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Abstract

Inspired by the recent success of scientific-discovery games for predicting protein tertiary
and RNA secondary structures, we have developed an open software for coarse-grained RNA
folding simulations guided by human intuition. To determine to what extent interactive
simulations can accurately predict three-dimensional RNA structures of increasing complexity
and lengths (4 RNAs with 22-47 nucleotides), a participative experiment was conducted on 141
participants who had very little knowledge of nucleic acids systems and computer simulations
and just received a brief description of the important forces stabilizing RNA structures. Their
structures and full trajectories have been analyzed statistically and compared to standard
replica exchange molecular dynamics simulations. Our analyses show that participants gain
easily chemical intelligence to fold simple and non-trivial topologies with little computer
time, and this result opens the door for the use of human-guided simulations to RNA folding.
Our experiment shows that interactive simulations have better chances of success when the
user widely explores the conformational space. Interestingly, the on-the-fly feedback of the
Root Mean Square Deviation with respect to the experimental structure, did not improve the
quality of the proposed models.

1 Introduction

It is recognized that the function of many RNA molecules depends crucially on their three-
dimensional structures. These structures exhibit a wide diversity of architectures, often includ-
ing non-canonical pairs as well as triplets and quartets with 145 different base-pairs, according
to Leontis classification, found experimentally (RNA Basepair Catalog of the Nucleic Acids
Database) [1, 2]. Compared to proteins, the number of experimentally resolved RNA structures,
is still very limited. In silico predictions can therefore help fill the gap between sequences and
structures. In recent years three series of RNA structure predictions competitions (RNA-puzzles
[3, 4, 5]) have highlighted how computer predictions are best when homology reconstruction is
a viable route, when experimental information is available on local base pairing from chemical
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probing, and when the structure itself is mainly driven by Watson-Crick base-pairings. Predic-
tions of structures stabilized by non Watson-Crick base pairs are still challenging, even when the
sequence information is complemented by chemical probing data [4].

The best prediction methods currently available are those based on fragment reconstructions
[6] and those including predictions of secondary structures first, followed by 3D motif assembly
[7]. Methods based on secondary structure predictions start by considering canonical base pairs,
since they are the most abundant and stacks of canonical base pairs make up A-RNA 3D stems.
Canonical base pairs are also the most well characterized for ∆∆G’s, and can therefore be
used for accurate thermodynamic predictions of duplex formations [8]. However, in a significant
percentage of experimental RNA structures, non-canonical base pairs, triplets, quartlets, as well
as pseudoknots, increase substantially the complexity of RNA 3D structures (in 28S rRNA 15%
of in-stem pairs are non-canonical and ∼20% are long-range pairs or triplets). As a result, the
combinatorial complexity of RNA increases sharply with sequence length: O(N3) for secondary
structures without pseudoknots [9, 10], and between O(N4) and O(N6) for secondary structures
with pseudoknots [11, 12]. All taken into account, RNA secondary structure prediction including
pseudoknots has been shown to be NP-complete [13].

A complementary strategy to bioinformatics approaches is that of building physical models by
simulating the molecule’s folding according to a force field. Physical models have the advantage
that the base pairing space is naturally restricted by physically accessible conformations, allowing
to consider an arbitrarily large set of possible base pairs and to generate all topologies with the
same computational complexity. The limitation of physical models resides in the sampling of the
conformational space even with the most advanced enhanced simulation techniques. In order to
investigate large structural rearangements, like the ones involved in folding, a simplification of
the system through coarse-graining is needed [14, 15, 16, 17, 18]. Despite the fact that coarse-
grained force-fields are still in their infancy, simulations can complement bioinformatic predictions
by giving access to the dynamical and thermodynamical behavior of the molecule, and also by
identifying possible alternative conformations, metastable states and kinetic traps [19, 20, 21].

Though more work is certainly necessary to achieve reliable RNA force fields, we present
here an application of coarse-grained modeling coupled to interactive molecular dynamics (MD)
simulations as a proof of principle of what can be accomplished when a user is given the op-
portunity to steer the system based on a reasonable force field. For most biomolecular systems,
for which it is difficult to identify a limited set of descriptors able to capture the specificity of a
given state, justifying why dihedral angle principal component analysis is often used to describe
the energy landscape [22], interactive simulations offer the possibility of exploiting the human
ability to recognize patterns.
Inspired by the excellent results of Foldit [23] for predicting protein 3D structures and EteRNA
[24] for predicting RNA secondary structures, which pioneered the coupling between the powers
of computer predictions and the intuition of the human intellect, we have developed an open
software combining interactive non-equilibrium molecular dynamics simulations with the HiRE-
RNA force field for folding, unfolding or deforming structural models. Interactive simulations are
performed with the in-house software UnityMol [25], which allows for the visualization of a MD
trajectory in real time, allows the user to change the temperature, and to apply forces to selected
particles through a variety of hardware devices, including the ubiquitous computer mouse.

