, resolvable BIBDs,
difference sets, and pairwise balanced designs (PBDs). Other
combinatorial designs are related to or have been developed
from the study of these fundamental ones. We refer the reader
to [26] for more background.

G. Organization

The remainder of this paper is organized as follows. Sec-
tion II introduces our problem statement and formal model. In
Section III we characterize resilient oblivious routing schemes,
and in Section IV, present our approach together with a formal
analysis. Section V evaluates the performance of our failover
schemes by simulation, followed by a discussion of related
work in Section VI. The paper is concluded in Section VII.

II. PROBLEM STATEMENT & MODEL

We assume an SDN-network G = (V,E) with n OpenFlow
switches (or simply nodes) V = {v1, . . . , vn} connected by
bidirectional links E. Each node v stores two kinds of flow
rules:

1) The original flow rules, describing the “regular” for-
warding behavior for packets of a given flow1 arriving
at v.

2) The (conditional) failover flow rules, describing how
packets of a given flow arriving at v should be forwarded
in case of incident link or node failures. Both the original
and the failover flow rules have been pre-installed by the
controller and are static.

We focus on oblivious routing schemes in this paper: in
oblivious routing, the route of a packet does not depend on

1Note that multiple flows may have the same source and destination
node. However they may belong to different connections, e.g., different TCP
connections.



other packets, and in particular, is independent of the load in
the network.

We consider an initial network where all nodes are directly
connected. The communication pattern C of the flows routed
on the network is represented by a list of source and destination
pairs of nodes. For simplicity we will call the ith item
in C flow i, with source si and destination di. For ease of
presentation, we will assume that there are at most n flows in
the first part of the paper and later show how to extend the
approach for more flows.

Definition 1 (Load Overhead). Let G = (V,E) be a graph,
and e ∈ E an edge. The load overhead φ(e) is the number of
additional flows fi crossing edge e due to rerouting. Henceforth,
let φ = maxe∈E φ(e) denote the maximum overhead load
(often called simply load in the remainder of the paper).

We study failover schemes that pursue two goals:
1) Correctness: The route taken by each flow is a valid path;

there are no forwarding loops. In this paper, we will aim
to ensure correct paths even under a large number of
failures (a resilience property).

2) Balanced overhead: The resulting flow allocations are
“load-balanced”, i.e., minimize the overhead load of
the maximally loaded link in G after the failover:
min maxe∈E φ(e).

Note that flows that follow their path without rerouting
do not contribute to the overhead load. To analyse the load
overhead of a failover scheme in a network with F failed links
(we express node failures in terms of the node’s incident links
which fail with it2), we need some more definitions. In general,
to study the limits of the failover scheme, we focus on worst-
case overhead load: we assume the link failures are determined
by an adversary knowing the resilient routing protocol.

Definition 2. Let F be a set of failed links, F ⊂ E. Given a
communication pattern C, a worst case scenario constitutes a
set of failed links F that generate the worst overhead load φ,
chosen by an omniscient adversary knowing the failover scheme.
Fo(φ) is defined as the set of optimal attacks (in terms of
minimal required number of failures) leading to an overhead
load φ. That is, ∀φ ≤ n, ∀F ∈ Fo(φ), there is at least one
(non-failed) link e such that the overhead load φ(e) under a
link failure set F is φ and there are no link failure sets smaller
than |F | generating the same overhead load.

Besides considering n arbitrary flows, we also consider two
well-studied more specific communication patterns: all-to-one
communication and permutation routing.

III. CHARACTERIZING OBLIVIOUS
RESILIENT ROUTING SCHEMES

Our proposed failover scheme can be best described in the
form of a matrix (similar to the one used by Borokhovich

2Obviously, a node which failed can no longer be reached. While our
approach is more general, it is only interesting under node failures if the
remaining connectivity is still high.

and Schmid [3] for all-to-one routing). The matrix indicates,
for each of the n flows (one per row), the backup forwarding
sequence. That is, any failover scheme S can be represented
in a generic matrix form M = [mi,j ] (See upcoming example
in Figure 1).

M =


m1,1 m1,2 . . . m1,n

...
...

. . .
...

mi,1 mi,2 . . . mi,n

...
...

. . .
...

mn,1 mn,2 . . . mn,n

 .

Any failover scheme instance S will always forward a
message directly to the destination, if the corresponding link
is available. Otherwise, if a message of the ith flow from
source si cannot reach its destination di directly via (si, di),
it will resort to the sequence of alternatives represented as
the row i in the matrix mi,· (the “backup nodes” for the ith

flow), as described in Algorithm 1. Node si will first try to
forward to node mi,1, if this link is not available to node mi,2,
and so on. More generally, if a message with source si is
currently at node mi,j it will be forwarded directly to the
destination di, if the link (mi,j , d) is available. Otherwise, the
failover scheme will try to send it to mi,j+1, mi,j+2, etc. In
other words, if the link (mi,j ,mi,j+1) is not available, then the
link (mi,j ,mi,j+2) is tried next, and so on. If (mi,j ,mi,j+2)
is available, the message will be forwarded to node mi,j+2.
If this node cannot reach di, that is (mi,j+2, d) failed, the
link (mi,j+2,mi,j+3) will be tried, etc.

Algorithm 1 Rerouting given a Failover Matrix M
Upon receiving a packet of flow i at node v:

1: if destination not reached yet, di 6= v then
2: if (v, di) available then
3: forward packet to di
4: else
5: j = index of v in ith row + 1, mi,j−1 = v.
6: while mi,j = si or (v,mi,j) unavailable do
7: j = j + 1
8: forward packet to mi,j

Note that if some failover node mi,j is visited by the i-th
flow, many different link failures may be the cause. However,
for a given flow (row i), it holds that in this case one link
pointing to node mi,1, one link pointing to node mi,2, etc. are
in the set of failed links.