As a first test of the effectiveness of our approach, we set up a participative experiment where
141 participants were asked to make RNA folding predictions using interactive simulations for
4 molecules of increasing length (22-47 nucleotides) and 3D complexity. The experiment was
carried out in two successive rounds, with slight variations as detailed below. In this manuscript
we present the basic ideas of the HiRE-RNA model and of interactive simulations, the setup of the
experiment, and the prediction results comparing also with the performance of fully automatic
computer simulations. The software and benchmark molecules used in the experiment are freely
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available on the HiRE-RNA contest page (https://hirerna.galaxy.ibpc.fr/).

2 Materials and Methods

We carry out interactive simulations by coupling UnityMol, a molecular visualization software
for chemistry and biology, and the simulator MD engine implementing the HiRE-RNA force field
[26, 27, 28, 29].

2.1 The HiRE-RNA coarse-grained RNA model

This description of the HiRE-RNA model corresponds to the explanations that all participants
received prior to carrying out the experiment. The full presentation of the model can be found
in [17, 30].
HiRE-RNA is an implicit solvent, implicit ion model where each nucleotide is represented by 6
or 7 beads (see fig. 1 of SI) corresponding to the backbone heavy atoms P, O5’, C5’ and C4,
C1’ of the sugar, and to the center of mass of each of the aromatic rings of the bases (G1, G2,
A1, A2, C1, U1). The force field of the model is composed of local interactions accounting for
the local stereochemistry and an excluded volume interaction giving a physical size to the beads,
and non-local interactions accounting for base pairing, base stacking and electrostatics. Local
interactions are composed of an harmonic potential for bond lengths and for angles amplitudes,
and a sinusoidal potential for dihedral angles. A fast-decreasing exponential function describes
the excluded volume potential. Phosphate beads carry one negative charge each and have a
repulsive interaction with each other.
Both base pairing and stacking crucially depend on the relative positions and orientation of
the bases. In order to recover the anisotropy of a base, from the model’s isotropic particles,
base planes are identified by the particles C1’-B1-B2 for purines and C4-C1’-B1 for pyrimidines.
Both stacking and base-pairing can occur between any two bases of the system. The stacking
potential is minimized when the distance between bases is close to an equilibrium distance, and
when the planes are parallel and vertically aligned (see fig. 2 of SI). Base pairing occurs when two
bases are side-by-side on the same plane and depends on the relative distance and orientation.
To account for the multiple pairing possibilities of each base, equilibrium values depend on the
bases’ species and on their orientation. In the current model we account for 22 different possible
pairs, including the two canonical pairs A-U and G-C, 8 pairs occurring between Watson-Crick
sides of any two bases (all possibles with the exception of G-G), and 12 other pairs representing
interactions involving also the Hoogsteen and Sugar edges of the base. The energy of each base
pair is proportional to the number of hydrogen bonds forming the pair, that is 3 for G-C, and
two or one for the other pairs according to the table in [18].
The HiRE-RNA force field, as any coarse-grained force field for RNAs, is still evolving and
suffers from the limitations of not having an explicit description for ions, of a parametrization
yet to be extended to include thermodynamical and dynamical quantities and it has to be put
to the test on larger and more complex systems than benchmark molecules. However, for the
the experiment we present here, the goal was to have a plausible physical coarse-grained model,
to which HiRE-RNA seemed adequate. Given the modular set-up of interactive simulations, the
molecule’s representation and force-field can be easily changed.

2.2 Visualization and user interaction through the UnityMol application

UnityMol is a molecular visualization software based on the Unity3D game engine [25]. It features
molecule representations commonly found in the discipline and serves as an experimental platform
to propose specialized methods (i.e. custom polysaccharides rendering [31]).
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As coarse-grained models are not easily rendered on standard software, UnityMol was modified
to generate appropriate and visually appealing representations. For HiRE-RNA, bases can be
rendered through ellipsoids whose orientations correspond to those of bases’ planes, as explained
in the previous section. This makes it easier to visually detect stacking and possible base pairing.
When connected to an interactive HiRE-RNA simulation, plots of selected energy terms over time
yield a quantitative insight into the molecule’s stability (Figure 5 SI). Using the computer mouse
direct action on the simulation is possible. Force vectors are computed based on the selected atom
and the current cursor displacement. These forces are transmitted to the simulation engine and
added to the force field. This scheme offers a direct, almost instantaneous, visual feedback. More
details about the functionalities of UnityMol and the web application are given in Supplementary
Material.

2.3 Setting up an RNA folding challenge as participative experiment

Participants for this study involve two classes of third year college students majoring in biology.
During the course of 2015 and 2016 interactive nucleic acids simulations have been integrated as a
mandatory lab for the bioinformatics course, at Paris Diderot University. The course was the very
first introduction to numerical tools for the study of biomolecules. During the semester, students
received a two-hours lecture on the analysis of bimolecular structures including a light overview
of structure prediction methods as well as a one-hour lecture on modeling of biomolecules and
basic principles of molecular dynamics. All participants were therefore novice users of molecular
simulation techniques and RNA structures. Since users were familiar only with the DNA double
helix, but ignored the folding capabilities of single stranded nucleic acids, an overview of nucleic
acids structures was given as introduction to the lab.

Users learned how to use UnityMol and interactive RNA simulations through two exercises of
pulling open a double helix and reforming it, making observations on the different energy terms,
with the local harmonic potential governing the response as the molecule is being pulled by an
external force, while base pairing and stacking driving and stabilizing folding.
Users were then given 3 hours to work on the HiRE-RNA folding challenge, having to fold four
molecules of increasing complexity. The starting point of each exercise was a completely stretched
conformation. Users could launch an interactive molecular dynamics simulation with Langevin
dynamics for friction. The launching applet allowed to choose the temperature, which could then
be changed by pausing the simulation and relaunching it with a different T value.
Users were given the instruction to select up to five conformations that could correspond to the
native structure for the molecule. Their selection was submitted to a server and entered in the
competition. In 2015, evaluation of the RMSD structures with respect to the experimental ones
was given to the users at the end of the competition, while in 2016 the server was indicating
the score of the structure and RMSD, immediately upon submission, giving users a real-time
assessment of the validity of their structures while performing the experiment. We will refer
to the 2015 as the “non-feedback experiment” and to the 2016 as the “feedback experiment”.
Since the strategies adopted for the non-feedback experiment and the feedback experiment were
different, we have analyzed both rounds separately.
For our subsequent analysis, all submitted structures were recovered from the server as well as
the full trajectories, that were physically recovered from each machine.

2.3.1 Four RNA molecules of increasing complexity

The four molecules consist of a simple hairpin, a hairpin with an asymmetric bulge, an H-
pseudoknot, and a triple helix pseudoknot (fig. 1).
1F9L is a hairpin of 22 nucleotides including 6 canonical base-pairs, one Hoogsteen G-U pair, and
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Figure 1: The four molecules proposed to the participants for the folding challenge represented
atomistically (left) and in the coarse-grained representation used in the actual experiment with
UnityMol (center). The image on the right represents the lowest RMSD prediction made by
the participants in the first round. 1F9L and 2G1W correspond well to the native structure
with a low RMSD and the correct base pairing organization. 1N8X exhibits some non native
base pairs. 2K98 has the correct overall shape, forming a triple helix pseudoknot, but deviates
significantly in the local organization. The complete list of base pairs for the 4 molecules (native
and predictions) is given in SI.

two A-G pairs [32]. According to Leontis classifications all pairs are cis Watson-Crick/Watson-
Crick (see SI for detailed list). 1N8X is a 36 nucleotides hairpin including one asymmetric bulge
[33]. The native conformation is stabilized by 14 cis Watson-Crick/Watson-Crick base pairs,
including one A-G pair adjacent to the bulge and one G-U pair in proximity of the hairpin loop.
2G1W is a 22 nucleotides simple pseudoknot composed of 7 canonical G-C base pairs [34]. 2K96
is a 47 nucleotides triple helix pseudoknot [35]. It consists of a Watson-Crick double helix and of
an A-rich dangling strand inserting into the WC helix groove and forming several stacked triplets.
Overall, 21 base pairs, canonical and non-canonical, stabilize the native structure, including six
triplets (five A-U-A and one C-G-A).
These four sequences, starting from fully elongated states, were previously folded [17, 18] by long
non-biased simulated tempering (ST) and by replica exchange molecular dynamics (REMD) sim-
ulations coupled to HiRE-RNA. The simulation on 1F9L found the global free energy minimum
at 3.2 Å from the experimental state, for 1N8X the deviation is 3.8 Å for 2G1W the deviation
is 4.3 Å and for 2K96, the deviation is 4.3 Å.