In general, we can observe that in order to avoid loops (and
provide maximal resilience), each row should contain each
non-source/non-destination nodes exactly once. To make the
analysis and description simpler, we also allow the source and
destination nodes to appear in each row: the failover scheme
simply ignores them when they occur. In this case, each row
is a permutation of all nodes.

Figure 1 illustrates the use of the failover matrix for a flow
from node 1 to node 6, when the links {(1, 6), (2, 6), (2, 3)}
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Fig. 1. Example: Rerouting of flow i from 1 to 6, according to M , where
the ith row without source and destination nodes is [2, 3, 4, 5]. If the links
{(1, 6), (2, 6), (2, 3)} failed, packets of this flow are first forwarded to node
2 from node 1. Since there is no direct link from 2 to 6, the next entry in the
row, 3, is considered. As the link between 2 and 3 is missing and the next
entry is 4, packets are then forwarded to node 4, from where they can reach
their destination.

failed. Observe that while the specific permutation does not
matter for correctness, it matters in terms of performance.
Figure 2 shows an example for n = 6 in a scenario with flows
from each node to node 6 (no flow from node 6 to another
node). We assume that the links {(1, 6), (2, 6), (3, 6)} failed.
On the left, the resulting failover routes for the following matrix
are shown:

M1 =


1 2 3 4 5 6
2 3 4 5 1 6
3 4 5 1 2 6
4 5 1 2 3 6
5 1 2 3 4 6
5 1 2 3 4 6

 ,

where the ith flow originates from node i. The elements in bold
indicate the prefixes of the rows that are used for rerouting.
The resulting maximum overhead load is 3 on (4, 6): the load
of 3 flows aggregates along the failover path. On the right, a
failover scheme resulting in load 2 only is shown. For example,
this can be achieved with the following failover matrix:

M2 =


1 2 3 4 5 6
2 5 1 3 4 6
3 4 5 1 2 6
4 1 2 5 3 6
5 3 4 2 1 6
5 1 2 3 4 6

 .

Intuitively, the bad performance of M1 comes from the
similarity of each node’s scheme: as nodes all rely on similar
failover schemes, the failover flows will all end up on the same
route, leading to a high link congestion.

IV. RESILIENT OBLIVIOUS ROUTING

A. The Case for Latin Square Failover Matrices

Before we present the proposed scheme to compute resilient
oblivious routing matrices, let us first make some observations.
We will first focus on the fundamental All-to-One Routing
scenario which is often considered in related works [3], [5]:
all nodes communicate to a single destination d, let us say vn
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Fig. 2. Example: Rerouting of flows from nodes 1,2, and 3 due to link failures
{(1, 6), (2, 6), (2, 3)} according to M1 (left) and M2 (right) respectively. A
failover matrix rerouting flows to similar paths can lead to a high overhead
load (left). Accordingly, failover matrixes should be designed where node
repetitions in row prefixes are minimized (right).

(we assume vn does not communicate to anyone else, so we
consider n−1 flows only). It is known from prior work that for
all-to-one routing the highest overhead load is induced if links
towards the destination node vn are failed [3]. In this case,
the adversary can “reuse“ failures: if the adversary removes
the links between vi and vn, then the occurrence of vi in any
failover sequence implies a higher number of flows on the
subsequent node in the failover sequence. Thanks to this claim,
we can assume that F consists of links (vi1 , vn), (vi2 , vn), . . .
for some i1, i2, . . . only. Accordingly, we can simply refer to
them by i1, i2, . . ., whenever we consider all-to-one routing.

Consider two flows originating from u and v in a system
relying on a failover scheme represented by M . Both flows
cannot reach the destination, so they are rerouted to their fail-
safe paths, trying the failover paths as described earlier. If they
both use the same node t in their failover paths, the links from
nodes earlier in the corresponding rows of the failover matrix to
the destination must have failed. That is, mu,a = mv,b = t for
some indices a, b. Thus the flow from u will transit through t
if all the previous failover routes have failed: {(mu,i, vn), 1 ≤
i ≤ a} ⊆ F . Similarly the flow from v will transit through t
if {(mv,i, vn), 1 ≤ i ≤ b} ⊆ F . As a shorthand notation, we
will refer to the set of elements of row i before t as Pt(i) =
{mi,j |mi,ti = t, 1 ≤ j ≤ ti}, the prefix of t in row i (this can
include the source and destination of the flow, although they
are ignored in the failover scheme). The number of failed links
is hence at least the number of elements in the union of these
prefixes minus the occurrence of the destination node of the
flows: |F | ≥ a+b−|Pt(u)∩Pt(v)|−2. This relation provides
two techniques to ensure that the link (t, vn) has a low load: i)
makes sure a and b are as high as possible (that is, t is used as
a last resort), and ii) ensure that the failover routes used by u
and v are as different as possible, ideally Pt(u) ∩ Pt(v) = ∅:
this prevents the adversary from “reusing” links failed on the
failover path of packets from u when targeting the flow of
packets from v.

When generalizing this brief analysis of node t to all nodes
of the system, it is interesting to observe that i) and ii) conflict:
on the one hand, several different nodes must be used early
in failover schemes (to prevent a large intersection size), on



the other, nodes should be used as late as possible on failover
sequences so that no congestion can easily happen on their link
to vn. Led by this intuition, we now focus on latin squares:
that is, failover matrices where each node appears exactly once
on each row and each column. Since there are no repetitions
on rows, forwarding loops in failover paths are avoided.