2.3.2 Analysis of the participants’ performance

We carried out two separate analyses to study the usefulness of interactive simulations in address-
ing the question of RNA folding. The first focuses only on the structures submitted by the users
to the online server and wants to answer the question if a “naive” user is able to produce correctly
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folded structures and recognize them as such. The second analysis focuses on the full trajectories
generated by each participant and wants to investigate how the molecule’s conformational space
is explored.

The two quantities used to compare submitted structures and trajectories to the native con-
formation are the RMSD, computed on all beads of the coarse-grained representation, and base-
pairing. For RMSD we have used a cutoff of 6Å to detect structures corresponding to the native
state. This value comes from our experience of previous simulations with HiRE-RNA at phys-
iological temperatures where the RMSD can fluctuate of about 6Å while preserving all correct
base-pairs and fold. This criterion gives only a rough estimate of the correspondence between two
structures, as even lower RMSD values do not necessarily imply correct stack or pairs. Base-pairs
were considered formed if they have at least 10% of the maximal interaction energy between the
two bases.
For all trajectories we analyzed structures from frames taken every 4ps. We monitored the total
internal energy given by the HiRE-RNA potential, which we then normalize with respect of the
energy of the native structure, the overall number of base pairs as well as native base pairs. In
order to better detect base pairs, we smoothed fluctuation using a moving window over several
subsequent frames as described in [19]. To give a more accurate, yet concise, description of the
molecule’s architecture we also looked at its topology starting from the list of detected base pairs,
as defined in [36, 37]. Details of the analysis procedure are given in Supplementary Material.

3 Results and Discussion

3.1 Participants predict a significant proportion of native folds

Overall participants submitted between 80 and 200 structures, depending on the molecule and
on the year. Not all participants used all the 5 attempts at their disposal. A summary of the
results of submitted structures is reported in Table 1 in which we present also, as reference, the
predictions by two commonly used programs McSym [7] and Vfold [38]. For each molecule, in SI
we report the base pairing of the lowest RMSD structure proposed by the students next to the
details of the base paring of the experimental structure.

The ratio of predicted structures of RMDS lower than 6Å ρ, varies significantly with the
molecule, with the best predictions, as expected, for the simple hairpin (1F9L), where almost half
of the submissions correspond to the native state in the non-feedback experiment and one quarter
in the feedback experiment, and for which the lowest RMSD structures in both experiment have
base pairing identical to native.
Molecule 2 (1N8X) was harder to predict than molecule 1 because of the asymmetric bulge in its
middle region. Most submitted structures include 7 correctly paired bases (lower stem). Some
structures predicted the correct base pairs but resulted in distorted overall shapes, bringing
the RMSD to about 10Å, and are therefore not included in ρ. Other high RMSD structures
exhibit also a high number of non-native base pairs, and were folded into low-energy structures
alternatives to the experimental configuration. The lowest RMSD structures have 9/14 native
base pairs for the non-feedback experiment, and 10/14 for the feedback experiment.
Molecule 3, 2G1W, has a markedly doubly-peaked distribution. The lowest peak corresponds to
the formation of the two stems in the pseudoknot configuration, while the higher peak corresponds
to only one of the stems being formed. This is in agreement with results from REMD simulations.
Most structures predicted the formation of one of the stems and include also some non-native
pairs, achieving alternative compact structures. They are mainly mismatched (non-canonical)
hairpins. The lowest RMSD structures have 7/7 native base pairs for the non-feedback experiment
and 4/7 for the feedback experiment.
Given the size and complexity of molecule 4, we did not expect users to be able to fully predict
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Table 1: Submitted structures’ statistics. For each round we report the total number of structures
submitted by the participants (str.), the percentage ρ of structures with RMDS below 6Å, the
lowest RMSD among all submissions, and the approximate values of the first two peaks of the
distribution in RMSD of all structures (the full distribution is visible in gray in fig. 2, horizontal
histograms). ∗For 2K96 we give a looser definition of the percentage of success and we consider
the number of structures exhibiting the native topology. As a reference we report also RMSD
values of structures folded with the two bioinformatics programs McSym and Vfold accessible
on-line. Values are averages computed over the 10 best structures according to the programs.
For the two pseudoknots, McFold/MCSym was not able to predict the correct topology despite
having allowed the search for H-shaped pseudoknots. Instead it proposed hairpins. VFold found
the correct secondary structure but gave errors when attempting to build a 3D structures based
on the pseudoknotted secondary structure, not finding suitable motifs.