However, not all latin squares are good failover matrices. As
an example, let us analyze the following latin square M =
[mij ]1≤i,j≤n−1 where relay nodes are tried in a round-robin
fashion: mij = (i+ j−1) mod (n−1) . This scheme cannot
lead to forwarding loops because ∀1 ≤ j, j′ ≤ (n − 1), j 6=
j′ ⇒ mij 6= mij′ . However, this scheme results in a high load:
if the adversary fails the f first links to destination d (that
is, F = {(vi, d), i = 1 . . . f}), the f first nodes will all route
through (vf+1, d): we have φ = θ(f).

In the next section we will investigate which additional
properties latin squares must have to constitute good failover
matrices. As we will see, the intersection of prefixes of rows
plays a central role.

B. Performance of Latin Square Schemes

Let us now take a closer look at how a high load can arise
at a node. A link e = (w, x) carrying load `, by definition,
serves on the failover route of ` different flows. In particular,
there are ` rows in the failover matrix which include w, the
head node of the link, “early on”, in a short prefix of the row:
the current set of failures leads to a failover routing to w.

Accordingly, if the maximum load is φ then there is a node w
where this maximum load is manifested and φ rows of M are
responsible for generating this load. In other words, these φ
rows form a set T , where the links from the predecessors of w
to vn in these rows (ignoring the destination node) are all in
the failure set, i.e., ∃w ∈ V s.t.

⋃
i∈T Pw(i) \ {vn} ⊆ F .

Let M be a latin square failover matrix, and let F ∈ Fo(φ)
be an optimal attack set (i.e., a worst-case set of link failures
inducing a maximum load).

We now aim to lower bound the minimal size of F .
Let (w, vn) be the link on which the load is φ. We have |F | ≥
|
⋃

i∈T Pw(i)|−1 (we deduct one to account for the destination
node). In the best case (from a load perspective), for instance
when φ << n, two rows do not intersect: |F | =

∑
i∈T |Pw(i)|.

Since M is a latin square, it holds for all i, j ∈ T that
the position of w in the rows differs. If F is of minimal
cardinality, F necessarily contains the shortest prefixes: |F | ≥∑

i∈T (|Pw(i)| − 1) = (t− 1)(t− 2)/2, for t = |T |, because
an occurrence of the destination in the prefix of w in row i is
ignored.

This optimistic estimation technique captures the core of
our performance analysis scheme. The only technical problem
is now to limit the intersection size between the rows affected
by the failures. Of course, since any row ultimately contains
the n nodes, we must work on the first columns of failover
matrix M . Let Mk = [mij ]1≤i<n,1≤j≤k denote the k-block
of M , the submatrix of the failover matrix consisting of the k
first columns of M and let Mk(i) the set of the first k elements
of the ith row of M . We say that a matrix is a latin matrix

k n-k

load

1 4 12 9 3 5

3 12 4 5 6 8

4 6 13 8 11 1

x x x x 4 13

x x x x x 9

......

4

Fig. 3. Computation of load and worst-case failure sets. Let the flows 2, 3, 4, 5
lead to the worst-case load φ = 4 on the link (4, vn). In the failover matrix M ,
we highlight the occurrence of 4 with a square in each row, and color the
background of the prefixes of the rows responsible for the load in blue. The
number of failures responsible for the use of the blue prefixes depends on the
number of unique elements in their union. Two prefixes of length at most k
share at most one element, which allows us to bound the number of distinct
elements.

if it can be the k-block of a latin square, that is, no element
occurs more than once in each row and in each column.

F set of failed links
φ maximum load induced by F
M failover matrix [mi,j ]1≤i<n,1≤j<n, with element mi,j

at the jth position at the ith row.
Mk k-block / submatrix of the first k columns of M
Mk(i) set of the first k elements of the ith row of M
Pv(i) set of nodes in the prefix of node v in row i

TABLE I
OVERVIEW OF NOTATION USED IN THIS PAPER

We now formalize the statement for the minimal number of
link failures necessary to generate a load φ, depending on the
intersection size of short prefixes. Figure 3 depicts an example
of how load accumulates on a link.

Theorem 1. Let k ≤
√
n and Mk a latin submatrix such that

the size of the intersection of two rows is at most 1. That
is, for ∀i, j ≤ n, i 6= j it holds that |Mk(i) ∩Mk(j)| ≤ 1.
Let F ∈ Fo(φ). If φ ≤ k then |F | = Ω(φ2).

Proof. Let w be a node that carries a load of φ on its link to vn
due to F . Consider the set of failover sequences that contribute
to this load (the rows with the blue background in Figure 3,
i.e., the set of flows T for which all nodes in the prefix of
their rows are in the failure set,

⋃
i∈T Pw(i)∪F = F . Observe

that |T | = φ. Partition T in two subsets: T1 for flows whose
prefix for w is shorter than k, |Pw(i)| ≤ k, T2 for all other flows
and let t1 = |T1| and t2 = |T2|, t1+t2 = φ. All the links to vn
from the predecessors of w on the rows of T in M must be in
the set of failed links, unless the destination vn is in the prefix.
Hence, it holds that |F | ≥ |

⋃
i∈T Pw(i)| − φ. Using the parti-

tion into T1 and T2 we have |
⋃

i∈T Pw(i)| ≥ |
⋃

i∈T1
Pw(i)∪⋃

i∈T2
Pw(i)| ≥ |

⋃
i∈T1

Pw(i) ∪
⋃

i∈T2
Mk(i)| , where the

last inequality is due to the fact that Mk(i) ⊆ Pw(i)
for all i ∈ T2. Leveraging the inclusion-exclusion prin-



ciple |
⋃

i∈T1
Pw(i) ∪

⋃
i∈T2

Mk(i)| ≥ |
⋃

i∈T1
Pw(i)| +

|
⋃

i∈T2
Mk(i)|−|

⋃
i∈T1

Pw(i)∩
⋃

i∈T2
Mk(i)|. We now anal-

yse each of the three cardinalities. Using the inclusion exclusion
principle again, we have |