non-feedback experiment feedback experiment McSym Vfold

Molecule str. ρ
lowest
RMSD (Å)

RMSD
peaks (Å)

str. ρ
lowest
RMSD (Å)

RMSD
peaks (Å)

RMSD (Å) RMSD (Å)

1F9L 88 50% 2.0 4; 7 203 25% 2.1 6; 12 4.0 3.75
1N8X 90 10% 4.5 5; 10 207 5% 2.6 8; 12 5.5 3.7
2G1W 96 13% 3.8 6; 12 168 3% 5.7 8; 12 12.9 na
2K96 74 13%∗ 11.4 11; 15 119 8%∗ 11.2 11; 15 33 na

Table 2: For each molecule we analyze the 15 lowest energy structures submitted by the users
and we report the number of structures with low RMSD values and the number of structures
with a high percentage of native base pairs. The choice of 15 lowest energy structures is arbitrary
but is in the range of what is typically analyzed by prediction methods.

non-feedback experiment feedback experiment

Molecule best rmsd native BP best rmsd native BP

1F9L 10/15 ≤ 5Å 6/15 ≥ 0.75 12/15 ≤ 5Å 7/15 ≥ 0.75
1N8X 7/15 ≤ 6Å 5/15 ≥ 0.75 4/15 ≤ 6Å 3/15 ≥ 0.75
2G1W 3/15 ≤ 6Å 7/15 ≥ 0.75 2/15 ≤ 8Å 8/15 ≥ 0.75
2K96 6/15 ≤ 11Å 5/15 ≥ 0.40 5/15 ≤ 12Å 2/15 ≥ 0.40

its structure. We were however interested in testing how far they could come in proposing a
plausible structure with the correct topology. Both years 10 structures were submitted with
RMSD between 11 and 12 Å and corresponded to the topology of the pseudoknot. Other
structures included the WC helix but did not reach the folding into a pseudoknot, leaving a
dangling end. The distribution in RMSD exhibits a small peak at 12Å and is for the rest rather
flat, showing how there wasn’t an alternative structure found by the users, but all other proposed
structures sampled widely the more or less unfolded states. The lowest RMSD structures are
also the ones with the most native base pairs, with 9/21 native base pairs for the non-feedback
experiment and 12/21 for the feedback experiment.
When we analyze submitted structures based on their internal energy, we systematically find
some of the lowest RMSD and highest native base pairs structures among the 15 lowest energy
submissions (Table 2). This is an encouraging results as in a blind prediction one would usually
focus on the lowest energy structures.

The combined results for both experiments show that simple molecules could be folded quickly
and easily by a large portion of users, while molecules with more articulate structures are clearly
harder to predict. Still, a significant portion of users were able to generate the native conformation
and recognize it as such in about 30 minutes of interactive simulation. In addition, it was
possible to generate alternative conformations and test them for stability. Even for very complex
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architectures such as the triple helix, some users were led to the intuition of the correct topology
of the molecule. This is particularly remarkable as none of them had any prior experience with
RNA structures other than double helices and hairpins.

The users’ strategy in the feedback experiment was different than in the non-feedback exper-
iment. Indeed the number of submissions in the feedback experiment is roughly twice as much
as in the non-feedback experiment. The number of users being comparable in the two years, one
can immediately observe that users in the feedback experiment submitted more structures than
their non-feedback experiment colleagues. In the feedback experiment a significant percentage
submitted structures have a high RMSD suggesting that users submitted one or two randomly
chosen structures just to test how far they were from the correct solution and used this infor-
mation for the pursuit of the challenge. It is interesting to notice how this real-time feedback
does not seem to give any particular advantage in the prediction of the folded structure as it can
be observed by the comparison of all statistical quantities in Table 1 between the non-feedback
experiment and the feedback experiment. On the contrary, one can argue that results in the
non-feedback experiment are better than those of the feedback experiment. This observation
is reminiscent of the observation made with Foldit that players could move from one basin to
another through their ability to ignore a quantitative score [23].

3.2 Humans explore phase space more broadly than automated approaches

Having retrieved single trajectories from each user’s machine, we have analyzed the full explo-
ration of the conformational space of each simulation with the goal of understanding the con-
tribution of interactive simulations over regular, enhanced sampling, simulations. Results were
assessed after merging all trajectories together, keeping the distinction between the non-feedback
experiment and the feedback experiment and comparing them to the results from REMD simula-
tion performed on a computer cluster using 32 replicas, spanning from 250 to 500K. For REMD
simulation we have analyzed the structures of one low temperature replica, corresponding to a
temperature below melting where the native state is present, if not dominant. An example of a
participant’s single trajectory is presented in Supplementary Material (Figures 5 and 6).

Sampling is focused on low energy conformational space

Figure 2 illustrates the distributions of internal energy vs. RMSD. Interactive simulations focus
sampling on low energy conformational space. Most of the structures in the full trajectories
are well above the native internal energy, however, structures picked by participants have lower
energies as shown by the height of the gray peaks in population density (both for RMSD and
energy) compared to the blue peaks extracted from full trajectories. For low RMSD structures
these energies are close to native. Selected structures’ energies are generally low because users
spontaneously proceeded in a sort of simulated tempering by restarting the simulation at different
temperatures. When they thought a structure was close to native, they stopped the simulation
and relaunched it with a lower temperature to reduce fluctuations and perform small adjustments
to the structure, with temperature lowered to as much as 10K. They then raised it back to room
temperature on the refined structure to test for its stability.

In the non-feedback experiment, users sampled extensively different basins, including the ex-
act native state for all molecules except the triple helix (2K96). In the feedback experiment,
users sampled more uniformly the conformational space in RMSD and internal energy. This
can be observed by the presence of several, well separated, population peaks in the plots of
the non-feedback experiment, while a more uniform diagonal shade is observed for the feedback
experiment. It appears that the instantaneous assessment provided in the feedback experiment
led to a gradual decrease in RMSD, but prevented from exploring disconnected basins. This
can explain why in the feedback experiment users were less successful at folding than in the
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Figure 2: Internal energy vs. RMSD distributions for all interactive simulations as well as for one REMD
simulation. The population color coding for full trajectories goes from blue (low) to red (high), while values
from individual submitted structures are superposed as gray circles. Internal energy at finite temperature is
normalized with respect to the absolute value of the energy of the minimized native structure |E0|. RMSD
distributions for both full trajectories (blue bars) and submitted structures (gray bars) are presented on
the horizontal histogram, while energy distributions are presented on vertical histograms. The pink wedge
in each PMF indicates the position of the native structure (RMSD = 0, E/|E0| = −1).

9



non-feedback experiment.
The details of the results vary from molecule to molecule. For 1F9L, in the non-feedback exper-
iment users sampled extensively at least 3 different basins, as it appears from the three distinct
peaks in population density, while they sampled more connected basins in feedback experiment,
remaining further away from the native state. For 1N8X, the full trajectories of the non-feedback
experiment remain globally at a higher internal energy than those of the feedback experiment,
however in the non-feedback experiment users were able to reach lower energy states with a bet-
ter correspondence to the native structure and select them as candidates for native. The same
is true for 2G1W. Interestingly for this molecule, in the feedback experiment users did sample a
basin at 6Å RMSD corresponding to the native state, but they did not select these structures
as possible native candidates. In the non-feedback experiment this region was less explored, but
recognized as native by a dozen users. As a general trend, in the non-feedback experiment users
explored more widely in energy. They seem to have sampled lower energy states than in the
feedback experiment and have picked these states for their submission.

For comparison, trajectories from REMD simulations spend most of their time exploring the
unfolded states and, despite the presence of low temperatures, do not minimize the energy as
effectively as interactive simulations. Still, a peak corresponding to the native structure is clearly
visible, even though it represents only a small fraction of the overall population and its internal
energy is similar to other states.

Base pairing and topology measure native fold propensity

To assess whether an RNA structure is correctly folded it is important to consider also the base
pairing network, and not simply at the RMSD. For the non-feedback experiment, which based on
the previous analysis and discussion we consider the most interesting, we have analyzed the details
of base pairing. Results are reported in fig. 3. For each molecule we looked at the overall number
of base pairs, at the number of native base pairs and at two topological parameters allowing to
compare the general features of the base pairing network to that of the native structure.