⋃
i∈T1

Pw(i)| ≥
∑

i∈T1
|Pw(i)| −∑

i,j∈T1,i6=j |Pw(i) ∩ Pj(w)|.
∑

i<j∈T1
|Pw(i) ∩ Pj(w)| = 0

as the intersection of the first k elements of the matrix
contains w only. Due to the latin property, it hence holds
that |

⋃
i∈T1

Pw(i)| ≥
∑

i∈T1
|Pw(i)| =

∑
i∈T |Pw(i)| ≥

t1(t1 − 1)/2. Analogously, we can write |
⋃

i∈T2
Mk(i)| ≥∑

i∈T2
|Mk(i)| −

∑
i<j∈T2

|Mk(i) ∩ Mk(j)| = k · t2 −
t2(t2 − 1)/2. The last term, |

⋃
i∈T1

Pw(i) ∩
⋃

j∈T2
Mk(j)|

is at most |
⋃

i∈T1
Mk(i) ∩

⋃
j∈T2

Mk(j)|, which in turn is
equal to |

⋃
i∈T1,j∈T2

(Pw(i) ∩Mk(j))| due to the distribution
law. |Pw(i) ∩ Mk(j)| ≤ 1 for all i 6= j, thus the whole
term can be upper bounded by t1 · t2. Therefore, |F | + φ ≥
t1(t1 − 1)/2 + k · t2 − t2(t2 − 1)/2− t1 · t2 = t1(t1 − 1)/2 +
t2(k − t1) − t2(t2 − 1)/2. k − t1 ≥ t2, as k ≥ φ = t1 + t2.
Consequently, |F |+ φ ≥ t1(t1 − 1)/2 + t22 − t2(t2 − 1)/2 =
Ω(t21 + t22) = Ω(φ2), concluding the proof.

This theorem is an important tool in the analysis of latin
square failover schemes, as it directly describes the relation
between the intersection size of k-length row prefixes and the
optimal attack cost |F |. More precisely, if we manage to create
matrices which have a large k-block with such intersection
properties, then we can guarantee a constant approximation of
the optimal resilience for up to O(k2) failures.

C. BIBDs or: How to create submatrices of low intersection?

Given n nodes, the problem is now to generate n different
failover sequences of length k with guarantees on the size of the
intersection. Of course, this generation is trivial for k << n.
For the performance of the resulting scheme however, the
objective is to find constructions for larger k: for instance
if k =

√
n, we have an optimal solution as the attacker would

need to fail θ(k2) = θ(n) links to reach the limits of Theorem 1.
Constructing such sets is however challenging.

Fortunately, two closely related problems are well-studied:
the problem of generating block designs (that is, families of
subsets of elements), and its geometric counterpart, generating
projective planes of high order. We here choose the first
approach, and next quickly introduce the relevant definitions.
The interested reader can refer to [26] for an overview of the
rich field of block designs. For our construction we will use
symmetric balanced incomplete block designs (BIBDs).

Definition 3 (BIBD, Def 1.2 and 2.1 in [26]). Let v, k, and λ
be positive integers such that v > k ≥ 2. A (v, k, λ)-balanced
incomplete block design is a design (X,A) such that the
following properties are satisfied:

1) X is a set of v elements called points, |X| = v.
2) A is a collection (i.e., multiset) of b non-empty subsets

of X called blocks, where each block contains exactly k
points.

3) Every pair of distinct elements is contained in exactly λ
blocks.

1, 4, 13

12, 3, 4

9, 1, 2

8, 6, 12

1

2

12

13

1 4 13 9 3 5

3 12 4 5 6 8

2 1 9 7 8 1

12 8 6 3 13 10

... ...
...

...

...

k n-k

Fig. 4. Construction of BIBD failover matrix M for n = 13, k = 3. Given
the blocks of the BIBD, a regular bipartite graph is constructed with edges
(dashed) between the ith block and j if j is in the ith block (left). As a next
step, a matching on this graph is computed (bold black edges) which defines
the first column of M (right). After removing the edges of this matching, the
procedure is repeated on the remaining graph (k times). When no more edges
are left, the procedure is repeated for the complement of the graph computed
first, to fill the n− k last columns of the matrix.

A BIBD where b = v is called symmetric.

Symmetric BIBDs feature a useful intersection property.

Fact 1 (Thm 2.2 in [26]). Given a symmetric (v, k, λ)-BIBD,
it holds for all 1 ≤ i, j ≤ v, where i 6= j, that |Ai ∩Aj | = λ.

The only remaining problem is that blocks are not rows: even
once we have generated our n blocks of size k, we need to order
the failover routes within each block such that the resulting
matrix Mk is a k-block of a latin square. The following
procedure will be used to construct the first k elements of
row i using the elements of Ai. It leverages k sequential
perfect matchings in the bipartite graph, associating to each
row its set of backup nodes from the block Ai.

Algorithm 2 Transforming Blocks into Latin Rows
1: input : a (n, k, λ)-BIBD (X,A)
2: output: Mk: n rows of size k
3: Let G = (U, V,E) a bipartite graph s.t., |U | = |V | = n

and (i, j) ∈ E iff xj ∈ Ai

4: for j ∈ {1, . . . , k} do
5: Let P : U → V a perfect matching of G
6: for i ∈ {1, . . . , n} do
7: mij ← P (i)
8: G = (U, V,E \ {(i,mi,j)|1 ≤ i ≤ n})
9: return Mk = [mij ]1≤i≤n,1≤j≤k

The transformation of blocks into rows is illustrated in
Figure 4.

Theorem 2. Algorithm 2 returns a latin block with |Mk(i) ∩
Mk(j)| = λ for all 1 ≤ i < j ≤ n.

Proof. Let us first show that Algorithm 2 always terminates.
This will happen iff a perfect matching P is always found.
Observe that at Line 3, by definition of a BIBD, G is a k-
regular bipartite graph (with |U | = |V | ). It therefore contains
a perfect matching (due to Hall’s Theorem). Observe that after



the first execution of Line 8, G is now a k − 1 regular graph
(since a perfect matching was removed). This will be repeated
until j = k, where G is merely a matching.

Regarding correctness, we observe that because the blocks
are sets, no node is ever repeated in a row. Since P is a perfect
matching, no node is repeated on a column. Consequently, M
is a latin submatrix.

The construction of Algorithm 2 will be very useful to
transform blocks into failover matrixes that provide the
guarantees of Theorem 1.

D. Failover Matrix Creation

With the above we now construct a failover matrix M
(summarized in Algorithm 3 and illustrated in Figure 4) given
a symmetric BIBD. As a first step, Algorithm 3 exploits a
symmetric (n, k, 1)-BIBD (X,A) to create the first k-submatrix
of M . The remaining submatrix is constructed such that each
row and column of the complete matrix is a permutation, and
thus we have a latin square. Together with the theorems from
previous sections, this is sufficient for a constant approximation.

Algorithm 3 Construction of Failover Matrix
1: input: (n, k, 1)-BIBD (X,A)
2: output: latin square failover matrix M
3: Let Mk = [mij ]1≤i≤n,1≤j≤k = Alg2(X,A)
4: Let MC = Alg2(X, {Bi, Bi = X \Ai, 1 ≤ i ≤ n})
5: return M = Mk⊕MC , where ⊕ concatenates columns

Theorem 3. Algorithm 3 returns a latin failover matrix M
with intersection properties representing a failover scheme that
is optimal up to a constant factor.

Proof. We prove first termination and then correctness.
Termination: Since Mk is a latin submatrix, all the n values

appear exactly once on the first column, and once on the last
column. Observe that in Line 4, (X, {Bi, 1 ≤ i ≤ n}) is a
BIBD (regardless of its intersection size), as the complement
of a BIBD is also a BIBD ([26] Thm 1.32).

Correctness: Observe that Mk and MC are latin submatrices.
To show that the resulting matrix M is a latin square, we need
to show that no row contains twice the same id. By definition
of Bi ∩ Ai = ∅. So M is a latin square, and therefore the
corresponding failover scheme is correct, i.e., no loops can
occur as each node appears at most once per row of the matrix.

Since M is a latin square satisfying the conditions of
Theorem 1, we conclude that for a load up to φ ≤ k ≤

√
n, the

number of failed links is θ(φ2), which implies asymptotical
optimality.

In order to construct the corresponding BIBDs (for k − 1
being a prime tower), we can leverage the following theorem.

Theorem 4 (Thm 2.10 in [26]). For every prime power q ≥ 2,
there exists a symmetric (q2+q+1, q+1, 1)-BIBD (a projective
plane of order q).

Using these BIBDs, we can thus construct failover matrices
for n = q2 + q + 1 directly. If there exists no prime power q
for which n = q2 +q+1, we can construct a failover matrix as
follows. Choose r such that 22r+2r+1 ≤ n < 22r+2+2r+1+1.
Construct the failover matrix M with a (q2 + q + 1, q + 1, 1)-
BIBD for q = 2r. Assign each row of this failover matrix to
at most 4 nodes. The remaining n − 22r + 2r + 1 elements
of each sequence can be chosen among the permutations of
the nodes that have not been used yet to guarantee a loop-free
behavior. Using this construction, the load deteriorates by at
most a factor of 4, since every prefix is used in at most three
other rows.

E. Resilient Permutation Routing

Having discussed the All-to-One model, we now turn to the
permutation routing problem. Permutation routing is a classic
and well-studied scenario (e.g., in the context of oblivious
routing and Valiant’s trick [23], [29]) where given a (worst-
case) permutation π : V → V , each node v communicates
with its image π(v). This corresponds to a set of n flows with
source vi and destination π(vi). Hence, in a resilient setting,
each flow needs a backup sequence to reach its destination π(vi)
for a permutation π. Again, for each flow, we set the conditional
failover rules according to the rows of a matrix M .

Note that the permutation routing problem has a fundamen-
tally different structure from all-to-one routing and adversarial
link failure strategies have to take all links into account, while
for all-to-one routing the adversary can focus on the nodes to
induce a high load. Nevertheless, we can apply the BIBD
construction presented above to generate efficient failover
matrices for this problem as well. We can even re-use the
proof structure for the failure set size necessary for a certain
load. Since every flow has a different destination it is more
difficult for an adversary to reuse link failures and thus we can
prove a higher bound than for all-to-one routing.

Theorem 5. Let k ≤
√
n and Mk is a latin submatrix such

that the size of the intersection of two rows is at most 1,
i.e., ∀i, j ≤ n, i 6= j it holds that |Mk(i) ∩ Mk(j)| ≤ λ.
Let F ∈ Fo(φ). If φ ≤ k then |F | = Ω(φ·

√
n) for permutation

routing.

Proof. Let (w, u) be a link that carries a load of φ due
to F . Consider the set of affected failover sequences that
contribute to this load, denoted by the set of flow T . Observe
that |T | = φ. The node w can be the source of at most one
flow. Analogously, u is the destination of at most one flow,
thus there are at least φ− 2 affected rows in the BIBD failover
matrix M with w in the prefix of u and a link failure for
each element of those prefixes of u (note that w cannot be the
destination of the flows of these rows, as then they would not
contribute to a load exiting w). We now need to show that the
size of the set F of these link failures is at least Ω(φ ·

√
n).