For all molecules we can observe that trajectories focused on configurations with a relatively
high number of base pairs. This is particularly clear for 1F9L and 1N8X where we can observe a
peak of the distribution of base pairs at values close to the native number of pairs (first column,
vertical histogram in blue). The number of native base pairs however is low. Only a negligible
percentage of all trajectories explore conformations with exactly the same base pairs as the native
structure (second column), but, interestingly, these structures were chosen for submission and
indeed correspond to the best predictions also in terms of RMSD. A possible explanation for
the choice of the users comes from the observation of the stability of the molecule, which is not
captured by the instantaneous structure they submitted. Indeed, native states are generally more
stable than other states, as observed by our previous computer simulation studies for these same
molecules, and users had the tendency to submit structures that remained stable for a while in
the simulation.
We can observe that for 1N8X and 2G1W one native stem is clearly explored in the trajectories.
This corresponds to the lower stem for 1N8X, formed by 7 pairs, and one or the other of the stems
of 2G1W, which can both be composed of 4 pairs. Trajectories of 2K96 explore configurations
with a wide range of base pairs, with the number of native base pairs not exceeding 40%. There
is not a clear peak of the distribution, but all options seemed to be explored rather uniformly.

The comparison of topological values (column 3) gives a measure of the extent to which the
base pairing organization of generated structures (trajectories or submitted) corresponds to the
native secondary structure. For 1F9L and 1N8X the topology explored in the trajectories, and
even more so that of selected structures, corresponds well to the native topology, suggesting that
most users focused on the hairpin as their prediction for the molecule’s architecture. Indeed
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Figure 3: Base pairs vs. RMSD analysis for the non-feedback experiment: number of detected base pairs
(left), percentage of native base pairs (center), molecule’s topology as defined by the second eigenvalue of
the Laplacian matrix. Eigenvalues are normalized with respect to the second eigenvalue of the Laplacian
matrix λ0 for the native structure. In the central and right columns the pink wedge corresponds to the
position of the native structure (RMSD=0, % native pairs = 100, λ0/λ0,native = 1).
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most trajectories focus on a topological parameter (λ, see SI) equal or close to native, and
selected structures are very strongly peaked at the correct eigenvalue. If we consider dual graph
topological parameters [37], for 1N8X 17% of all trajectories and 33% of selected structures share
the native values of number of vertices and second eigenvalue of the Laplacian matrix, indicating
that the overall base pair organization and stem-loop organization of the explored configurations
correspond to native. For 2G1W analysis of topological parameters shows that full trajectories
focused on configurations of topologies different than the pseudoknot (indeed most users tried to
form hairpins), however submitted structures were chosen also from conformations of the correct
topology, as it is shown by a peak of the distribution for λ/λ0 ∼ 1. For 2K96 the best predictions
have the native value λ ∼ λ0, supporting the observation that even though the details of the
structures are not predicted correctly the overall organization of submitted structures corresponds
to native.

3.3 Interactive RNA folding open new opportunities

The fact that participants were quite successful in folding the four molecules and exploring phase
space in a broad manner opens the prospect for applications. In research, such interactive sim-
ulations on unknown targets may provide complementary means to generate a pool of plausible
structures. In combination with experimental data this can be a powerful tool to refine structural
models. Teaching is another promising application area, as we noticed that many of the complex
concepts associated to RNA conformational flexibility were quite naturally made aware to the
participants. The interactive approach is also a wonderful tool for outreach activities.
A key question for research applications is whether one is able to select the correctly folded struc-
tures from the pool of all submissions. The current dataset suggests that structural clustering
of the solutions combined with a low energy filter should lead to a good selection of candidate
structures. In that context it should also be recalled that in some sense our experiment setup was
not ideal, because the participants were only allowed quite basic tools, without 3D visualization
of the structures nor use of 3D input devices that would facilitate the manipulation in space.
Furthermore, available time for the experiment was limited. In particular for the more complex
2K96 molecule this limitation had an impact on what could be achieved. Another promising
avenue for future extension would be to implement collaborative strategies whereby users would
not only be able to work individually but also collectively. This is the route successfully taken
by Foldit through the use of a scripting tool that allowed players to share their strategies [39].
Furthermore, one could imagine several participants working on distinct parts of one molecule
at the same time, or cross-checking each others’ solutions.
These preliminary results on molecular explorations by interactive simulations are encouraging
especially if projected onto the direction of the use by the research community, where the average
user would already have some prior knowledge of the possible motifs of nucleic acids systems and
possibly modeling. One of the main directions of our continuing development of HiRE-RNA and
UnityMol is to include different sources of experimental information. In the current simulation
software, it is possible to include local restraints such as base-pairs, including information from
secondary structure predictions, crystallographic data of subparts of the molecule, and prelimi-
nary NMR data. In a new version soon to be released, it will be possible to include the on-the-fly
calculation of theoretical SAXS curves and compare them to a target curve as the simulation pro-
ceeds. The introduction of indirect experimental data to guide simulations has to be done with
the awareness that a successful strategy is to explore very different regions of the conformational
space, and not to focus on a restricted region of one single parameter. Indeed, the knowledge of
a score with respect to a target structure, such as the RMSD in the feedback experiment appears
to limit the conformational space that is explored by the users, which have then the tendency to
remain a single region of good scores, instead of exploring more widely.
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4 Conclusions and perspectives