Due to the prefix intersection properties of the matrix structure
we use (Theorem 1), it must thus hold that the prefix length
of u exceeds

√
n for these φ− 2 rows.



To have reached v in such a prefix it must hold that either
the link (vi, v) or a link (v′, v) failed, for an element v′ in
the prefix of v on row i. To reuse a failure of the first type in
flows, vi must occur in the prefix of w in other rows. Again
due to the matrix structure (Theorem 1), a multiple reuse of
such a failure is hence only possible if the prefix of the reusing
rows is at least

√
n long. The multiple reuse of the second

type of failure has the same implication. Thus at least half
of the failures affecting the prefixes used are unique. In other
words, the failures for the first

√
n elements of the rows can

only be reused at most once and thus φ ·
√
n/2 = Ω(φ ·

√
n)

failures are necessary.

F. Arbitrary Traffic Patterns

With these solutions in mind, we are now ready to present
our main contribution: a resilient failover routing scheme for
arbitrary traffic patterns (for n flows), i.e., the flows are not
restricted to share the same destination nor do we limit the
number of flows with the same source.

Given a list of flows, let δo(v) and δi(v) count the number
of flows originating from v and destined to v respectively. The
maximum values of these quantities is denoted by δo and δi.
If we consider the directed multigraph induced by the list of
flows, δo and δi correspond to the out-degree and in-degree
of this multigraph.

Using these definition, we show a general lower bound of
failures necessary for arbitrary flow sets.

Theorem 6. Given a BIBD-failover matrix M , Ω(φ2) link
failures are necessary to generate a failover load of φ <√
n regardless of the number of flows that share sources and

destinations.

Proof. Let us first consider the case where δo = 1, i.e., there
is at most one flow originating from each node. This first part
of the proof is along the same lines as the first part of the
proof of Thm. 5.

Let link (w, u) be the link where the maximum load
manifests. Node w can be the source of at most one flow,
thus there are at least φ− 1 rows (set T ) in the BIBD failover
matrix M with a link failure for each element of the prefix
of w in those rows (note that w cannot be the destination of
the flows of these rows, as then they would not contribute to
a load exiting w). We now need to show that the size of the
set F of these link failures is at least Ω(φ2). We pick one
element v in the prefix of w on row i, i being one of the φ− 1
rows in T responsible for the load. For such a link failure to
be reused in another row, v would have to appear in the prefix
of w in another row. However, in this case, the length of the
prefix of w must exceed

√
n, because there cannot be two

elements that appear in two prefixes of shorter size, due to the
construction of M (Thm. 3). Thus we have two cases where
either more than (φ− 1)/2 of the rows in T have i) prefixes
of w shorter than

√
n, in which case the necessary number of

failures is Ω(φ2) due the argument above, or ii) there are more
than (φ− 1)/2 rows in T with long prefixes. For the portion
of the prefixes of length

√
n we can use the same argument

as before, leading to a number of link failures in Ω(φ ·
√
n)

which clearly exceeds Ω(φ2).
If we have several flows originating from the same nodes,

then adapting the above analysis leads to at least φ− δo rows
with link failures in the prefixes of w (for the at most δo

flows originating from w this does not hold, hence we exclude
them). Thus this proves that Ω((φ−δo)2) failures are necessary.
For the case where δo > φ/2 we could encounter a scenario
where φ/2 flows with source w contribute to the highest load
on (w, u). Since we only consider the load caused by failover,
the destination of these flows cannot be u, as in this case the
flows would not contribute to the worst case load. Therefore
we can focus on the link failures necessary to reach u in the
affected rows. In this case, the prefixes of u are of interest and
using the same argument as above, the number of link failures
can be lower bounded by Ω(φ2) as well in this case.

When we have a bound on δo and δi for a flow set, we can
prove an even higher bound.

Theorem 7. Given a BIBD-failover matrix M , Ω((φ− δo−
δi) ·
√
n+ φ2) link failures are necessary to generate a load

of φ <
√
n .

Proof. Similarly to the proof before, we first consider the case
where δi is one, i.e., there is at most one flow destined to
each node. Let link (w, u) be the link where the maximum
load manifests. Thus there are φ− 1 rows (set T ) in the BIBD
failover matrix M with a link failure for each element of the
prefix of u in those rows (there can be one row where u is the
target and does not need to appear in the prefix of elements
link failures).

We now lower bound the size of the set F of these link
failures. To contribute to the load, either i) w must appear in
the prefix of u on at least φ − 1 − δo rows of T or ii) w
must be the source of the flow of the remaining at most δo

nodes. Let us consider i) first. w and u can only appear in
one BIBD-block together, thus there are φ− 2− δo rows in T
where only w can appear in the first

√
n elements of the rows.

The arguments of the proof for Thm. 6 apply here as well
and thus at least (φ− 2− δo)

√
n link failures are accumulated

for the
√
n length prefixes of T . In Case ii) where w is the

source of flows, only u needs to be in the prefixes, contributing
to lower bound of Ω(φ2). Thus the necessary failure set size
of both cases together is Ω((φ− δo)

√
n+ φ2). For flow sets

where up to δi flows share a destination, the number of rows
where w and u must in be in the prefix of failures is further
reduced, concluding the proof.

Our approach can be extended for more than n flows,
parametrized by the number of failures to be tolerated. In
this case, the following construction can be used. Given a
(q2 + q + 1, q + 1, 1)-BIBD for q = n1/2 we can construct a
(23/2 logn−log k, k, 1)- BIBD. With this BIBD the number of
failures to be tolerated for O(n3/2) is in the order of log2 n,
resulting in an overhead load in the order of log n.



Corollary 1. Given λn flows, it holds that Ω(φ2) link failures
are necessary to generate an overhead load of kφ < k

√
n. If

λ ∈ O(
√
n), it holds that Ω(φ2) link failures are necessary to

generate an overhead load of φ < log n.

V. SIMULATIONS

We complement our formal analysis with a simulation
study. In particular, in this section we shed light on the load
distribution in different failure scenarios and under different
alternative routing schemes.

A. Random Failures

Improved load compared to state-of-the-art. We first investi-
gate random failures, to model more “average case” rather than
worst-case failures. Figure 5.a) shows the maximum link load
(across all links, depicting the average, the maximum and the
minimum over 100 runs, for a 183-node networks3) for all-to-
one routing as a function of the number of failures. Clearly, even
in the presence of a large number of concurrent failures, using
our approach, the max load is low. More precisely, failover
sequences with BIBDs incur a maximum load of less than
6 on average, even if almost 2/3 of the links failed. Even
though operating beyond the n− 1 tolerated failures studied in
Theorem 1, our scheme performs well under random failures.
For comparison, especially for large failure sets, the stochastic
failover scheme based on random permutations proposed in [3]
(indicated as “OPODIS” in the figures) does not perform as
well as the failover scheme based on BIBDs. In addition,
our approach has the advantage of providing deterministic
guarantees, and not just probabilistic ones.

Figure 5.b) shows the corresponding results for permutation
routing. Under permutation routing, the load is much lower.
The power of oblivious routing and remark on destination-
based routing. Next, we investigate to what extent our
approach benefits from the high path diversity offered by the
oblivious BIBD routing policy, where (failover) paths can
be arbitrary (and not only destination-based). Nevertheless,
for comparison, we consider destination-based routing (as
it commonly used in legacy IP-networks): destination-based
routing schemes are confluent, i.e., once two flows toward the
same destination intersect, they will use the same remaining
path (the suffix). Observe that in order to implement destination-
based routing, we need to set all rows in the failover matrix
to the same permutation for all-to-one routing. As can be seen
in Figure 5.c), if routing is restricted to be destination-based
(referred to as “DEST” in the figure), the resulting link load
is significantly higher in the all-to-one scenario (note that the
experiment is only interesting in this scenario, as destinations
under permutation routing differ). Accordingly, we conclude
that the higher path diversity offered by destination and source
based routing is vital for a resource efficient failover.

3We perform our analysis on a network of 183 nodes, since there exists
a (183,14,1)-BIBD which fits perfectly for this size. As discussed in the
paper, any network size can be supported, but the construction becomes more
cumbersome and a simulation on 150 or 200 nodes does not reveal more
information than on 183 nodes.

B. Targeted Failures

We now turn our attention to scenarios with adversarial
failures. Indeed, we believe that the key strength of our
approach lies in such more challenging failure scenarios. We
consider an adversary that targets a particular node v and
fails |F | random links incident to this node v. In other words,
the adversary specifically targets the links of one node. For
all-to-one routing, the chosen node is the destination node vn,
for permutation routing any node can be picked.

Note that all rows of the BIBD failover matrices offer the
same properties due to the fact that they are generated from
symmetric BIBDs and form a latin square. As shown in [3],
the maximum load is generated by failing links incident to vn
for all-to-one routing.
Improved load for all-to-one and permutation routing.
Figure 5.d) plots the maximum load observed on any link
as a function of the number of failures up to n/24. Unlike in
the random failure experiments discussed above, we now see
that the load grows more quickly with an increasing number
of failures. Indeed, the results are reminiscent of the formal
worst-case analysis presented in the previous section.

When the failover matrix is constructed with random
permutations per row, the number of failures necessary to
generate a maximum load of φ is in Ω(φ2/ log n) [3]. The
deterministic BIBD failover matrix outperforms the random
permutation matrix by around 20%. Under permutation routing
the load is lower and BIBD achieves a more balanced link
load than the randomized approach from [3].

VI. RELATED WORK

There exist several empirical studies showing that link
failures, even simultaneous ones, do occur in different net-
works [19], [27], including wide-area [14] and data center
networks [12]. For example, it has been reported that in a wide
area network, a link fails every 30 minutes on average [16].

Commercial networks today usually rely on routing schemes
such as OSPF, IS-IS, and MPLS reroute traffic, which however
do not come with formal guarantees under multiple failures.
Accordingly, backbone networks are usually largely over-
provisioned.

Existing resilient routing mechanisms can be classified
according to whether a single link/node failure [9], [20], [31],
[32] or multiple ones can be tolerated [8]. Alternatively, they
can be classified into static and dynamic ones. Dynamic tables
and using link reversals [11] can yield very resilient networks,
but dynamic tables are not supported in OpenFlow switches
today. Finally, one can also classify existing mechanisms as
basic routing schemes [4], schemes exploiting packet-header
rewriting, and routing with packet-duplication [13]. While
packet-header rewriting can improve resiliency, it can be
problematic in practice, especially under multiple failures, as
header space (and rule space) is limited. We in this paper hence
do not use header rewriting.

4 For a number of failure in O(n) the load will be in the order of
√

(n)
for targeted failures in the all-to-one case, therefore higher failure numbers
are not interesting
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Fig. 5. Comparison of maximum link load induced by our BIBD scheme, a random permutation scheme [3] (OPODIS) and a random destination-based
scheme [3] (DEST) for a network of 183 nodes. The x-axis represents the number of random link failures, the y-axis the maximum link load. The dots
represent the mean of the maximum link load over 100 experiments, the bars indicate the standard deviation..