The approach presented here fundamentally builds upon the interactive molecular dynamics fam-
ily of approaches [40], yet provides many significant improvements, in particular the introduction
of crowd sourcing aspects for harvesting user contributions. To our knowledge, this is the first
large-scale participative experiment at a coarse-grained level of representation, whereas alter-
native approaches such as FoldIt focus on all-atom models. We previously demonstrated that
the coarse grained level provides particular opportunities for interactive simulations [40]. In our
approach, the physically sound simulation of the conformational dynamics is at the center of
the experiment and it is guided by the user; in other folding challenges the user 3D puzzle is
at the center of interest with limited contribution from modeling, mostly through instantaneous
minimization. For our purpose, we extend the existing Interactive Molecular Dynamics (IMD)
protocol with the possibility to steer simulation parameters such as temperature or to exchange
experimental data used as additional constraint on the simulation. We provide several adapted
real time analyses, such as live plots of relevant quantities to monitor the simulation, on-the-fly
topology and secondary structure graphs as well as generation of experimentally relevant infor-
mation, for instance a SAXS scattered intensity profile. Overall we propose an open design that
others can build on for similar experiments, providing among others a convenient web application
to harvest and manage participants’ contributions.

The main result of our experiment was that through interactive simulations and a simplified
representation of the molecule, “naive” users were able to successfully predict native RNA folds.
The use of interactive non-equilibrium MD simulations, with the possibility of monitoring in
real time certain features such as internal energies, not only allows the participants to explore
the conformational space more widely and in different regions with respect to what is done by
standard REMD computer simulations, but lead them to identify native-like structures and to
explore more thoroughly their basins. The plurality of proposed structures is an advantage in
folding predictions. Given the variability of experimental conditions that cannot be accounted for
in simulations, the ability to quickly produce plausible alternative structures is indeed a valuable
feature in the context of a real scientific research, in which the target structure is unknown
and where possible conformations have to be selected based on their agreement with indirect
experimental information. Submission of several different structures is also a winning strategy
in RNA and protein folding competitions. Looking at all energy and base pairing plots together
from non-feedback experiment, we observe that there is no straightforward correlation between
energy and RMSD, nor between the number of base pairs and RMSD, yet the participants could
reach a high success rate. Comparing the results from non-feedback experiment and feedback
experiment, there is no increase of the success rate. This is surprising but expected since a
single parameter is not sufficient to detect the native state. Participants were able, however
to guide their molecules to native basins and to select native-like conformations, by acquiring
chemical and physical intelligence that standard computer simulations based on the equations of
motion, and energy calculations, do not have yet. This observation makes a strong argument for
the pursuit of hybrid methods where the power of computers is combined with the creativity of
humans.

With the amazing variety of RNA structures, are many more RNA folding challenges than
those we presented here, biologically more interesting and more intriguing for predictions. How-
ever, our goal here was to demonstrate what naive users, with little background in nucleic acids
structures and modeling, in just one day could go from learning to use the software to the propos-
ing solutions in good agreement with experimental structures. Our ultimate goal is to provide
this open software to experts in RNA structures and function, who are aware of the complexity
of the structural details of single stranded nucleic acids, have a good knowledge of the NDB, and
by intuition can test their ideas very rapidly without having to enumerate an excessively large
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number of conformations.
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