The works closest to ours are by Feigenbaum et al. [10],
Chiesa et al. [6], Stephens et al. [24], [25], and Borokhovich et
al. [3]. Feigenbaum et al. [10] introduces the notion of perfect
resilience, resilience to arbitrary failures.

Chiesa et al. [6] focus on “scalable” static failover schemes
that rely only on the destination address, the packets incoming
link, and the set of nonfailed links incident to the router.
The authors find that per-incoming link destination-based
forwarding tables are a necessity as destination-based routing
alone is unable to achieve resilience against even a single link
failure, and, moreover, entails computationally hard problems.
In [5], Chiesa et al. consider randomized algorithms for static
routing schemes whose rules depend only on the inport (where
the packet arrives) and the destination.

Stephens et al. [24], [25] present a new forwarding table
compression algorithm called Plinko, which however cannot
provide resilience guarantees in all possible failure scenarios.

However, in contrast to our paper, none of these paper
study the implication on the network load of different failover
mechanisms: an important concern in traffic engineering.
Moreover, existing work often focuses on destination-based
routing algorithms only, ignoring one of the key advantages
of software-defined networks in terms of traffic engineering.
Finally, much existing work (e.g., based on randomized or
stateful routing) is not OpenFlow-compatible.

In this respect, the closest work to ours is [3]. The authors
focus on the All-to-One model only and present a deterministic
failover scheme which achieves an optimal tradeoff between
resilience and network load for up to a logarithmic number
of failures. For a larger number of failures, a randomized but
non-constructive mechanism is proposed. Moreover, the authors
prove the following two statements: i) no local failover scheme
can tolerate n− 1 or more link failures without disconnecting
source-destination pairs, even though the remaining graph (i.e.,
after the link failures) is still n/2-connected, and ii) for any
local failover scheme tolerating ϕ link failures (0 < ϕ < n)
without disconnecting any source-destination pair, there exists
a failure scenario which results in a link load of at least
λ̂ ≥ √ϕ, although the minimum edge cut (mincut) of the
network is still at least n− ϕ− 1. In this paper, we provide
a deterministic approach that matches these lower bounds
asymptotically, thus solving this open problem. We also show in
simulations, that we outperform their approach in all considered
scenarios while additionally providing deterministic guarantees.
More importantly, our results apply to general traffic matrices,
beyond the All-to-One model.

One contribution of our paper is to observe a connection to
the field of local algorithms without coordination. Accordingly,
in terms of techniques, the paper closest to ours is by Malewicz
et al. [18], as well as the seminal work by Dolev et al. [7].



The authors study scheduling for “disconnected cooperation”:
in their setting, a set of initially isolated, distributed processors
need to schedule their work before starting communication.
The goal is to come up with a deterministic schedule which
minimizes the number of redundantly executed tasks: the
so-called waste. This model is motivated by decentralized
environments where processors may meaningfully carry on
with the computation regardless of any other component (e.g.,
due to the idempotency of tasks). Given a set of n nodes
and n < t tasks, where n is a prime power, Malewicz et
al. present a deterministic, design-theoretic construction of an
optimal schedule.

The routing algorithms presented in this paper are oblivious:
failover paths are independent of other packets. Accordingly, we
believe that our work provides an interesting new perspective
on oblivious routing: a field which to the best of our knowledge
has so far mostly been studied for scenarios without failures.
Oblivious routing schemes are attractive for their simplicity,
but it is also known that such schemes come at an optimality
price, if only a single path for every source-destination pair
can be chosen: the famous Borodin-Hopcroft lower bound [2]
states that for permutation routing, given a maximal node
degree d, there is a permutation in which a node is traversed
by at least

√
n/d paths. While this lower bound also applies

to our setting, due to the limited number of failures we can
tolerate and the high remaining connectivity, it only provides
weak bounds. On the positive side, it is known that if multiple
paths are allowed, e.g., using Valiant’s trick [29], lower loads
can be achieved. We refer the reader to [2], [17], [22], [29] for
more details. Interestingly, we show in this work that oblivious
routing strategies can actually be asympotically optimal for
fast failover routing.

VII. CONCLUSION

A highly available connectivity is the prerequisite for any
dependable network-based application and service. Indeed,
according to the CAP theorem, if and only if network
connectivity is ensured, it is possible to provide both availability
and consistency in a distributed system.

In order to guarantee connectivity, this paper leveraged an
intriguing connection between local failover mechanisms and
combinatorial block designs. In particular, we developed a
failover scheme defining an almost optimal tradeoff between
resilience and network load: the resulting bounds are off by
a constant factor of the optimal bound derived in prior work.
Our work hence settles an open question: while mechanisms
such as Fast Reroute have been in place for many years, the
fundamental tradeoffs regarding their level of resiliency and
resource overheads such as load were long not well understood.

Regarding the impact on flow table rules, one nice aspect
of our approach is that the required number of failover rules
is low: they only depend linearly on the number of failed
links incident to the switch (whereas in principle one could
imagine a scenario where there is a different failover strategy
for each subset of failed ports). Interestingly, as we prove,
despite this compact representation, we do not lose anything

in terms of failover optimality with respect to the overhead
load and fault-tolerance).

Nevertheless, our work leaves open several interesting
directions for future research. For example, there remain many
interesting opportunities to improve our approach in practice,
and tailor it to specific use cases. For instance, we have so
far treated all flows equally. However, in practice, it may
make sense to use our rigorous routing scheme only for high-
priority and critical flows, while low-priority flows could be
routed in a best effort manner. Such a prioritization and the
study of its tradeoffs is interesting but orthogonal to our
work. At the same time, it holds that additional knowledge
about the bandwidth and traffic matrix, also creates additional
optimization opportunities, which we aim to explore in the
future.
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